
A Flexible Object Invocation Language based on
Object-Oriented Language Definition

MARK EVERED, AXEL SCHMOLITZKY AND MICHAEL KOLLING1

Abteilung Rechnerstrukturen, Universitat Ulm, 89069 Ulm, Germany
' Department of Computer Science, University of Sydney, Sydney, Australia

The objects accessible by a user at a particular time in an object-oriented system form a working
environment. The invocation language via which this environment is viewed and manipulated can be
regarded as semantically flexible since the set of operations available to the user is the union of the
methods of all currently visible classes. In this paper we present a language system in which class
definitions are extended to include appropriate syntax rules for the methods and which is consequently
also syntactically flexible. The requirements for such a system both from the point of view of a user and
with regard to efficient implementation are discussed. An implementation of such a flexible invocation
language within a persistent object-based operating system is then presented.

Received October 24, 1994; revised January 11, 1995

1. INTRODUCTION
An interactive language is a means of communication
between a user and a software system. The first
interactive languages were command languages. The
software system involved was an operating system, and
the commands were concerned with invoking operating
system services to manipulate files, programs, devices
and processes. More generally, however, the term
'invocation language' can be associated with any kind
of interactive software system which allows a user to
specify an action and responds by invoking a program or
object to perform that action or by indicating an error in
the input. The action may be to display information
regarding the state of the system or to alter its state. The
more general use of the term is particularly valid in the
case of object-oriented systems where there is no clear
distinction between operating system objects, database
objects and application objects.

Most research on interactive systems in recent years
has concentrated on graphical user interfaces. This
research has also made it clear, however, that textual
interfaces or invocation languages are the more favour-
able alternative in many situations (Balzert, 1988). Even
with graphical interfaces there is a need for some actions
to be specified in the form of textual input. In this paper
we concentrate on textual languages, in the traditional
sense, although some of the ideas are equally applicable
to graphical environments.

Two aspects of object invocation languages which
have become increasingly important are extensibility and
adaptability:

• We define extensibility as the ability of a language to
be extended to new domains and to express
adequately the new actions offered by the system.

• We define adaptability as the ability to offer
commands in a form suitable to a particular domain

and to the requirements and preferences of a
particular user.

While early command languages such as JCL (IBM,
1966) were restricted to a fixed set of system commands,
the command languages of later systems such as Unix
(Ritchie and Thomson, 1974) can be extended by the
incorporation of new programs and the use of
parameterized command files. The 'alias' mechanism of
Unix offers a simple kind of adaptability. The first word
of a command line is matched against a user-specific list
of aliases and, if found, is replaced by a particular
character string. In this way a user can give a new name
to a command or to a command combined with
particular options and parameters. These features are,
however, very limited. The basic form of a command line
always remains the same—the name of the command
followed by a number of space-separated character
strings representing the parameters. In such systems the
semantics of the command language is extensible but the
syntax is not. So, for example, the command language
semantics could be extended by incorporating into the
system a program for adding integers but this must then
be invoked using the prefix syntax:

int_add 3 2

rather than the more intuitive infix form:

3 + 2

A flexible syntax is equally important in achieving the
goal of adaptability. The natural notation for one
application area will not generally be the same as for
another; while one user may prefer a concise, cryptic
syntax, another may favour a verbose, self-explanatory
style. Ideally an invocation language will adapt to
optimally suit the domain in which a user is currently
working. This kind of syntactic extensibility and

THE COMPUTER JOURNAL, VOL.38 , No. 3, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/3/181/359132 by guest on 10 April 2024

182 M. EVERED, A. SCHMOLITZKY AND M. K6LLING

adaptability is not possible given the rigid form of
current invocation languages.

The subject of extensible syntax has been taken up
repeatedly throughout the history of computing. As early
as the 1960s suggestions were made as to how special
macros could be used to make programming languages
syntactically extensible. Leavenworth (1966) proposed
the use of 'syntax macros' which could map a given
syntax on to either a statement or an expression. These
macros always had a macro name as the first item in the
syntactic pattern, thus severely restricting the expressive
power. More recently, a mechanism has been suggested
(Cardelli et al., 1993) whereby layers of syntactic
extensions and restrictions can be built above a basis A-
calculus language to define LL(1) database languages.
All the attempts to define an extensible language face two
main problems. One problem is in defining a mechanism
which is easy to use and manage. The other major
problem is in achieving an efficient implementation of the
extension mechanism.

