Representing higher-order logic proofs in HOL

J. VON WRIGHT
Abo Akademi University, 20520 Turku, Finland

‘We describe an embedding of higher order logic in the HOL theorem proving sys-
tem. Types, terms, sequents and inferences are represented as new types in the
logic of the HOL system, and notions of proof and provability are defilned. Using
this formalisation, it is possible to reason about the correctness of derived rules of
inference and about the relations between different notions of proofs. The formal-
isation is also intended to make it possible to reason about programs that handle

proofs as their data (e.g., proof checkers).

1. INTRODUCTION

This paper describes a formalisation of higher order
logic proof theory within the logic of the HOL theo-
rem proving system. The aim is to be able to reason
about the proofs that the HOL system produces. This
can be useful in a number of ways. It gives a basis for
reasoning about programs that handle proofs. One spe-
cific kind of program that we have in mind is a proof
checker: a program that takes a purported HOL proof
as input and checks that it actually is a proof. Further-
more, our theory can be used in formal reasoning about
the HOL system itself. For example, the HOL system
has implemented a number of non-primitive inference
rules as basic rules (for efficiency reasons). Using our
formalisation, it is possible to verify the soundness of
such rules. Our formalisation also permits us to define
different notions of proof (e.g., tree-structured proofs
and linear proofs) and study how they are related.

Overview of the paper

Our aim is to formalise (in HOL) the logic of the HOL
theqrem prover. We define two new types, representing
HOL types and terms. We formalise a number of proof-
theoretic concepts that are needed in the discussion of
proofs, such as the concept of a variable being free in
a term, a term having a certain type, two terms being
alpha-equivalent etc.

We also define a type of sequents and a type of (prim-
itive) inferences. Using these notions, we define what it
means for a term to be provable, given a list of axioms.
We then define a notion of proof and show that the no-
tions of provability and proof agree. Finally, we define
the notion of derived inference and show how one can
reason about derived rules of inference.

The aim of our work is to be able to reason about
Proofs, not to generate them. Thus, we need only be
fible to recognise a correct inference, once the result
18 given. This means that we do not have to cap-
ture HOL’s intricate (and under-specified) procedures
for variable renaming used in some inference rules. Our

formalisation permits arbitrary renaming schemes, and
the one used by HOL is a special instance.

A theory in HOL is characterised by a type structure,
a set of constants and a set of axioms. We represent
a type structure by a list of pairs (op,n), where n is
the arity of the type operator op. The constants of
a theory are represented by a list of pairs (const,ty)
where ty is the possibly polymorphic generic type of the
constant const. The axioms are represented by a list
of sequents. The theorems that characterise constants
are also considered to be axioms. Sequents, in turn, are
formed from pairs (as,tm), where as is a set of terms
(the assumptions) and tm is a term (the conclusion).

For every concept that we have formalised, we have
also written a proof function. For example, when we
define a new constant foo by a defining theorem

 foo x = E

we also provide an ML function Rfoo (ML is the Meta
Language of the HOL theorem prover) which, given a
term t as argument returns the theorem

F foot = ...

where the right hand side is canonical (i.e., it cannot
be simplified further using definitional theorems). Es-
sentially, these proof functions do rewriting, but in an
efficient way, compared with the built-in rewriting rules
of the system.

The theory described in this paper comes as a con-
tribution with HOL88 version 2.02. A more detailed
description of the theory, together with listings, can be
found in [9]. A port for the SML-based version of the
HOL system (known as HOL90) also exists.

2. THE HOL SYSTEM AND ITS LOGIC

The HOL system is an interactive theorem prover for
higher order logic. Below we give a brief description of
the system and the logic that it is based on. For a more
detailed description, we refer to [5, 6].

The logic of the HOL system is a polymorphic ver-
sion of higher order logic, based on the Simple Typed

THE COMPUTER JOURNAL,

VoL. 38, No. 2, 1995

20z Iy |, uo 1senb Aq +1069€/1 L 1/2/8€/101E/|ulWwod/Wwoo" dnoolWwepedE//:Sd]Y WOy POpeojumMo(

172 J. VON WRIGHT

Lambda Calculus [4]. Essentially, it extends first-order -
logic by permitting lambda expressions that denote
functions. It also permits higher order functions and
quantification over arbitrary types. Every term in the
logic has a type. The logic has a facility which permits
the user to add new types and type operators. Poly-
morphic types are supported through the use of type
variables. A constant specification facility lets the user
extend the logic by introducing new constants. The ba-
sic HOL theory contains among other things the atomic
types bool (truth values) and num (natural numbers),
function types and a number of constants (e.g., impli-
cation = and polymorphic equality =), together with
axioms and theorems that characterise the constants.

The deductive system of HOL is a sequent encoding
of a natural deduction system, with eight basic inference
rules. These are

ASSUME which asserts that ¢ - ¢ is always a theorem,
REFL which asserts that equality is reflexive,
BETA_CONV, the rule of beta conversion,

SUBST, a rule for multiple substitution of equals for
equals in theorems,

ABS, abstraction; from I' - ¢ = ¢’ infer T'F (Az. t) =
(Az. t') if £ does not occur free in T,

INST_TYPE, which permits type variables in a theo-
rem to be instantiated, provided that the type vari-
able being instantiated does not occur in the assump-
tions and that the instantiation does not identify two
differently typed variables with the same name,

DISCH, the rule for discharging an assumption, and
MP, the rule of Modus Ponens inference.

