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The only practical way to verify the correctness of distributed algorithms with
a high degree of confidence is to construct machine-checked, formal correctness
proofs. In this paper we explain how to do so using HOL—an interactive proof
assistant for higher-order logic developed by Gordon and others. First, we describe
how to build an infrastructure in HOL that supports reasoning about distributed

algorithms, including formal theories of predicates, temporal logic, labeled transi-
tion systems, simulation of programs, translation of properties, and graphs. Then
we demonstrate, via an example, how to use the powerful intuition about events
and causality to guide and structure correctness proofs of distributed algorithms.
The example used is the verification of PIF (propagation of information with feed-
back), which is a simple but typical distributed algorithm due to Segall.

1 INTRODUCTION

Distributed algorithms, as exemplified by those in
[15, 33], have to operate in the face of total asyn-
chrony: there is no finite bound on how widely compo-
nent speeds may vary both spatially and temporally in
a distributed system. The asynchronous interaction of
concurrent activities can produce nondeterministic be-
haviors that are too numerous to be adequately tested
and too complex for informal reasoning about them to
be reliable. The only practical way to verify the cor-
rectness of distributed algorithms with a high degree of
confidence is to construct machine-checked, formal cor-
rectness proofs. The aim of this paper is to explain how
to do so.

The proof construction tool we use is HOL, which
is an interactive proof assistant for higher-order logic
developed by Gordon and others [18]. (A very brief
introduction to higher-order logic can be found in Sec-
tion 2; for a more thorough treatment, see [18].) We
choose HOL for several reasons. The first is expressive-
ness: higher-order logic supports natural formalizations
of distributed algorithms, the data structures they ma-
nipulate, the properties they possess, and the modes
of reasoning used to prove those properties. The ability
to have natural formalizations is important not only be-
cause it reduces the risk of having wrong formalizations,
but also because it helps to communicate the meanings
of proofs to the uninitiated. The second is security:
HOL reduces every proof to the repeated application
of a small set of axioms and inference rules, which is
more trustworthy than a large set of ad hoc proof pro-
cedures. Since our foremost concern is correctness, such

*This paper is an expanded and fully revised version of [9].
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a high standard of security is very desirable. The third
is programmability: customized proof procedures can ée
easily written to automate common patterns of reasog-
ing without compromising the security of HOL. Thds
also encourages the re-use of proof procedures among
a group of users. We have found that these charactez-
istics do make HOL a secure and flexible environmexgt
in which to construct correctness proofs of dlstnbut@
algorithms.

Our approach to formalization is strictly deﬁmtwn@
meaning that all our theories are developed from thie
initial theory of HOL without introducing any axioms
other than definitions. The definitional approach has
two well-known advantages [4]. The first is consistenéy:
definitions never introduce any inconsistencies. Singe
the initial theory of HOL is consistent [18], all our th8-
ories are consistent as well. The second is eliminability:
definitions can, in principle, be eliminated. So an au:?—
iliary definition not involved in the statement of a mam
theorem can safely be forgotten as far as that theore@
is concerned, even if it is used in the proof of that the-
orem. To be sure, sticking to the definitional approach
is sometimes laborious, since even “obvious theorems”
must be honestly proved. But the logical security thus
gained is well worth the effort, as too many “obvious
theorems” have turned out to be false.

In Section 3, we describe how to build an infrastruc-
ture in HOL that supports reasoning about distributed
algorithms, including formal theories of predicates, tem-
poral logic, labeled transition systems, simulation of
programs, translation of properties, and graphs. Here
we mention only two highlights. First, a Fundamental
Theorem (depicted schematically in (1) below) allows
one to deduce the satisfaction by a “concrete” program

THE COMPUTER JOURNAL,

VoL. 38, No. 2, 1995




MECHANICAL VERIFICATION OF DISTRIBUTED ALGORITHMS IN HIGHER-ORDER LOGIC 153

I of a “concrete” property P® (written II* = P*)
from the satisfaction by an “abstract” program IT! of
an “abstract” property P* (written IT* = PY), provided
that we can establish the simulation of IT* by IT* via
a joint invariant J (written Sim(J)(IT")(I*)) and the
translation of P! into P® via the inverse of J (written

Pt{J1} P).
m Pt
Sim(J) (") () [ ' [ PP Q)
e P

Second, a set of Reduction Lemmas allow one to reduce
the proof of the translation relation between two com-
plex properties of the same form to the proofs of
translation relations between their corresponding con-
stituents. A typical example is the Reduction Lemma
for implicational properties (the =» operator will be de-
fined in Section 3.1.2):

P {J} P! A P} P}
= (Pl=PH{J 7} (P> P)

When applicable, the Fundamental Theorem (1) to-
gether with the Reduction Lemmas allows one to carry
out a significant portion of the correctness proof of the
concrete program IT° (including all temporal reasoning)
in terms of the abstraction IT!. This is desirable not
only because II¥ is more abstract and easier to reason
about than IT*, but also because different concrete pro-
grams may share the same abstraction II! whose proof
can then be reused.