Standish (1975) has classified three dimensions of
extensibility:

• 'Paraphrasing' is restatement in another form. This is
supplied by most languages via macros, procedure
definitions and type definitions.

• 'Orthophrasing' refers to an extension beyond the
original capabilities of the language, e.g. access to file
systems and low-level I/O operations. This is achieved
in object-oriented systems by treating system objects
and application objects uniformly.

• 'Metaphrasing' is an extension which allows an old
expression of the language to be interpreted in a new
way. Ada (ANSI, 1983), for example, allows the infix
operators ' + ' , ' - ' , etc., to be overloaded and used for
new user-defined procedures. The Galaxy language
(Beetem and Beetem, 1989) allows special prefixes and
suffixes as well as the usual arithmetic symbols to
define the pattern by which a user-defined function or
macro is to be invoked. C + + (Stroustrup, 1989)
allows a large set of special symbols to be used as
unary or binary operators for the methods of new
object classes. Smalltalk-80 (Goldberg and Robson,
1989) has a similar mechanism and can in fact also be
seen as an object invocation language, but here also a
rigid syntax (object name, method name, parameters)
is maintained. The flexibility consists only in permit-
ting special symbols as method names.

A more adaptable syntax for object invocation
languages could allow an arbitrary ordering of opera-
tors and operands and could interpret each component
in the context of the whole input line. A more powerful
mechanism than those in current language systems is
required if these languages are to be as extensible and
adaptable syntactically as they are semantically.

The next section describes a new approach to defining
languages which allows such flexibility and which is
based on the objects themselves. The subsequent section

examines the specific requirements for this approach
when applied to object invocation languages. Finally we
present a system which efficiently implements the ideas in
the'context of a persistent object-oriented architecture.

2. OBJECT-ORIENTED LANGUAGE
DEFINITION

The advantages of object-oriented software design are
well recognized. Internal object data can be hidden
behind a well defined functional interface. This in turn
can enhance reusability and error localization and
minimize interactions and complexity.

In an object-oriented environment the total function-
ality of the system is represented by the sum of all
methods of all callable objects. An object invocation
language can offer each of these methods as a command.
In fact the semantics of the user language at a particular
time is a representation of the sum of the functionality of
the objects which can be invoked at that time. As new
objects are added to a system, or as the working
environment of a user changes, the set of objects in use
and, consequently, the semantics of the invocation
language are changed.

The user language of a system can thus be seen as a
dynamic language defined by the objects available to a
user at a particular time. In order to offer the kind of
extensibility and adaptability described above, the
invocation language must have a dynamic syntax as
well as dynamic semantics. This can be achieved by
including in an object definition not only a functional
description of its methods, but also a description of the
syntax by which the methods are to be invoked. The sum
of the syntax of all available objects then defines a
dynamic grammar for the language.

The syntax of programming languages is generally
defined by a context-free grammar. In object-oriented
language definition (Evered, 1993), the syntax of a
language can be defined by a distributed context-free
grammar, the rules of which are spread over the objects
comprising the system. This can be visualized as shown
in Figure 1.

Encapsulating the functional interface of each object is

Object Data Functional Interface

Syntactic Shell

FIGURE 1. Objects with syntactic shells.

THE COMPUTER JOURNAL, V O L . 3 8 , No. 3, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/3/181/359132 by guest on 10 April 2024

A FLEXIBLE OBJECT INVOCATION LANGUAGE 183

a shell which interprets the syntax to be used in accessing
this object. This is similar to the distinction in Unix
(Ritchie and Thomson, 1974) between the system calls
which offer a functional interface to the system and a
command shell which describes the syntax by which this
functionality can be invoked. Here, however, in
accordance with the object-oriented philosophy, the
functionality and the shell are distributed among the
objects.

The language resulting from the object methods and
object syntax rules may be called the external or user
language. In order to be executed the sentences of this
language must be transformed into the internal language
of the system. In object-oriented systems this internal
language consists basically of calls to object methods.
The syntax rules of an object are therefore not simply
context-free grammar rules for parsing a sentence, but
also contain a transformation part which maps a parsed
section of the external language on to the appropriate
expression of the internal language. So, for example, an
object implementing integer arithmetic could contain a
rule like:

int_expr: int' + ' int --> 'int_arith.add #1 #3'

which, together with other rules, would map the
statement 3 + 2 on to a call to the 'add' method of the
object 'int_arith'.