A theorem is a sequent I' + ¢ which has been proved
using these inference rules. Theorems are a secure type
in the metalanguage ML.

The inference rules are ML functions which, given
proper arguments, return theorems. It is possible to
add derived rules of inference. Such rules are ML func-
tions which specify how the basic inference rules should
be combined to perform a derived inference. This means
that derived rules do not extend the logic. For efficiency
reasons, a number of additional rules have been made
primitive in the actual implementation of the HOL sys-
tem, even though they could be derived from the eight
basic rules.

The user interacts with the system through an ML
interface. By evaluating ML expressions, the user can
create new theories, make definitions, store new theo-
rems, etc. An important feature of the HOL system is
the amount of existing infrastructure for defining new
concepts and for proving theorems. Theorems can be
proved by forward proof, since inference rules are ML
functions which return theorems. The HOL system also
supports backward proof through tactics. A number of
libraries exist, with pre-proved theorems and derived
inference rules that the user can load and use within

the theory being developed. In this paper, we make use
of existing libraries for strings and sets.

The implementation of HOL departs slightly from the
specification of the logic (both are described in [5]). In
such situations, we must decide which to model. The
only major difference is that the implementation of the
inference rule of type instantiation (INST_TYPE) permits
names of free variables to be changed. Here our for-
malisation follows the implementation rather than the
specification. The reason for this design choice is that
we want to be able to reason about proofs as they are
recorded by the HOL system.

Another difference is that the specification collects
assumptions of sequents in sets while the implemexgb&-
tion uses lists. Here, we have chosen the more abstract
representation, i.e., sets.

Notation

Yy wouy papeo|

The HOL system has a simple interface which
ASCII character combinations for logical symbols. £In
this paper we mainly use the syntax of HOL, ﬁut
we use ordinary logical symbols, for readability. The
truth values are written as T and F. When referringsto
HOL objects and interaction with the system, we_@se
typewriter font. The reader should note that tefns
of the HOL logic are enclosed in double quotes wgﬂe
strings are enclosed in single quotes. Lists are wrnt%en
in square brackets with semicolon as separator (e%g,
[T;T;F]), while pairs are written in parentheses vﬁth
comma as separator (e.g., (T,1)). Furthermore, #lls
the system prompt and ;; the input terminator sﬁn—
bol.

3. REPRESENTING TYPES

The type system of the HOL logic has type variables and
types constructed by applying n-ary type operator§to
type arguments. Type constants are nullary type %p—
erators. Function types are constructed using a bma.ry
type operator — (written infix).

Thus we have represented types by a new type m'fhe
HOL logic with the following syntax:

Type = Tyvar string

| Tyop string (Type)list

71069€/LLL/

¥c0c Il

To distinguish these “HOL-as-object-logic-types” from
the HOL types we will from now on call them Types.

The type structure of a theory is represented by a list
of pairs of product type string#num. For example, the
simplest possible theory (referring only to booleans) has
the following type structure list:

[(‘bool’,0);(‘fun‘,2)]
The HOL type bool is then represented by Tyop

‘bool‘ []1 while the function type bool—bool is rep-
resented by

Tyop ‘fun‘ [Tyop ‘bool‘ [J;Tyop ‘bool‘ (1]

THE COMPUTER JOURNAL,

Vor. 38, No. 2, 1995

REPRESENTING HIGHER-ORDER LOGIC PROOFS IN HOL 173

3.1. Functions for types

We have developed some infrastructure (i.e., some ML
functions) for making recursive function definitions over
Type. As an example, the function Type_OK is defined
as follows:

#let Type OK_DEF = new_Type_rec_definition

(‘Type_OK_DEF‘,

¢ "(Type_OK Typl (Tyvar s8) =T) A

(Type_OK Typl (Tyop 8 ts) =

] meml 8 Typl A (LENGTH ts=corrl s Typl) A

EVERY (Type_OK Typl) ts)"

$);;

For this input, the HOL system returns the definitional
theorem Type_.OK_DEF:

F (¥Typl s. Type_OK Typl (Tyvar 8) = T) A
(VTypl 8 ts. Type_OK Typl (Tyop 8 ts) =
meml 8 Typl A (LENGTH ts=corrl s Typl) A
EVERY (Type_OK Typl) ts)

Here mem1 s 1 holds if 8 is the first component of some
pair in the list 1 and corri s 1 is the corresponding
second component (these are defined in a separate the-
ory containing useful definitions and theorems, mainly
about lists). The theorem says that a Type is OK if it
is a type variable or it is composed from OK types by a
permitted type operator (the list Typl models the type
structure).

Similarly, we have defined other functions on Types.
For example, Type_occurs a ty is defined to hold if the
type variable a occurs anywhere in the type ty. The
function Type.compat is defined so that Type_compat
ty ty’ holds when ty is compatible with ty’, in the
sense that the structure of ty is can be mapped onto the
structure of ty’. This function does not allow us to tell
whether a type instantiation is correct. For example,
we must be able to detect that bool—num is not a cor-
rect instantiation of the polymorphic type *—*, even
though these two types are compatible. For this, we
have defined Type_instl so that Type_instl ty ty’
returns the list of type instantiations used in going from
ty from ty’. This list can then be checked for consis-
tency, nsing a separate function.