Our notion of simulation is a generalization of that
of Milner’s [29]. Our formulation of translation is based
on a novel interpretation of Hoare triples {19]. Please
see Sections 3.3 and 3.4 for details.

Common patterns of reasoning in program verifica-
tion are often formulated as special-purpose program-
ming logics, such as Hoare logic [19] and temporal logic
[32); so that these patterns can be expressed succinctly
and made more easily applicable. In this work, we bor-
row some constructs from Chandy and Misra’s UNITY
[5] and Lamport’s TLA [22] (see Section 3.2 for de-
tails). In keeping with the definitional approach, we
embed these constructs in higher-order logic by formal-
izing their semantics as definitions and proving their
properties as theorems of higher-order logic. This ap-
Proach allows arbitrary mixing of embedded logics with
other mathematical theories and hence is very flexible.
Furthermore, there is no need to worry about the com-
Pleteness of inference rules of an embedded logic, for
new rules can always be derived from the formalized
Semantics whenever needed.

To reason about distributed algorithms, a consider-
able amount of graph theory is indispensable. But for-
malizing graph theory is not trivial, since there has
been little tradition of formalization in graph theory

due to the concreteness of graphs. We have formalized
the graph theory needed in this work and reported the
results elsewhere [8]. The graph-theoretic notions used
in this paper is summarized in Section 3.5.

In Section 4, we demonstrate, via an example, how
to use the powerful intuition about events and causality
to guide and structure correctness proofs of distributed
algorithms. By events we mean the (names of) occur-
rences of atomic actions in an execution of a distributed
system and by causality we mean the essential temporal
precedence relation between events that is respected by
all possible interleavings of concurrent events in that
execution. The computation of a distributed system
can be viewed as the (generally nondeterministic) un-
folding of a causality relation between events. Nor-
mally there are much fewer possible causality relations
than possible interleavings. Consequently, the event-
and-causality view is often an excellent way to visualize
the computation of a distributed system. Thus, given a
distributed algorithm II?, it is often quite easy to write
down an “event algorithm” II¥ whose sole purpose is to
generate the events and causality relations that IIP can
generate. By taking ITP as the concrete program and
IIZ as the abstract program, the theory of simulation
and translation outlined above can be used to deduce
properties of ITIP from those of IT¥, which in turn can be
derived by reasoning about events and causality in IIE.
Writing down the joint invariant connecting IT? and I
is not hard; it amounts to expressing the current state
of TI” in terms of that of TIE.

The example used in Section 4 is the verification of
PIF (propagation of information with feedback), which
is a simple but typical distributed algorithm due to
Segall [33]. PIF performs the task of propagating a
piece of information from a distinguished node (called
the root) to all other nodes in a (connected) computer
network and notifying the root after that information
has indeed reached every node in the network. PIF also
builds, as a by-product, a spanning tree of the network.
Though simple, PIF is highly nondeterministic: for any
spanning tree of the network, there is an execution in
which that tree is chosen by PIF. We will show in Sec-
tion 4.2 that, despite the nondeterminism, the notions
of events and causality afford an intuitive way to un-
derstand and reason about PIF.

Section 5 surveys related work. Section 6 discusses
possible extensions of this work.

2 HIGHER-ORDER LOGIC

Higher-order logic, also known as the simple theory
of types (11}, generalizes first-order logic by allowing
quantification over functions. For example, the induc-
tion principle for natural numbers can be expressed in
higher-order logic by a single formula:

VP. P(0) A (Yn. P(n) = P(n+1))

= (V. P(n)) @)
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Every term t in higher-order logic has a type 7, written
t : 7. Intuitively, t denotes a value belonging to the set
of values denoted by 7. For example, in (2), we have:

n num

+ num — num — pum
P : num — bool

A bool — bool — bool

where num is the type of natural numbers, bool is the
type of truth values T and F, and a— /3 is the type of
functions from a to 3, for any types a and 3. Note that
a formula is just a term of type bool. A function f: a—
B can be applied to an argument a : o’ only when « and
o are identical; the result f(a) is of type 3. For any
variable v : a and any term t : 3, the lambda abstraction
(Av. t) denotes a function of type o — § which, when
applied to an argument a : @, returns t[a/v], the result
of substituting a for v in t.

Primitive terms of higher-order logic are of two kinds:
constants and variables. A constant denotes a fixed
value of the appropriate type, while a variable denotes
an arbitrary value and hence can be bound by a quan-
tifier. For example, in (2), 0, +, = are constants, and
n and P are (bound) variables. (There is no free vari-
able in (2).) New constants can be introduced using
definitions. For example, the definition:

sos(z)(y) L2 zxz+yxy

defines a constant sos : num — num — num that com-
putes the sum of squares of its arguments.

New types of literals can be defined using Melham'’s
recursive type definition package [27] (though all literal
types used in this paper are non-recursive). For exam-
ple, Melham’s package can take a “BNF” of the form:

ttt = aaa|bbb(bool) | ccc(num)(num)

and define a new type ttt with three constructors:

aaa : ttt
bbb : bool — ttt
ccc : num — num — ttt

such that every value of type ttt equals exactly one of
aaa, bbb(z), and cce(y)(z), for (when applicable) some
unique z, y, and 2.

