Special Issue Editorial
Higher Order Logic Theorem Proving
and its Applications

The past twenty years have seen many advances in the
use of computers to do mathematical and logical proofs.
Computing scientists and engineers are increasingly dis-
covering the utility of this work—especially in areas like
Formal Methods or Semantics, where formal specifica-
tion or formal reasoning is necessarily involved. Indeed,
it is clear that the only feasible way of doing proofs
about certain realistic applications, where there may
be many thousands of deduction steps, is by computer.

There are several broad approaches to mechanized
theorem-proving. In the algorithmic tradition, a com-
puter program is employed to determine the truth of
a proposition automatically, using a mathematically-
justified decision procedure or perhaps heuristics. In
the more interactive tradition, the user participates in
proof discovery and construction. Most actual theorem
proving systems lie somewhere between these two ex-
tremes, providing both interactive and automatic ways
of generating proofs.

The topic of this special issue is applications of a
theorem-proving technology that lies towards the more
interactive end of the spectrum—mnamely, machine-
assisted reasoning using higher order logic and the LCF
approach to theorem proving. Higher order logic is a
form of typed predicate calculus that is well suited to
mechanization (it can be based on the A-calculus) as
well as powerful enough to make available the results
of general mathematics. The LCF approach is one in
which the system’s command language is a strongly-
typed functional programming language and an ab-
stract data type of theorems is used to distinguish for-
mulas that have been proved from arbitrary proposi-
tions [2].

‘Interaction with an LCF-style system can take the
form of forward proof (applying inference rules to pre-
viously proved theorems until the desired theorem is
obtained) or backward proof (working backwards from
the statement to be proved to previously proved theo-
rems that imply it). But because the system is built
on top of a programming language, the user can also
write arbitrarily complex programs to implement proof
strategies—including fully automatic ones. This exten-
sibility, combined with security and an expressive logic,
makes these systems exceptionally well-suited to tailor-
ing by users to an almost unlimited range of applica-
tions.

This special issue is intended to give the reader a sam-
Ple of the range of possible applications of mechanized
theorem proving using higher order logic. The papers
chosen for this issue are all concerned with applications

of one theorem-prover in the LCF tradition—the HOL
system [1]. But the contents will also give the reader a
good idea of higher order logic theorem proving in gen-
eral, since there is much here that could be done equally
well with similar existing systems.

A prominent application of theorem proving, with
considerable scope for practical utility, is hardware
verification—the use of formal reasoning to increase
confidence in the correctness of hardware designs. Tech-
niques for post-design proofs of correctness, at least for
certain kinds of hardware, are both well-established and
accessibly publicised. The first two papers selected for
this issue therefore treat the related but rather less well-
understood topics of proof maintenance and correct-by-
construction designs. The third paper then presents
some new methods for reasoning about RISC processor
pipelines—designs for which the usual formal verifica-
tion technology is inadequate.

In the first paper in this issue, Tracking Design
Changes with Formal Machine-Checked Proof, Curzon
presents a case study on the maintainability of proofs of
correctness when designs are modified. Curzon’s expe-
rience suggests that, with the right approach, it is possi-
ble both to verify the correctness of ‘real-world’ designs
and to maintain the proofs (including input scripts for a
theorem-prover) in times commensurate with the actual
design, implementation and modification times.

Larsson’s paper An Engineering Approach to Formal
Digital System Design describes an approach to correct-
by-construction hardware design based on correctness-
preserving transformations. Larsson employs Grundy’s
HOL implementation of the ‘window inference’ method
of interactive proof, which nicely encompasses both the
forward and backward proof styles {3].

The third paper, Formal Specification and Verifica-
tion Techniques for RISC Pipeline Conflicts by Tahar
and Kumar, describes a method for proving that con-
flicts do not occur in the instruction pipelines of RISC
machines. This work shows how the basic theories for
hardware verification by mechanized deduction have
now progressed to a stage where one can begin to
develop very general theories for specific problem do-
mains, with a view to making verifications within these
domaing almost routine.

The next three papers are concerned with mecha-
nized formal reasoning about programming languages
and programs. An enormously influential contribution
to this field has been Milner’s LCF project of the late
1970s and early 1980s [2,4]. LCF was designed for in-
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teractive reasoning about higher-order recursively de-
fined functions. Agerholm’s paper LCF Ezamples in
HOL shows how the essentially domain-theoretic basis
of LCF can be built up within the HOL system, whose
logic is based on set theory rather than domains. The
result is a system that allows one to mix both domain
and set-theoretic reasoning in a single framework.

Homeier and Martin’s paper A Mechanically Verified
Verification Condition Generator addresses the subject
of proving programs correct using an algorithm that
reduces a proof to a set of formulas called verification
conditions, which (if true) are sufficient to establish cor-
rectness of the original program. Homeier and Martin
show how to use the HOL theorem prover to formalize
the semantics of a programming language, derive proof
rules for it, and then prove the correctness of a verifi-
cation condition generator for the language.

In Studying the ML Module System in HOL, Gunter
and Maharaj use HOL to reason about the semantics of
modules in the Standard ML programming language [5].
The authors go beyond merely encoding the existing
dynamic semantics of modules by formalizing an ex-
tended semantics for higher-order functors. The HOL
mechanization is used to prove theorems that inspire
confidence in the reasonableness of this extension.

With the seventh paper, Chou’s Mechanical Verifica-
tion of Distributed Algorithms in Higher-Order Logic,
the focus of this issue is shifted from hardware and
software to distributed algorithms, which involve asyn-
chrony and nondeterminism. Chou presents a frame-
work for reasoning about distributed algorithms com-
prising a number of formal theories mechanized in HOL.
The utility of this infrastructure is demonstrated by
the verification of a simple but typical distributed al-
gorithm.

As with all LCF-style systems, HOL is a ‘fully-
expansive’ theorem prover, in the sense that theorems
may be produced only by applications of primitive in-
ferences rules. Harrison’s paper Binary Decision Dia-
grams as a HOL Derived Rule is one of the few sig-
nificant investigations into whether automatic decision
procedures—in this case, based on BDDs—can be in-
corporated into this strictly fully-expansive world. Har-
rison’s results are encouraging; he has devised a BDD
algorithm that also does primitive inference in HOL and
is only a constant factor slower than a direct implemen-
tation.

In the final paper, Representing Higher-order Logic
Proofs in HOL, von Wright employs a theorem prover
to reason about the properties of its own logic. Using
the HOL system, the author formalizes in higher order
logic the concepts of proof and provability for higher
order logic itself. This gives a mechanized framework
in which one can reason about soundness of derived
inference rules, or the correctness of a stand-alone proof
checker.

The papers selected for this issue do not, of course,

cover all the possible applications of higher order logic
theorem proving. Much less do they cover all exist-
ing theorem provers. Only one theorem proving system
is represented, but there are numerous other systems
for various different formulations of higher order logic.
All of these have their own special strengths and weak-
nesses, though in basic facilities offered there is much
overlap as well. T have concentrated on HOL because it
i8 the most widely used and well-established system of
this kind.

I thank both the authors and the referees for their
contributions to this special issue. The referees and au-
thors all worked to .a very tight timetable, and their
cooperation enabled virtually all correspondence and
handling of papers to be done by electronic means.

T. F. Melham
University of Glasgow
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