4. REPRESENTING TERMS

A HOL term can be a constant, a variable, an applica-
tion or an abstraction. Thus terms are represented by
& new type with the following syntax:
Pterm = Const string Type
| Var string#Type
| App Pterm Pterm
| Lam string#Type Pterm

We call these objects Pterms, to distinguish them from
the HOL terms that they represent. Variable names are

represented by strings (as implemented in the string
library of the HOL system). The reader should note
that we compose a lambda abstraction from a pair of
type string#Type and a Pterm, whereas in the term
syntax of the HOL system, lambda abstraction is com-
posed from two terms. Our syntax makes the checking
of well-formedness easier.

The constants of the current theory are represented
by a list. A constant always has a generic type which is
given in this list. When the copstant occurs in a term,
its actual type must be an instance of the generic type.
A simple logic might have the following list of constants:

[(‘T*,Tyop ‘bool’ [1);

(‘F¢,Tyop ‘bool‘ [1);
(¢=(,Tyop ‘fun® [Tyvar Cxt ;

Tyop ‘fun‘ [Tyvar ‘*‘;Tyop ‘bool‘ [111);
(‘=>',Tyop ‘fun ¢ [Tyop ‘bool‘ [];

Tyop ‘fun‘ [Tyop‘bool‘[];Tyop‘bool‘[111)

]

i.e., truth, falsity, equality and implication.
Equality on booleans is represented by the Pterm
Const ‘=°
(Tyop ‘fun‘ [Tyop ‘bool‘ [1;
Tyop ‘fun‘ [Tyop ‘bool‘ [1;Tyop ‘bool‘ [111)

Note that the Type of this Pterm is an instance of the
Type of equality in the above list, with Tyop ‘bool‘
(] replacing Tyvar ‘*‘.

4.1. Well-typedness

Every Ptern has a unique Type, computed by the func-
tion Ptype._of. This function simply returns the top-
level type of the term. This implies that our syntax
permits terms which are ill-typed, in the sense that they
do not correspond to any (well-typed) HOL terms. A
term is well-typed if it satisfies two requirements. First,
the constants occurring in the term must have types
which are correct instantiations of their generic types.
Second, the types of the two subterms in an application
must match. The function Pwell typed checks these
conditions.

At this point, we could have introduced a new type
which represents well-typed terms of the HOL logic.
However, since proof checking involves checking both
correctness of inferences and well-formedness of terms,
we want to permit ill-formed (ill-typed) terms to ap-
pear in purported proofs. Thus we would not gain any-
thing by having a separate type representing well-typed
terms.

4.2. A function for compressing terms

Our Pterms quickly become very large and ugly. Even
a simple HOL-term like

Ax. x = (x = y)

THE COMPUTER JOURNAL,

Vor. 38, No. 2, 1995

¥202 Iudy || uo3senb Aq +L069€/L L L/Z/8E/e11e/|ullioo/woo dno-olwepeoe//:sdiy wolj pepeojumod

174 J. vVON WRIGHT

becomes the massive Pterm
Lam(‘x‘,Tyop‘bool‘ 1)
(App(App(Const ‘= ¢
(Tyop‘fun‘ [Tyop‘bool‘[];
Tyop‘fun‘ [Tyop ‘bool‘ [J;Tyop‘bool‘ [111))
(Var(‘x‘,Tyop ‘bool‘[])))
(App(App(Const ‘=°
(Tyop‘fun‘ [Tyop‘bool‘[];
Tyop*‘fun‘ [Tyop‘bool‘ [J;Tyop‘bool‘ [311))
(Var(‘x‘,Tyop‘bool‘[])))
(Var(‘y*,Tyop‘bool‘{1)))))

which is difficult both to write and read. To simplify
things, we have an ML function tm_trans which trans-
lates a HOL-term into the corresponding Pterm:

#tm_trans "A(x:bool).x";;
"Lam (‘x‘,Tyop ‘bool‘ [J)
(Var(‘x‘,Tyop ‘bool‘ [0))*

and a function tm_back which does the opposite trans-
lation

#tm_back "Lam (‘x‘,Tyop ‘bool‘ [1)

(Var(‘x¢,Tyop ‘bool® [1))";;

"Ax. x"

. term

These functions are used for entering and displaying
terms that are used in gimple examples.

4.3. Free and bound variables

The notion of free and bound variables are defined in
the obvious way. For example, we define Pfree so that
Pfree x t holds if the variable x occurs free in the
Pterm t. Similarly, we define the functions Pbound and
Poccurs.

We also have versions of these constants that work
on collections of variables and Pterms. For example,
Plallnotfree x1 ts holds if no variable in the list x1
is Pfree in any of the Pterms in the set ts.

4.4. Alpha-renaming

Alpha-renaming and substitution of a term for a vari-
able are closely related. We have defined Palreplace
so that Palreplace t’ tvl t holds if t’ is the result
of substituting in t according to the list tvl and alpha-
renaming. The list tvl consists of pairs (t,a) of type
Pterm#(string#Type), indicating what terms should
be substituted for what variables. The definition of
Palreplace is shown in the Appendix.