The typographic convention used in this section will
be generally followed in the sequel: arbitrary types
are denoted by lowercase Greek letters, specific types
by slanted identifiers, variables by italic identifiers or
capital Greek letters, constants by sans serif identifiers
or non-alphabetic symbols, and literals by typewriter
identifiers. Free variables in a definition or theorem are
implicitly universally quantified. The word “iff” means
“if and only if”.

3 THE INFRASTRUCTURE
3.1 Predicates

A predicate P is a function whose type is of the form
a — bool, where « is called the domain of P. In this
work, predicates are used extensively and in two ways:
as sets and as propositions.

8.1.1 Predicates as Sets

A predicate P : @ — bool can be viewed as the set of
values of type o that satisfies P:

{z:a|P(z)}

In other words, we identify a set with its characterisic
predicate. With this identification, the usual opeta-
tions and notations of sets can be applied to predicates
as well, such as C, N, U, \ (set difference), |P| (c%-
dinality), {1,2,3}, and {n|n > 3}.! Also useful afe
restricted quantifications over sets: @

(Vz = P.QJz]) =
(3z:P.QJz]) =

where the Q[z] notation indicates that z may (but d
not necessarily!) occur free in Q.

P =

moq

(Vz:a. P(z) = Q[z])
(3z:a. P(z)AQlz])

8.1.2 Predicates as Propositions

1JE/|u[Luoo/uJoa§inoogwepeoe//:s

Our method for embedding special-purpose logics, sugh -
as temporal logic, in higher-order logic is to use predi-

cates over suitable domains to represent propositionsgbf

the embedded logic. Boolean connectives, quantifiers,

and validity can all be lifted to operate on predicate‘né

(-P)z) 2 -P(z) E
(PAQ)z) £ P(z)AQ() 2
(PVQ)(z) 2 P(z)VQ() A
(P=>Q)(z) = P(z)= Q(z) j_o;

(Wi. R[i])(z) = Vi (R[i])(z) E!
(Fi. Rli])(z) 2 3i.(R[i])(2) S
FP 2 Vz.P(z)

Note our convention of using the “doubled” version of &
symbol for its lifted counterpart. These lifted operators
provide the logical infrastructure for an embedded logic.
For example, the following theorem is the lifted version
of modus ponens:

VPQ. HP=Q) = (FP = FQ)

1We should point out that the “sets” in higher-order logic
behave differently from the sets in set theory. A “set” in higher-
order logic can contain elements from only a single type, so (for
instance) neither {7,aaa} nor {5} N {F} makes sense in higher-
order logic. It also follows that there is a distinct “empty set” for
each type in higher-order logic.
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Other inference rules of HOL can be similarly lifted to
constitute a lifted logic. See [6] for how to uniformly lift
proof procedures of HOL to handle proofs in the lifted
logic, based on a sequent formulation of lifted validity.

3.2 Programs and Properties

In this work, programs are represented by (fair) labeled
transition systems and their properties are expressed in
an embedded temporal logic.

Let o be a type of states and « be a type of actions.
A labeled transition system is a pair of the form:

(I:0 — bool, N:oxaxoc — bool)

The idea is that (I, N) represents a program that starts
in a state satisfying I and repeatedly makes transitions
allowed by N, under the assumption that if any action
is enabled from some point on, it must be infinitely
often executed. To formalize this idea, we need some
definitions.

A transition is a triple (s : 0, a : @, §' : ), represent-
ing a step of program execution. An ezecution is a pair
(zs : num — 0, za : num — ), representing an infinite
history of program execution of the form:

25(0) 20 2a() 28 as() 2 .

Predicates on executions are called temporal properties.
In the following, let S, S’ : ¢ — bool be state predicates,
A : a— bool be an action predicate, T' : o xaxg— bool
be a transition predicate, and P be a temporal property.

S (respectively, A or T') can be “coerced” into a tem-
poral property PS(S) (PA(A) or PT(T)) by evaluating
it at the beginning of an execution:

PS(S)(zs,2a) = S(z3(0))

PA(A)(zs, za) A(za(0))

PT(T)(zs,za) T(z3(0), za(0), zs(1))
The temporal modality O (respectively, ©) means “al-
ways (sometime) in the future”:

O(P)(x) Vi : num. P(future(i)(z))

O(P)(z) 31 : num. P(future(i)(z))

where z is an execution and “future” includes “now”:

fle 1>l

> e

future(i)(zs,za) = (Aj.zs(i+j), Aj. za(i+j))
$ leads to S’ iff whenever S holds, .’ holds then or later:
S~§ & O(PS(S) = ©(PS(S")))

T enables A at a state s iff T allows a transition labeled
by some @ in A from s:

Enable(T)(A)(s) = Ja: A.35.T(s,a,s)
A ?S fair with respect to T iff T enabling A from some
Point on implies A being executed infinitely often:
Fair(T)(4) = ©(O(PS(Enable(T)(A))))=>
D(O(PA(A)))