As mentioned above, some fundamental problems are
encountered in proposals for syntax extensibility. One
problem is the manageability of the large number of
individual syntax rules necessary to define a useful
language. A further difficulty is the need for a
compromise between flexibility and efficiency. In order
to remain relatively efficient, most systems impose strong
explicit restrictions on the kinds of syntax rules allowed
and implicit restrictions on the frequency with which
rules may be added or changed thus making them
unsuitable for dynamic invocation languages. A further
problem is the possibility of ambiguities in the language.
An object-oriented approach to syntax extension
alleviates these problems since:

• The syntax rules are made more manageable by being
grouped and associated with the classes to which they
belong.

• The association of syntax rules with classes makes it
easier and more natural to formulate type-specific
rules and overloading of syntax patterns.

• Only the rules of 'currently relevant' classes (the
classes of currently visible objects) need be considered.
This increases efficiency and reduces the risk of
ambiguity.

The details of this approach depend on the specific
requirements for a particular language system. In the
following section we discuss more fully the requirements
for a general purpose object invocation language in a
persistent object-oriented environment.

3. LANGUAGE REQUIREMENTS

In order to achieve the goal of providing a high degree of
extensibility and adaptability the transformation rules
must be able to express more powerful transformation
mechanisms than the ones known from conventional
systems.

Below we list a number of transformation constructs
that are particularly useful in a general purpose
language. Using these constructs the internal language
can be adapted to the particular needs of a certain user
domain.

For each construct we give an example of a command
a user might want to use and (after the symbol - >) the
equivalent representation of the command in the internal
syntax. The transformation system must offer the
possibility of defining rules which specify the corre-
sponding transformations.

3.1. Abbreviations

Abbreviation mechanisms are used to give a new name to
a command or command sequence (possibly including
parameter values). For example, the user should be able
to write a rule that causes the following transformation:

pc myfile ~ > pascomp.compile -optimise "myfile"

Abbreviation mechanisms are supported by most
common command language interpreters.

3.2. Change of the order of elements

As mentioned before the user should be able to specify
transformations that change the order of elements (i.e.
the command name, options and parameters) in an input
line. This eliminates the common restriction that the first
word of the input must be the command name. For
example, it should be possible to write rules that carry
out the following transformations:

x: = 3 — > variable_manager.assign "x" 3
pascomp? ~ > help_manager.man "pascomp"

3.3. Defaults

Defaults for parameters should be expressible in the
rules. For example:

inc a 3 - > intjib.add "a" 3
inc a ~ > intjib.add "a" 1

3.4. Context sensitivity

The meaning of all elements of the input line in the
current domain should be useable as a condition for
applying transformation rules. The most common
example for this is the usage of type dependency. The
type of literals, variables and expressions as well as the
class of objects can be considered. This allows the
appropriate routine to be called for similar (i.e. equally
named) functions with different types of parameters.

THE COMPUTER JOURNAL, V O L . 3 8 , No. 3, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/3/181/359132 by guest on 10 April 2024

184 M. EVERED, A. SCHMOLITZKY AND M. K6LLING

Examples:

3 + 42--> intjib.add 3 42
sl + s2 ~ > string_lib.concat si s2

It is also possible to use other aspects of significance in
the current environment as transformation criteria. For
example, a command consisting of a single identifier
could be interpreted as an 'rlogin'-command if the
identifier is a hostname, or, at the same time, as a 'talk'-
command if the identifier is a user name.

3.5. Priority of operations

The user should be able to define the priority of
operations. For example:

2*i + 100 - > intjib.add (intjib.times 2 i) 100
2 + i*100 - > intjib.add 2 (intjib.times i 100)

In this way complex expressions for data types can be
used.

While offering all these kinds of transformation the
system must nevertheless be efficient. A runtime
environment must be developed which executes the
transformations quickly. It is envisaged that the whole
system would work in an interactive environment where
the time of response of every interactive invocation is
affected by the time used for the syntax transformation.
It is well known that the response time of computer
systems is an important factor for the quality of the user
interface in terms of software ergonomics. Whether the
whole transformation process can be done quickly or not
is one of the critical questions in this approach.

4. FURTHER REQUIREMENTS

As mentioned before, the transformation rules form a
context-free grammar describing the user language.
Using a context-free grammar to analyse the whole
input line provides a basis for achieving the desired
power of the transformation rules.

Parsing and transforming based on context-free
grammars is well known and commonly used in
compilers for programming languages. In the object-
oriented definition of invocation languages there are
various aspects which cause problems beyond those
known from compiler construction. The main differences
are that the grammar is not known in advance a*nd that it
can change dynamically during the usage of the system.
With every addition or deletion of an object into or out
of a user's working environment the grammar will
change. An algorithm must therefore be provided
which handles dynamically changing grammars.