In order to appreciate larger examples and tests, we
have a compressing function th_back for theorems, sim-
ilar to tm_back described earlier. It uses tm back to
print subterms of theorems.

The proof function or Palreplace is called
RPalreplace and it takes a list of arguments (one ar-
gument for each argument of Palreplace). Evaluating

#RPalreplace

(tm_trans "Az.z = x";

"[(Var(‘x‘,Tyop‘bool‘[]),"*
tm_trans "Ax.x = y"l;;

y*,Tyop‘bool‘ [1)]";

yields a massive theorem, stating that this substitution
is in fact correct (that is, Az. z = z is a correct result
when substituting z for y in Az. z = y). However, if
we apply th_back to this theorem, we are shown the
theorem in the following form

#th_back it;;
]1— Palreplace (Az. z = x)
{(x,*y*,Tyop ‘bool‘ (1)]
(Ax. x = y)
=T

papeojumoq

which is much easier to read. Note that x here is & com-
prwsed notation for Var(‘x‘,Tyop ‘bool‘ []), wlﬁle
‘y‘ is not compressed, i.e., it is in fact a one—ch&rac@r
string. The modified turnstile symbol (1-) mdlcaﬁes
that we do not see an actual theorem, but a comprmd
version.
We define alpha-equivalence using an empty subs‘tl-
tution:

Fdef Vt' t. Palpha t' t = Palreplace t' O t

Eyoo/ujoo'dn

The following example shows that our correspo
ing proof function RPalpha also detects incorrect alp

renamings:

#th_back

(RPalpha

* [tm_trans "Ay y.y = y";

tm_trans "Ax y.y = x"]);;

J— Palpha Ay y. y = y) (Axy. y=2x) =F

6 Ad ¥1069¢/1L L/Z/88/9I0!1JQTU

i.e., the terms Ayy.y=y and Axy.y=>x are @)t
alpha-equivalent. In fact, all those of our proof ﬁx.ﬁc
tions that check for properties can detect both mst.a.nies
and non-instances in this way.

¥20z ludy |

4.5. Multiple substitutions

Using Palreplace we have formalised HOL’s notion
of a substitution, as it occurs in the inference rule
SUBST. Assume that ttvl is a list of triples each hav-
ing type Pterm#Pterm# (string#Type). For each triple
(tm’,tm,d) in this list, tm’ is a Pterm that is to replace
tm and d is a dummy variable used to indicate the po-
sitions” where this substitution is to be made. Then
Psubst t’ ttvl td t holds if t is the result of substi-
tuting tm-terms for d-dummies in the term td and if t’
is the result of substituting tm’-terms for d-dummies in
td. Both substitutions are done according to ttvl, and
they may involve alpha-renaming.

The corresponding proof function is RSubst and it
can recognise both correct and incorrect substitutions.

THE COMPUTER JOURNAL,

VoL. 38, No. 2, 1995

REPRESENTING HIGHER-ORDER LOGIC PROOFS IN HOL 175

4.6. Type instantiation

Type instantiation, as implemented by the inference
rule INST_TYPE in HOL, is quite tricky to check. First, it
is necessary to check that the type instantiation has not
identified two variables that were previously distinct.
Second, the type instantiation rule permits free vari-
ables to be renamed (in this respect we follow the im-
plementation rather than the specification of the HOL
logic, see the discussion in Section 1.).

Checking a renaming of a free variable is more com-
plicated than checking a renaming of a bound variable,
because bound variables are always “announced” (in the
left subtree of the abstraction), but a free variable can
occur in two widely separated subtrees, without being
announced in the same way.

Assume that tyl is a list of pairs of type
Type#string, indicating what types are to be substi-
tuted for what type variables. Furthermore assume that
as is a set of Pterms (they represent the assumption
of the theorem that is to be type-instantiated). Then
Ptyinst as t’ tyl t holds if t’ is the result (after
renaming) of replacing type variables in t according to
tyl and if no variables that are type instantiated occur
free in as. Ptyinst is defined using Palreplace and a
number of other auxiliary functions (some of these are
described in Section 3.1.).

5. SEQUENTS AND INFERENCES

We represent sequents by a new concrete type with a
single constructor Pseq. Its syntax is the following:

Pseq (Pterm)set Pterm

(set is a unary type operator for set formation, pro-
vided by the finite_sets library of HOL). The first
argument to Pseq is the set of assumptions and the
second argument is the conclusion. The corresponding
destructor functions are Pseq.assum and Pseq_concl.

5.1; Inferences in the HOL system

An inference step in the HOL logic consists of a conclu-
ston (result sequent) that is “below the line” and a list
Ei hypotheses (argument sequents) that are “above the

e”,

In the HOL system implementation, inference rules
are functions which in addition to the hypotheses may
require some information (e.g., a term) in order to com-
pute the conclusion. For example, the rule of abstrac-
tion (ABS) in the logic is

r t = ¥
T F Oz = 0z 7)

(with the side condition that = must not occur free in
T'). As an inference rule in the HOL system, ABS is a
function which takes a term (representing the variable
z) and a theorem (the hypothesis) as arguments and
Teturns a theorem (the conclusion).