Now we are ready to define the semantics of a labeled
transition system (I, N). An execution is allowed by
(I, N) iff its initial state satisfies I, each of its tran-
sitions satisfies N, and each action a : « is fair with
respect to N. The semantics of (I, N) is just the set of
allowed executions:

A

[(I,N)} = PSI)AO(PT(N))A
Wa: a.Fair(N)({a})

Note that we consider only infinite executions. This
does not prevent us from modeling terminating pro-
grams, since a finite execution can be extended to an
infinite one by repeating the terminal state. In fact, in
Section 4, we will add to each of our programs a stut-
tering action—an action which is always enabled and
whose execution leaves the state unchanged—to guaran-
tee infinite executions. Note that, even with a stuttering
action, the fairness assumption still ensures progress by
ruling out those executions that settle into perpetual
stuttering prematurely. The idea of using stuttering is
borrowed from Lamport’s TLA [22].

A labeled transition system II satisfies a temporal
property P iff every execution allowed by II satisfies P:

MEP = H([I]=>P)

For proving statements of the form II = P, we have
found some notions from Chandy and Misra’s UNITY
[5] to be useful and hence have formalized them in
higher-order logic. Due to space limitations, we mention
only two such notions here. We say S is an invariant
of Il iff § is true at each initial state of Il and S is
preserved by each transition of II:

Invariz;nt(I,N)(S) =
(Vs:I.S5(s))A
(V(s,a,t) = N.S(s) = S(¢))

Then a simple inductive argument shows that:
Invariant(IT)(S) = II = O(PS(S)) 3)

We say S ensures S’ in ITiff (a) if S holds but S’ doesn’t,
then each transition of I either keeps S true or makes S’
true (termed “S unless S’” in [5]), and (b) there exists
an action a of II such that if S holds but S’ doesn’t,
then a is enabled and executing a makes S’ true:

Ensures(I, N)(S)(S") =
(V(s,a,t):: N.S(s) A=S'(s) = SE)VS'(t)) A
(Ja:a.Vs.S(8)A-S'(s) =
Enable(N)({a})(s) A (Vt. N(s,a,t) = S'(t)))
Ensures encapsulates our basic method for using the

fairness assumption of a labeled transition system to
prove its liveness properties:

Ensures(T)(S)(S') = IS~ 8 (4)
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The proof of (4) goes like this: Suppose S ~ S fails for
some execution z of I, i.e., S holds at some state s in
z but S’ never holds from s on in 2. Then an inductive
argument using the first clause of Ensures shows that S
always holds from s on in z. Then the second clause
of Ensures implies that there is an action a that is al-
ways enabled but never executed from s on in z, which
violates the fairness assumption of II.

3.3 Simulation of Programs
Consider the following two labeled transition systems:

I’ = (I’":0"— bool, N°:¢"xaxo® — bool)

M = (I':0% = bool, N*: ¥ xaxo® — bool)

which share the same type a of actions. II® represents
a “concrete” program with a “concrete” state space o”
and IT* represents an “abstract” program with an “ab-
stract” state space 0. We say that II® can be simulated
by IT! via a joint invariant J : 0® — o — bool, denoted
Sim(J)(IT)(IT), iff all of the following are true:

S1 Vs*:0". I’(s") =

st of. I(s*) A J(sP)(sH)

S2 Vs :o®. Val:ot. J(s*)(s4) =
Ya:a.Vt*:o". N°(s*a,t’) =
¢t ot Nﬂ(sn,a,tﬂ) A J(tb)(tﬂ)

S3 Vs :o".Vst:of. J(8*)(s") =
Va:a.Enable(N)({a})(s*) =
Enable(N®)({a})(s")

If Sim(J)(I*)(IT*), then for any execution z° allowed by

, there exists an execution z¥ allowed by II! such that
each pair of corresponding states in z* and z! satisfies
the joint invariant J:

Sim(J)I)(I1Y) = vz°:[I]. (5)
o [I1']. 0J (°)(2")
where we overload the symbol O and define:
OJ (zs°, za”)(zs!, za¥) £ Vn. Kzs"(n))(zs*(n))

Theorem (5) is proved in two steps. First, given any
execution z° = (zs°, za”) allowed by TI’, an execution

= (zs%, za?) is constructed inductively using S1 and
S2 such that:

(PS(I") AD(PT(NY)) )(=*) A (6)
0J (z°)(z*) A (V1. za’(n) = za¥(n))

Second, S3 is used to show that for any two executions
z* and z* related by the second line of (6), if z° satis-
fies the fairness assumption of IT*, then z! satisfies the
fairness assumption of IT.

Our notion of simulation generalizes Milner simula-
tion [29], which essentially consists of S1 and S2; we

added S3 to deal with fairness assumptions. Note that,

in (6), each pair of corresponding actions in z* and z!,
:z:a*’ (n) and za%(n), must be identical. This reqmrement
can be relaxed by allowing IT° and II* to have different
types of actions o® and o and using an “action invari-
ant” K : o® — af — bool to relate za”(n) and za'(n).
Though not needed in this paper, such a generalization
is useful in reasoning about more complex distributed

algorithms.