Various problems arise from the fact that the grammar
is not developed by a single person who has an overview
of the complete set of rules. We have to cope with a
situation where different users provide different parts of
the grammar without knowing all of the other rules that
could be in use at the same time. This leads to several
demands on the transformation system.

4.1. Arbitrary context-free grammars

The algorithm must be able to parse arbitrary context-
free grammars. Because we want a wide group of people
to write syntax rules, we do not want to make restrictions
on the grammar. Not allowing, for example, certain
kinds of recursion can certainly make the parsing
algorithm simpler, but would require the user to be
capable of detecting and eliminating this kind of
recursion, transforming it to another construct. This
would exclude a large group of users from the group of
rule writers.

4.2. Public and private non-terminals

Due to the fact that the grammar will be distributed over
several objects, a mechanism has to be provided that, on
one hand, allows a user to define rules for one object
without interference with rules for other objects and, on
the other hand, allows object rules of different objects to
cooperate.

An example for the latter case could be the start
symbol of the grammar. If we assume a non-terminal
COMMAND as the start symbol, then every object
should at least be able to reference this non-terminal and
define new commands.

Object-local rules are similar to local variables in
programming languages. These were introduced to ease
the task of writing pieces of code that perform an isolated
task and do not interfere with variable names in other
subroutines.

For these reasons we propose a distinction between
public and private non-terminals. Public non-terminals
are accessible in different objects and provide the link
between grammar rules which are defined in different
objects. Private non-terminals are local to one object.
They are only visible within the rules of the defining
object.

In the following very simple example public non-
terminals are written in uppercase and private non-
terminals in lowercase letters.

Object 1 Object 2
COMMAND : 'list' param . COMMAND : 'print' param .
param : 'cwd' . param : 'myfile' .

Given these rules, "list cwd" and "print myfile" would be
valid commands, whereas "list myfile" and "print cwd"
would not.

4.3. Empty productions

The algorithm should handle rules with empty produc-
tions. This exceeds the definition of context-free
grammars where empty productions are illegal but they
can be very useful in defining optional occurrence of
elements and defaults.

As an example assume the following rules:

COMMAND : 'print' FILENAME copies .
copies : | INTEGER .

THE COMPUTER JOURNAL, VOL.38 , No. 3, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/3/181/359132 by guest on 10 April 2024

A FLEXIBLE OBJECT INVOCATION LANGUAGE 185

where the non-terminal 'copies' has two alternatives, one
of which contains an empty production. According to
this grammar "print myfile 2" and "print myfile" could
be valid commands. In conjunction with transformation
directives it is easy to add a default. With the rules:

COMMAND : 'print' FILENAME copies .
copies : — > ' 1'
| INTEGER .

the command "print myfile" would be transformed into
"print myfile 1".

4.4. Scanners

Various approaches to the task of scanning terminal
symbols are possible. The standard method of having a
fixed scanner that cuts the input line into tokens before
the syntax analysis begins has the advantage of being
easy and fast. However, it is inadequate here since
different rules might rely on different token definitions. A
predefined scanner, i.e. predefined tokens, would be a
strong restriction to the freedom of syntax definition.

An alternative is to have no scanner at all, relying on
characters only and defining everything else in the
grammar. This is a very flexible approach but it has the
disadvantage of being extremely inefficient in many
common cases.

Having a rule-based precompiled scanner defined by
distributed rules would combine some of the flexibility
with a greater efficiency but still has one major problem:
different rules depending on a different scanning of the
input line could be active at the same time and therefore
any fixed separation of characters into tokens causes
problems.

A solution to this problem is the use of distributed
external scanners which do not cut the input line prior to
the syntax analysis but are called in a top-down manner
whenever the grammar derivation process wants to check
the input line for the presence of a terminal. Each
terminal symbol has a scanner associated with it which
tries to scan the symbol at the current position of the
input line.

In an object-oriented environment these scanners
could be added freely to the system providing a high
degree of flexibility and, since it is compiled code,
efficiency as well. Moreover, since the scanner is defined
by a normal piece of code, not only the syntactical
aspects of the input line but any computable condition
can be a criterion for the scanner to match. This provides
a basis for adding semantic conditions to the transfor-
mation process. An example of this is the use of a
'username'-scanner and a 'hostname'-scanner. Testing a
rule containing a 'username' as a terminal symbol for
matching, the scanner would not only scan the name but
also check whether the scanned identifier is an existing
user's name in the current environment. The two
scanners can then distinguish user and host names,
even though their syntactic definitions might be

equivalent, providing the means for defining the
'rlogin'- and 'talk'-transformations mentioned above.