5.2. Inferences as a new type

We represent inferences as syntactic objects of a new
type. This type has nine constructors; one for inference
by hypothesis and one for each primitive inference rule
of the HOL logic (the logic has eight primitive inference
rules). The syntax is
Inference
= AXIOM_inf Psequent
| ASSUME_int Psequent Pterm
| REFL.inf Psequent Pterm .
| BETA_.inf Psequent Pterm
| SUBST_inf Psequent (Psequent#string#Type)list
Pterm Psequent
| ABS_inf Psequent Pterm Psequent
| INST_inf Psequent (Type#string)list Psequent
| DISCH.inf Psequent Pterm Psequent
| MP_inf Psequent Psequent Psequent

Here AXIOM_inf represents an inference by hypothesis
(by axiom), while the remaining cases each correspond
to a primitive inference rule (BETA_inf for BETA_CONV
and INST_inf for INST_TYPE). The first argument of
each constructor is the conclusion of the inference. The
remaining arguments represent hypotheses and other
arguments.

5.3. Checking inferences

The function OK_inf is defined to represent the notion of
correct inference. Thus OK_inf - i holds if and only if i
represents a correct inference, according to the primitive
inference rules of the HOL logic.

The proof function for 0K_inf is ROK_inf, and it iden-
tifies both correct and incorrect inferences. Using the
compressing functions, we check a simple inference:

#th_back

(ROK_Inf[Typl;Conl;Axil;

“BETA_inf

* (Pseq {} ~(tm_trans "(A(x:bool).x)y = y"))

* “(tm_trans *(A(x:bool).x)y")"])

#);;

J— OK_Inf

(BETA_inf (Pseq {} ((Ax. x)y = ¥))
((Ax. x)y))

(= is a “back-quote” which allows ML expressions to
be evaluated inside HOL terms). This tells us that the
theorem F (Az. z)y = y is the result of the following
application of the BETA_CONV inference rule:

#BETA_CONV "(\x. x)y"

5.4. Primitive inferences

We shall now show how the nine different kinds of in-
ferences are checked. For each inference rule, we define

THE COMPUTER JOURNAL,

Vor. 38, No. 2, 1995

¥20Z Iudy || uo1senb Aq +1069€/1L L L/Z/8E/811e/|ulwoo/woo dnorojwepeoe//:sdiy wolj pepeojumod

176 J. vVON WRIGHT

a function which returns a boolean value: T for a cor-"
rect inference and F for an incorrect one. The correct-
ness check is local, in the sense that it checks whether
the result of an inference is valid under the assump-
tion that the hypotheses (argument sequents) are valid.
These functions are used by the function OK_Inf de-
scribed above (the definition of 0K_Inf is shown in the
Appendix).

The ASSUME rule is modelled by the function PASSUME:

Fdes VTypl Conl as t tm.
PASSUME Typl Conl (Pseq as t) tm
= Pwell_typed Typl Conl tm A
Pboolean tm A
(t = tm) A (as = {tm})
where Pboolean tm is defined to mean that the Pterm
tm has boolean Type.

Notice that this is where well-typedness is enforced.
The check ensures that the conclusion sequent Pseq as
t is well-typed. To make this check, we must have the
type structure Typl and the constant list Conl as ex-
plicit arguments to ASSUME.

In a similar way, the REFL and BETA_CONV inferences
are modelled by PREFL and PBETA_CONV. Thus

PREFL Typl Conl (Pseq as t) tm

holds if the assumption set as is empty, t represents the
term tm=tm, and tm is well-typed. Similarly,

PBETA_CONV Typl Conl (Pseq as t) tm

holds if the assumption set as is empty, tm is a beta-
redex which reduces in a one-step beta reduction to t,
and t is well-typed and boolean.

The SUBST rule is modelled by PSUBST;

PSUBST Typl Conl (Pseq as t) thdl td th

holds if the sequent Pseq as t is the result of perform-
ing a multiple substitution in theorem th according to
the list thdl of pairs (theorem,dummy), where td is a
term with dummies indicating the places where substi-
tutions are to be made. PSUBST also checks the dummy
term td for well-typedness.

The function PABS models the ABS inference. Thus

PABS Typl Conl (Pseq as t) tm th

holds if t is the result of abstracting the term tm (which
must be a variable with a permitted type) on both sides
of the conclusion of th which must be an equality). Fur-
thermore, the variable tm must not occur free in the
assumption set as.

For the INST._TYPE inference,
PINST_TYPE so that

PINST_TYPE Typl (Pseq as t) tyl th

we have defined

holds if t is the result of instantiating types in the con-
clusion of th according to tyl and if as is the same set
as the assumptions in th. Furthermore, we require that

the type variables that are being substituted for do not
occur in as.
Finally,

PDISCH Typl Conl (Pseq as t) tm th

holds if Pseq as t is the result of discharging the term
tm in the theorem th, and

PMP (Pseq as t) thl th2

holds if Pseq as t is the result of a Modus Ponens in-
ference on thi and th2.

6. PROOFS AND PROVABILITY

)
In this section, we consider the notions of provabil%y
and proofs. These two concepts are closely related, bt
we define them independently of each other. Both @e-
pend on the underlying notion of correct inference, iz.,
on the predicate OK_Inf defined in the Appendix.