3.4 'Translation of Properties

Let € and ¢ be two arbitrary types and R : £ —( — bool
be a relation. We say that a predicate X : £ — boe}
can be translated into a predicate Y : ¢ — bool via tl:e
relation R iff for any z : £ and y : ¢ related by R, ifx

satisfies X, then y satisfies Y: %
X{R}Y £ Vz:£.Vy:(. @
R(z)(y) = (X(z) = Y(y)) %

The X {R} Y notation is inspired by the (original) ng-

tation for Hoare triples [19]; indeed, if R is the r&
lational semantics of a command, then X {R}Y 33
a Hoare triple. For later use, we define the mverae
R™: (—£—bool by R7(y)(z) £ R(w)( ) 5

For any labeled transition systems II" and IT! w1§1
a common type of actions and any temporal propert18s
P and P! of the appropriate types, it easily follo%
from (5) and (7) that:

Sim(J)I°)(I*) A PR {O(J )} P
= (P = I P

which is the precise statement of the Fundamental Th
orem depicted in (1).

Theorem (8) would be virtually useless if transl@
tion relations of the form P! {O(J')} P* could ong'
be proved by appealing to Definition (7) directly, sinée
P’ and P! can be complex temporal properties. Fortg’-
nately, there are Reduction Lemmas (listed below) that
allow one to reduce the proof of a translation relatnqn
between two complex properties of the same form o
the proofs of translation relations between their corr§
sponding constituents. In the following, S and T af®
state predicates, P and @ are temporal properties, and
X,Y, X;’s, and Y;’s are arbitrary predicates, where 1
ranges over an arbitrary type.

~~
geBIoILIE)|

69P/CSLie/
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Xi {RB’YI A Xo {R} Y2

= (X1AXs) {R} (Y] AY3) (10)
X1 {R}Y1 A Xo{R} Y,

= (Xl \WXQ) {R} (Yl\Y/Yg) (11)
Yi{R'} X, A X2 {R}Ya

= (Xi=2>X2){R}(r1=Y,) (12)
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(Vi. X; {R}Y)) = (Wi. X;){R}Wi.Y:) (13)

(Vi.X; {R}Y) = (Fi. X)) {R}(Fi.v) (14)

SEJ}T = (PS(S)){OJ} (PS(T)) (15)
pP{oJ}Q = (OP){0J}(0Q) (16)
P{oJ}Q = (oP){0J}(0Q) (17)

None of (9)-(17) is hard to prove.
As an example of the application of the Reduction
Lemmas, we can use the definition:

S~ 8§ = O(PS(S)=> O(PS(S")))

and Lemmas (16), (12), (17), and (15) (in that order)
to prove:

T {J—IB S1 A Ss {J} T
= (Sl ~ Sg) {DJ} (T1 ~ Tg) (18)

So the task of proving the second line of (18) can be re-
duced to that of proving the first line of (18), which in-
volves no temporal reasoning. In general, if P and Q are
two temporal properties of the same form whose prim-
itive constituents are state predicates, then the task of
proving P {OJ} Q can be reduced to proving transla-
tion relations between state predicates and hence will
not involve any temporal reasoning.

3.5 Graph Theory

In this paper, every graph is undirected and finite and
may have at most one edge between two nodes. Hence
an edge connecting two nodes p and ¢ can be identi-
fied with the set {p,q}. Let G be a graph. We say
that two nodes p and ¢ are adjacent in G, denoted
Adjacent(G)(p)(q), iff {p,q} is an edge in G. Note that
by the identification of sets with characteristic predi-
cates (Section 3.1.1), the set of adjacent nodes of p in
G is simply Adjacent(G)(p). A link of G is a pair (p,q)
such that Adjacent(G)(p)(g). The sets of nodes, edges,
and links of G are denoted by Node(G), Edge(G), and
Link(G) respectively.

A tree is a connected and acyclic graph. A crucial
property of trees is that there is exactly one path be-
tween any two nodes in a tree, where a path can pass
through an edge at most once. Let T be a tree and r (for
“root”), n, and p be nodes in T. We say p is a parent of
n with respect to T and r, denoted Parent(T)(r)(n)(p),
iff Adjacent(T)(n)(p), n # r, and the path from n to
T passes through p. Note that each n # r in T has a
unique parent, which is denoted by TheParent(T')(r)(n).
In the sequel we will drop the argument r since it will
be clear from context. A graph T is a subtree of another
graph G iff T is both a subgraph of G and a tree; the
Set of subtrees of G is denoted by Subtree(G).

4 THE EXAMPLE
4.1 The Distributed Algorithm PIF

Let G be a connected graph whose nodes represent au-
tonomous processors and whose links represent com-
munication channels via which the processors can send
messages to each other. Let r be a distinguished node
in G called the root and i be a piece of information ini-
tially residing at r. The purpose of PIF is to propagate
1 to all other nodes in G and to notify r after 1 has in-
deed reached every node in G. PIF operates as follows.
At the beginning, the root spontaneously wakes up and
sends 1 to each of its neighbors. When a non-root node
receives 1 for the first time, it marks as its parent the
node from which it receives the first ¢ and sends i to
each of its neighbors except its parent. When a node
has received i from each of its neighbors, it stops and, if
it is not the root, sends i to its parent before stopping.
PIF terminates when the root stops.