6.1. Provability

eoey:sduu w

Provability is an inductive concept. A sequent is pr&'
able (within a given theory) if it is an axiom or it qan
be inferred from provable sequents by application of %.n
inference rule.
We have defined the predicate Provable using the B
sic ideas from the HOL package for inductive definitiGhs
[5]. The inductive nature of provability is capturedém
the following theorem:
F VTypl Conl Axil i s.
(0K_Inf Typl Conl Axil i A
(s = Inf_concl 1)) A
EVERY (Provable Typl Conl Axil) (Inf_hyps
= Provable Typl Conl Axil s

o0od

q ¥L06%E/LLL/2/gE/e0IE

In fact, Provable is defined to be the smallest refa-
tion satisfying this theorem. In the above theorem,
Inf_concl is a function which returns the result sequent
of an inference (the first Psequent argument in the sym—
tax of inferences above) while Inf hyps returns the list
of hypotheses (the remaining Psequent arguments).=

Note that the base case and the inductive case are
handled together. The base case occurs when the list
Inf hyps i is empty. The list of hypotheses can be
arbitrarily long in a SUBST-inference; for all other in-
ferences it has length zero, one or two. We have also
proved the induction theorem (rule induction) for the
Provable predicate.

6.2. Proofs

By a proof we mean a sequence of correct inferences
where each inference has the property that all its hy-
potheses appear as conclusions of some inference ea.rller
in the proof.

This is captured in the following definition of
Is_proof:

THE COMPUTER JOURNAL,

Vor. 38, No. 2, 1995

REPRESENTING HIGHER-ORDER LOGIC PROOFS IN HOL 177

F (VTypl Conl Axil.
Is_proof Typl Conl Axil [J] = T) A
(VTypl Conl Axil i P.
Is_proof Typl Conl Axil (CONS i P) =
OK_Inf Typl Conl Axil i A
lmem (Inf_hyps i) (MAP Inf_concl P) A
Ias_proof Typl Conl Axil P)

where 1mem 11 12 holds if every element of list 11 is
also an element of 12.

The corresponding proof function is RIs_proof,
which is in fact a proof checker. The following is an
example of a (compressed) theorem produced using this
proof function.

}— Is_Proof

{MP_inf (Pseq {y = y} (x = 1))
(Pseq {} ((y = y) = (x = x)))
(Pseq {y =y} (y = ¥));

ASSUME_inf (Pseq {y = y} (y = y))
(y = v);

DISCH_inf (Pseq {} ((y = y) = (x = x)))
(y=y)
(Pseq {} (x=x));

REFL_inf (Pseq {} (x = x))
x]

=T

This theorem states that the following is a correct proof:

l. Fz=zx by REFL

2. +Fy=y=(r==z) byDISCH1
3. {y=y} F y=y by ASSUME,
4. {y=y} t z=2z by MP, 2,3

This is an example of adding an assumption to a theo-
rem.

6.3: Relating proofs and provability

Proofs and provability are obviously related: a sequent
should be provable if and only if there is a proof of it.
We have proved that this in fact the case (this can be
seen as a check that our definitions are reasonable):

F Provable Typl Conl Axil s
= (31 P. Is_proof Typl Conl Axil (CONS i P) A
(s = Inf_concl i))

The proof of this theorem rests on the fact that ap-
pending two proofs yields a new proof. Given proofs of
all the hypotheses of an inference, this fact allows us to
construct a proof of the conclusion by appending all the
given proofs and adding the given inference.

6.4. Reasoning about proofs

There is, of course, no way to prove that our definition
of a proof actually captures the HOL notion of a proof.

However, we can reason about proofs and check that
they satisfy some minimal requirements. As an exam-
ple of this, we have shown that proofs can only yield
sequents where the hypotheses and the conclusions are
well-typed and boolean:
F VP. Is_proof Typl Conl Axil P A
Is_standard(Typl,Conl,Axil)
=
EVERY Pseq_boolean (MAP Inf_concl P) A
EVERY (Pseq_well_typed Typl Conl)
(MAP Inf_concl P)

where Is_standard(Typl,Conl,Axil) holds if the type
structure Typl contains at least booleans and function
types, the constant list Conl contains at least implica-
tion and polymorphic equality and the axiom list Axil
contains only well-typed boolean sequents.

In one respect, the above theorem is very important;
it shows that the well-typedness checks in the functions
that are used when checking an inference (described in
Section 5.) are sufficient to guarantee that all conclu-
sions that appear in a proof are well-typed. However,
as the above theorem shows, this requires that all the
theorems that are assumed as axioms are well-typed.

7. DERIVED INFERENCES

In real proofs, we often use derived rules of inference,
rather than the primitive inference rules of a logic. De-
rived rules do not extend the logic, but they are con-
venient, as they make proofs shorter. The HOL system
has a number of derived inference rules hard-wired into
the system. This means that every HOL-proof consists
of inferences belonging to a set of some thirty inference
rules, rather than the eight primitive rules of the logic.
Thus derived rules are an essential feature at the core
of the HOL system.

7.1. Deflnition of derived inference

In order to make derived inference rules uniform, we let
them have two arguments: the conclusion, and a list of
hypotheses. We have a derived inference (Dinf) of a
sequent s from a list of sequents sl if 8 can be proved
when sl is added to the list of axioms:
Fdes VTypPl Conl Axil s sl.
Dinf Typl Conl Axil s sl
= (EVERY Pseq_boolean sl A
EVERY (Pseq_well_typed Typl Conl) sl
= Provable Typl Conl (APPEND sl Axil) s)

7.2. Verifying the correctness of a derived rule
of inference

As an example, we formalise the rule for adding an as-
sumption to a theorem (the ADD_ASSUM rule of the HOL
system). In traditional notation, this rule is expressed
as follows:

THE COMPUTER JOURNAL,

VoL. 38, No. 2, 1995

¥202 Iudy || uo1senb Aq +1069¢/1L L L/Z/8E/e101e/|ulwoo/woo dno-ojwapeode//:sdiy wolj papeojumoq

178 J. VON WRIGHT

T + t
T,t F ¢

This rule is encoded in the following theorem, which
we have proved:

F VTypl Conl Axil G t’ t.
Pwell_typed Typl Conl t' A Pboolean t’
= Dinf Typl Conl Axil
(Pseq (t’' INSERT G) t) [Pseq G t]

The proof of this theorem is in fact a verification of the
correctness of the derived inference rule ADD_ASSUM.

Note that derived rules added in this fashion re-
late hypothgses and conclusion without additional ar-
guments. In the HOL system, the added assumption t’
is an argument to the inference rule ADD_ASSUM. How-
ever, different derived rules require different numbers
of additional arguments of different types, and it is not
possible to define Dinf in a way which would permit
arbitrary additional arguments.

7.3. Proofs with derived inferences

We have also defined a new notion of proof, Is _Dproof,
where derived inferences are permitted. We have proved
(in HOL) that Is_proof and Is Dproof are equally
strong, in the sense that whenever there is a Dproof
of a sequent, there is also a proof of it, and vice versa.
This is quite reasonable, since both notions of proof are
directly related to the notion of provability.

Proofs with derived inferences cannot be checked with
a function similar to Is_proof. This is because prov-
ing that a purported derived inference step is incorrect
requires proving that no sequence of inferences could
yield the conclusion in question, and this is much more
complicated than proving that a proposed primitive in-
ference is incorrect. The set of primitive inference rules
is fixed by the syntax of the type Inference, but the
set of derived inference rules can be extended freely.

8. CONCLUSION

We have defined in the logic of HOL a theory which cap-
tures the notions of types, terms and inferences that are
used in the HOL logic. Within this theory we defined
the notions of provability and of proof and proved them
to be related in the desired way: a boolean term is prov-
able if and only if there exists a proof of it. Together
with the HOL theory, we have developed ML functions
for proving each property introduce.

These function are in fact a proof checker, i.e., a pro-
gram which takes a purported proof as input and deter-
mines whether it is a proof or not. This proof checker is
extremely slow, since it computes the result by perform-
ing a proof inside HOL (the example shown in Section
6.2. took 1 minute to run on a Sparcstation ELC with
plenty of memory). It is our hope that the theory of
proofs can also be used as a basis for verifying more

efficient proof checkers for higher order logic. Work on
such a proof checker is under way [11], and we believe
that the methodology described in [10] can be used to
verify a proof checker.

HOL is a fully expansive theorem prover, which
means that when proving theorems, it reduces derived
rules of inference to sequences of basic inferences. Since
our theory of proofs includes a method for proving the
correctness of derived rules of inference, we have pro-
vided a formal basis for a faster HOL, where derived
rules of inference can be added to the core of the sys-
tem, once they have been proved correct. This idea was
suggested for the HOL system by Slind (8].

It seems that there is generally a growing intergst
in using theorem proving system in the “introspsc-
tive” way that we have described here. Similar 1d8as
in a different framework are reported in (3], wherg a
type checker for the Calculus of Constructions is i¥n-
plemented in the logic of Nqthm (the Boyer-Moore s?;s-
tem). Related work on using proof-checkers to check
metatheory is reported in [2] and [7], as well as in [L}

ACKNOWLEDGMENTS

0°0IWBPEOE;

n

I am grateful to Mike Gordon for many helpful dlscus-
sions, and Tom Melham for showing how to define

ductive relations in HOL. I also want to thank membegrs
of the Automated Reasoning Group in Cambridge and
the anonymous referees for their comments on previgus
versions of this paper. Financial support from the ﬁ:l-
ence and Engineering Research Council in Great Bntmn
and the Research Institute of the Abo Akademi Fotgl-
dation in Finland is gratefully acknowledged.

REFERENCES

(1] S. Allen, R. Constable, D. Howe and W. Aitken. The
semantics of reflected proof. In Proc. 5th Annual Sén-
posium on Logic in Computer Science, pp. 95-107, Gos
Alamitos, USA, 1990. IEEE Computer Society Press.

[2] T. Altenkirch. A formalization of the strong normali-
sation proof for system F in LEGO. In Typed Lambda
Calculus and Applications, Lecture Notes in Comptﬁel‘
Science 664, pages 13-28, 1993.

[3] R. S. Boyer and G.Dowek. Towards checking proof-
checkers. In Workshop on Types for Proofs and Pro-
grams (Types ’98), 1993.