Since we are interested in proving the correctness of
PIF for any connected network G, node r in G, and
information %, the tuple (G, r, 1) is an argument of every
constant defined in this section. However, to simplify
notation, it will not be explicitly mentioned.

We formalize PIF as a labeled transition system:

Prog® £ (Init? :sta® — bool,
Next? : stal x act x stal — bool )

where the superscript © indicates that this is the dis-
tributed view of PIF; in the next subsection, the event
view of PIF will be given the superscript £. We now
describe what sta®, Init?, and Next®, and act are.

PIF has four program variables at each node n in G
and a message queue over each link [ in G:

pc(n) : pc (* program counter *)
inf(n) : ¢ (* information *)
par(n) : v (* parent *)

ent(n) : num (* counter *)

mq(l) : (o )lst (* message queue *)

where ¢ is the type of information, v is the type of nodes,
(v)list is the type of lists with elements from ¢, and pc
is the type of program counters defined by:

pc == 1Idle|Busy |Done

Therefore, the type stal of states of ProgD is:
(v = pe) x (v = 1) x (v = ¥) x (v — num) x
(v xv — (1)list)

Initially, all we know is that every program counter is
Idle and every message queue is empty:

it?(ds) £ (Vn: Node(G). pe(n) = Idle) A
(VI:Link(G). mq()=[])
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where ds abbreviates (pc, inf, par, cnt, mq) : staP.

The atomic actions of PIF are listed below, where
the ADA-like pseudo-code has the obvious meaning. For
instance, an action of the form:

n receive m from p when b begin c end

is enabled when n and p are adjacent nodes, m is the
message at the head of the message queue from p to
n, and the condition b is true. The action is executed
by removing m from the message queue and then se-
quentially executing the command c, all in one atomic
step.

action rootBegin(n)
when (n =r) A (pc(n) = Idle)

begin
pc(n) :=Busy ; inf(n):=1;
let Q = Adjacent(G)(n) in
ent(n):=|Q|; forgin@Q donsenditog;
end

action nodeBegin(n)(p)
n receive j from p when (pc(n) = Idle)
begin
pe(n) :==Busy ; inf(n):=7;
let Q = Adjacent(G)(n) \ {p} in
ent(n) :=|Q|; for qin Q donsend jtogq;
end

par(n):=p;

action adjEnd(n)(p)
n receive j from p when (pc(n) # Idle)
begin
ent(n) == cnt(n) — 1
end

action nodeEnd(n)
when (pc(n) = Busy) A (ent(n) = 0)

begin

pe(n) := Done ;

if (n # r) then n send inf(n) to par(n) ;
end

action Stutter
when T begin end

It is straightforward to translate the above pseudo-code
into the higher-order logic formula Next”, but we will
not do so here due to space limitations. The type act
of action names of Prog~ is defined by:

act = rootBegin(v)|nodeBegin(v)(v) |

adjEnd(v)(v) | nodeEnd(v) | Stutter

Our goal is to prove that Prog” satisfies the following
three temporal properties:

Prog” = O(PS(Done® = Final®)) (19)
Prog” = DO(PS(Done”)=s»0O(PS(Done?))) (20)
Prog” E ©(PS(Done)) (21)

Statement (19) says that whenever Prog” terminates,
its state is in a desired condition (viz., the partial cor-
rectness of Prog?), where Done” signifies termination:

Done®(ds) = (pc(r) = Done)
describes the desired terminal states:

(Vn :: Node(G) . inf(n) =1)

and Final?
Final®(ds) =

Statement (20) says that once Prog” terminates, 1t
stays that way forever. Statement (21) says that ProgP
must eventually terminate.

4.2 Event-and-Causality View of PIF g
The event view of PIF is an abstract program: g
[0}

[oN

Progf £ (Init? :sta®? — bool, 3
Next® : staf x act x staf — bool) g

S

which is an operational representation of the events a;.:ﬂd
causality relations that PIF can generate. Note that
Prog has the same type act of action names as Pro
Prog has only two program variables: T, whmh
records the tree induced by Busy nodes and thelr pg.r
ent pointers, and occ, which records the set of eveits
that have occurred so far. So the type staf of sta%m
of Prog? is graph x (event — bool), where graph is the

type of graphs and event is the type of events of Prog
defined by:?2 2
@

event := adjEnd(v)(v)|nodeEnd(v) %

Note that there is no need to record the occurrencescof
rootBegin(n) and nodeBegin(n)(p), since they canthe
deduced from T, or Stutter, since they have no eﬁBct
anyway. Initially, T is empty and no event has occurned

nitf(es) £ (T =0)A (occ=9)

where es abbreviates (T, occ) : staf.