(4] A. Church. A formulation of the simple theory of types.
Journal of Symbolic Logic, 5:56—68,1940.

[5] M. Gordon and T. Melham. Introduction to HOL.
Cambridge University Press, New York, 1993.

(6] M.J.C. Gordon. HOL: A proof generating system for
higher-order logic. In G. Birtwistle and P.A. Sub-
rahmanyam (ed.), VLSI Specification, Verification and
Synthesis. Kluwer Academic Publishers, 1988.

(7] J. McKinna and R. Pollack. Pure type systems for-
malized. In Herman Geuvers, editor, Typed Lambds
Calculus and Applications, Lecture Notes in Computer
Science 664, pages 289-305, 1993.

q 71069¢/LLL

THE COMPUTER JOURNAL,

VoL. 38, No. 2, 1995

REPRESENTING HIGHER-ORDER LOGIC PROOFS IN HOL 179

(8] K. Slind. Adding new rules to an LCF-style logic imple-
mentation. In M.J.C. Gordon L.J.M. Claesen, editor,
Higher Order Logic Theorem Proving and its Applica-
tions, pp. 549-560, Leuwen, Belgium, September 1992.
North-Holland.

[9] J. von Wright. Representing higher-order logic proofs
in HOL. Techn. Rep. 323, Computer Lab, University
of Cambridge, 1994.

[10] J. von Wright. Verifying modular programs in HOL.
Techn. Rep. 324, Computer Lab, University of Cam-
bridge, 1994.

[11] W. Wong. Recording HOL-proofs. Techn. Rep. 308,
Computer Lab, University of Cambridge, 1993.

A SAMPLE DEFINITIONS

This appendix shows some definitions that are part of
the theory of proofs. For the complete list of definitions,
we refer to 9.
The inference checker OK_Inf is defined as follows:
OK_Inf_DEF =
F (VTypl Conl Axil s.
OK_Inf Typl Conl Axil (AXIOM_inf s)
= mem 8 Axil) A
(VTypl Coml Axil s t.
OK_Inf Typl Conl Axil (ASSUME_inf 8 t)
= PASSUME Typl Conl s t) A
(VTypl Conl Axil s t.
OK_Inf Typl Conl Axil (REFL_inf s t)
= PREFL Typl Conl s t) A
(VTypl Conl Axil 8 t.
OK_Inf Typl Conl Axil (BETA_inf s t) =
PBETA_CONV Typl Conl s t) A
(VTypl Conl Axil s tdl t si.
OK_Inf Typl Conl Axil
(SUBST_inf s tdl t s1)
= PSUBST Typl Conl s tdl t s1) A
(VTypl Conl Axil s t si.
OK_Inf Typl Conl Axil (ABS_inf 8 t sl)
" ,= PABS Typl Conl 8 t 81) A
(VTypl Conl Axil s tyl si.
OK_Inf Typl Conl Axil (INST_int’'s tyl s1)
= PINST_TYPE Typl s tyl s1) A
(VTypl Conl Axil s t sl.
OK_Inf Typl Conl Axil (DISCH_inf s t si)
= PDISCH Typl Conl s t 81) A
(VTypl Conl Axil s sl s82.
OK_Inf Typl Conl Axil (MP_inf s sl 82)
= PMP s 81 82)

The constant Palreplace is defined using an aux-
iliary constant Palreplacel which has an additional
argument (a list which contains bound variables en-
Countered so far). The definition also uses other func-
tions that we have defined. The functions mem2 and
corr2 are similar to mem1 and corri (see Section 3.1.).
Is_var, Is App and Is_Lam check term construction

while Var_var, App_fun, App_arg, Lam_var and Lam bod
are term destructors. Furthermore, FST and SND are
projections on pairs and b—tl|t’ is HOL syntax for
conditional expressions.
Palreplacel DEF =
F (vt vvl tvl s ty.
Palreplacel t’ wyvl tvl (Const s ty)
= (t' = Const 8 ty)) A
(Vt’ vl tvl x.
Palreplacel t' vvl tvl (Var x)
= ((Is_Var t' A meml (Var_var t’) vvl)
— (x = corri(Var_var t')vvl)
| (~meml x vvl A
(mem2 x tvl — (t'=corr2 x tvl)
| (t'=Var x))))) A
(Vt' wvl tvl t1 t2.
Palreplacel t’ vvl tvl (App t1 t2)
= Is_App t' A
Palreplacel (App_fun t') wvl tvl t1 A
Palreplacel (App_arg t’') vvl tvl t2) A
(vt’ vvl tvl x ti.
Palreplacel t' vvl tvl(Lam x t1)
= Is_Lam t' A (SND(Lam_var t') = SND x) A
Palreplacel (Lam_bod t’)
(CONS(Lam_var t’,x)vvl) tvl ti)

Palreplace _DEF =
F vt tvl t.
Palreplace t’ tvl t = Palreplacel t' [] tvl t

THE COMPUTER JOURNAL,

VoL. 38, No. 2, 1995

¥20Z Iudy || uo 1senb Aq +1069¢/1 L 1/Z/8E /8101 e/|ulwoo/wod dnorojwsepeoe//:sdiy wolj papeojumoq