The causality relations can be easily expressed
terms of T and occ by specifying the (immediate) caﬂse
Cause®(ev) for each ev : event, as follows:

‘%,OL uo jsenb

¥c0c

Cause®(adjEnd(n)(p))(es) =
Node(T')(n) A Node(T')(p) A
( (Parent(T)(p)(n) A occ(nodeEnd(p)) ) V
( Adjacent(G)(n)(p) A ~Adjacent(T)(n)(p)) )

Cause®(nodeEnd(n))(es) =
Node(T')(n) A
Vp :: Adjacent(G)(n).
Parent(T)(n)(p) V occ(adjEnd(n)(p))

3Here we have defined event to be a subtype of act, which i8
actually not allowed in HOL. But, to simplify notation, we wi
pretend we could do so.
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A rootBegin(n) action is enabled when n is the root
but is not in T', and its effect is to add n to T but keep
occ unchanged (where es’ abbreviates (T*, occ’) : staf):

Next®(es, rootBegin(n), es’) =
(n =) A ~Node(T')(n) A
(T =T uU{n})A(occ’ = occ)
A nodeBegin(n)(p) action is enabled when p is in T but
n is not in T, and its effect is to add the edge {n,p} to
T but keep occ unchanged:
Next?(es, nodeBegin(n)(p), es’) =
Node(T')(p) A —~Node(T)(n) A
(T'=TuU{{n,p}}) A (occ’ = occ)
An event ev : event is enabled when the cause of ev is
true but ev has not yet occurred, and its effect is to add
ev to occ but keep T" unchanged:
NextB(es, ev, es’) 2
Cause® (ev)(es) A ~occ(ev) A
(T'=T) A (occ’ = occU{ev})
The Stutter action has the obvious meaning:

NextZ(es, Stutter, es’) 2
(T'=T) A (occ’ = occ)

The event view Prog® has a very simple invariant
which says that (a) T is a subtree of G, (b) T either
is empty or contains the root, and (c) if an event has
occurred, then its cause must be true:

InvZ(es) £

Subtree(G)(T') A (Node(T) = @V Node(T)(r)) A
(Vev : event. occ(ev) = Cause®(ev)(es))
The invariance of InvE can be easily proved using (3):

Prog? = O(PS(Inv®)) (22)
The. termination of Prog? is signified by the occurrence
of nodeEnd(r):

Donef(es) 2 occ(nodeEnd(r))

Clearly, once an event is added to occ, it stays in occ
forever. In particular, once Prog® terminates, it stays
that way forever:

Prog® |= O(PS(Donef)=» O(PS(Done®))) (23)

The basic liveness properties of ProgE are:3

Prog® | (INode(T)| = n) ~ (INode(T)| > n)(24)
for each n : num, which says that T must get bigger
and bigger, and:

Prog = Cause®(ev)(occ) ~ oce(ev) (25)

———

3We are abusing notation in (24): by (INode(T)] = n) we
really mean a predicate C such that C(es) = (|[Node(T)| = n);
similar remarks apply to (25) and (26) as well.

for each ev : event, which says that once the cause of
an event becomes true, the event must eventually occur.
Both (24) and (25) can be proved using (4). Since T
never shrinks, (24) guarantees that 7' must become a
spanning tree of G from some point on:

Prog? E <©0O(Node(T) = Node(G)) (26)

.Once T has become a spanning tree of G, repeated ap-

plication of (25) from the leaves to the root of T shows
that nodeEnd(r) must eventually occur, i.e., Prog® must
eventually terminate:

Prog? = ©(PS(Done®)) (27)

4.3 Relating the Two Views of PIF

The following is a joint invariant Inv?'E : stal — staf —
bool such that Sim(Inv?’ E)(ProgD)(ProgE)

Inv?'® (ds)(es) £
InvE(es) A (Vn :: Node(G) . Inv E(n)(ds)(es))
A (V1 Link(G). |nvL E()(ds)(es))

where InvZ is the invariant of Prog® and InvN E(n)
(respectively, Inv "E(1)) essentially® expresses the local
state of node n (hnk 1) in Prog? in terms of the state
of ProgE

Inviy® (n)(ds)(es) =
(pe(n) =
if occ(nodeEnd(n)) then Done else
if Node(T")(n) then Busy else Idle) A
(Node(T)(n) =
(inf(n) =) A
((n # r) = (par(n) = TheParent(T)(n))) A
(ent(n) = |{q| Adjacent(G)(n)(g) A
—Parent(T)(n)(q) A
—occ(adjEnd(n)(q)) }))

Invy"®(p, g)(ds)(es) £
(ma(p,q) =
if Node(T')(p) A ~occ(adjEnd(q)(p)) A
((Parent(T")(p)(q) A occ(nodeEnd(p))) V

(Adjacent(G)(p)(q) A ~Adjacent(T')(p)(q)) )
then [i] else [])

The proof of Sim(Inv?'E)(Prog?)(Prog®) (i.e., S1-S3)
is omitted due to space limitations.

To translate the properties (22), (23), and (27) of
Prog® into the desired properties (19), (20), and (21)

4A truly functional relation from es to ds cannot be used be-
cause most program variables of ProgP have unspecified initial
values.
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of ProgD , we need to prove the following translation-
relations:

(a(PS(InvE)) ) fa(inv®E) '}
(O(PS(Done® = Final?)))
(O(PS(Done®) = O(PS(Done”))) ) {O(Inv>E) '}
(O(PS(Done®) =» O(PS(Done®))) )
(O(PS(Done®))) {O(InvPZ) ™} (O(PS(Done?)) )

which can be reduced, using the Reduction Lemmas in
the same manner as illustrated in the proof of (18), to
the following three proof obligations:

(InvE) {(InvP'E)—l} (Done” =» Final?)
(Done®) {(InvD’E)—l} (Done®)
(Done®) {Inv?F} (Done®)

all of which can be proved using the definition of trans-
lation (7) directly. Again, the proof is omitted due to
space limitations.

Finally, the Fundamental Theorem (8) can be used
to conclude properties (19), (20), and (21) of Prog”
from properties (22), (23), and (27) of Prog™. The cor-
rectness proof of PIF is now complete. Note that all
temporal reasoning involved is carried out in the last
subsection in terms of the event view ProgE, which is
more abstract and easier to reason about than Prog”.
Note also that once the notions of events and causality
are understoodé it is quite easy to write down the joint
invariant Inv?

5 RELATED WORK

The idea of using simulation to relate a program and its
abstraction goes back at least as far as Milner [29]. For a
comprehensive survey of various simulation techniques,
see [25). Note, however, that the simulation techniques
surveyed in [25] are based on models in which there is
a distinction between “external” and “internal” compo-
nents of states or actions, and that they are designed to
show the containment of the set of external behaviors of
a concrete program in that of an abstract program. Qur
approach does not distinguish between external and in-
ternal components of states or actions; instead, we use
simulation to establish a relation between concrete and
abstract executions and then translate properties of the
latter into those of the former via that relation. In ad-
dition to this paper, the mechanization of simulation
techniques is also treated in [7, 24, 31, 35].

Hoare triples were introduced in [19]. But, as far
as we know, using them as a relational formulation of
translation of properties is new. Also new is the formu-
lation and use of the Reduction Lemmas.

The notions of events and causality are not new
[21, 30]. Indeed, a variety of non-interleaving models of
concurrency have been proposed in the literature, such
as partial orders of events [21, 34], event structures [30],

Mazurkiewicz traces [26], and asynchronous transition
systems [34]; see [34] for a lucid exposition of the re-
lationships between these models. While a great deal
of theoretical investigation has been conducted, none of
these works addresses the practical problem of how to
verify realistic distributed algorithms using these mod-
els. We hope that this paper is a small step in that
direction. Also, it should be noted that although we
use the intuition about events and causality as an in-
formal guide for structuring proofs, the formal founda-
tion of our methodology is still the interleaving view of
concurrency.

Section 3.2 is influenced by Chandy and Misra’s
UNITY (5] and Lamport’s TLA [22]. But we borraw
only those notions that are useful to us, and we fre@y
adapt them to suit our own purpose. For more faithful
embeddings of UNITY and TLA in HOL, see [1, 23]8

Goldschlag [17] embeds UNITY in the Boyer-Moate
prover [4] and uses the combination to verify a dis-
tributed minimum-finding algorithm for trees, ba.sed@n
a detailed hand proof by Lamport. Since the quantlﬁgp
free first-order logic used in the Boyer-Moore prover&s
less expressive than higher-order logic, his forma.h@-
tion is more subtle and indirect than what is possﬂf_?le
in higher-order logic. Also, he does not develop a t&-
ory of general graphs, but uses nested lists to repr%&lt
trees.

Engberg, Grgnning, and Lamport [14] 1mplement3a
translator of TLA into LP (the Larch Prover) [16] aad
use the combination to verify a distributed algorithm for
computing the distances of all nodes to a distinguishéd
node in a network. Consequently they must face the
difficult problem of how to interface two different logit
in a meahingful and consistent way, which we avoid by
working in a single logic. Also, they do not prove t@e
axioms and inference rules of TLA and the propertﬁ!s
of data structures used in their proof, which they eltger
keep as assumptions or assert as axioms. Indeed, thére
does not seem to be a clear distinction in LP betw@’n
definitions and arbitrary axioms.

6 POSSIBLE EXTENSIONS

Z0z IMdy QL u

This work can be extended in at least two directioss.
First, one can investigate the applicability of the rea
soning infrastructure (Section 3) and the event-and-
causality-based approach (Section 4) to distributed al-
gorithms more complex than PIF. In fact, we believe
[10] that our methodology can be scaled up to verify al-
gorithms as complex as the distributed minimum span-
ning tree algorithm of Gallager, Humblet, and Spira
[15]. But, of course, only actual experience will be able
to tell whether or not this belief is correct.

Second, though it is unlikely that the verification
of distributed algorithms can ever be completely au-
tomated, the programmability of HOL allows one to
write customized proof procedures to automate many
tasks in proofs. At present we already have procedures
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for the uniform lifting of HOL proof procedures to han-
dle lifted validity [6], for the automatic derivation of
the enabling conditions of actions, and for the chas-
ing of causality chains. We expect more automation be
achieved as more experience is gained and more com-
mon patterns in reasoning are observed.
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