4.5. Ambiguity

Another result of the fact that a rule writer does not
know all active rules is that ambiguous grammars can
not be prevented. Since only a small subset of ambiguous
definitions can be recognized statically, the parsing
algorithm must cope with runtime detection and
handling of ambiguous rules.

Solutions to this problem could either provide an
algorithm to automatically decide how to solve the
ambiguity (including the risk of misinterpretations) or
start an interactive dialogue to let the user decide how to
continue.

4.6. Error messages

Generating error messages for a language not known at
the time of writing the transformation algorithm is a
difficult task. There are two different approaches to this
problem: either make the rule writer responsible for
providing error messages, or try to let the transformation
algorithm generate messages on its own. Either way is,
however, not as simple as in common compiler
development. Since we cannot be sure of having an
LL(k) grammar, the unexpected ending of a derivation is
not necessarily an error. Only if no derivation at all
succeeded do we know that something went wrong, but it
is then hard to decide the user's intention, since there
may have been several partial matches. Even if the rule
writer provides messages, the choice of which message to
display remains a problem. All error message mechan-
isms must then rely on heuristics and assumptions in an
attempt to choose one or more hopefully helpful
messages to display.

4.7. Compiler generation

Basically there are again two different possibilities to use
the syntax rules to carry out the parsing and compilation
task. The transformation system could generate a
compiler each time the grammar changes and therefore
act as a compiler-compiler for arbitrary, ambiguous,
context-free grammars. Alternatively, it could act as a
rule based compiler-interpreter, which means that it
executes the tasks of a compiler without actually
constructing it. Which of these possibilities is preferable
is determined by the time needed to construct the
compiler, the gain of performance through the compiler
construction and the frequency of grammar changes (i.e.
the frequency of constructing a new compiler).

Generally we can say that we expect rather frequent
grammar changes and short sentences to be parsed
(compared to compilers for programs). Hence, contrary
to programming languages, it will probably not be
worthwhile constructing the compiler.

The following section describes a system which

THE COMPUTER JOURNAL, V O L . 3 8 , No. 3, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/3/181/359132 by guest on 10 April 2024

186 M. EVERED, A. SCHMOLITZKY AND M. K6LLING

implements these ideas as a rule based compiler-
interpreter for a distributed grammar. The solutions
chosen for the problems mentioned above are presented
and briefly explained.

5. THE MASK SYSTEM

5.1. The environment

In this section we introduce our implementation of a
command language interpreter (CLI) which uses object-
oriented language definition. This implementation
(MASK) is based on an existing CLI in an object-
oriented environment. The MONADS-CLI (Hitchens,
1989) is the command language interpreter of the
operating system of the MONADS-PC (Rosenberg and
Abramson, 1985), a research computer which evolved
out of the MONADS Project. The main features of this
unusual computer are its large, persistent virtual
memory, a two-level capability protection mechanism
and its strict architectural support for the information
hiding principle. The whole operating system, even the

var_manager = class

function define_var (varname : string;

basetype : string;

logtype : string) : integer;

function delete_var (varname : string) : boolean;

procedure list (long : boolean);

function get_type (varname : string;

var basetype : string;

var logtype : string) : integer;

function assign_int (varname : string;

val : integer) : integer;

function assign_real (varname : string;

val : real) : integer;

function assign_bool (varname : string;

val : boolean) : integer;

function assign_modcap (varname : string;

val : modcap) : integer;

function assign_string (varname : string;

val ; string) : integer;

function get_int_val (varname : string;

var val : integer) : integer;

function get_real_val (varname : string;

var val : real) : integer;

end; { class var_manager }

FIGURE 2. Sample of a MONADS class description: the variable
manager.

kernel, consists of objects with procedural interfaces.
Any action taking place in the system is caused by a call
to an interface routine of an object. All objects are
instances of classes, which are described in class
descriptions. These class descriptions contain informa-
tion about names of routines, number and type of
parameters etc. Most of the operating system is written in
MONADS-Pascal, an object-oriented extension of
Pascal. Figure 2 shows a class description for an object
which manages simple command language variables.

Whenever an object is to be called, the caller must
present a module capability (modcap) for that object.
Module capabilities are the basis of semantic protection
in the MONADS system and are protected by the
architecture. No call can be performed without a valid
capability. Thus the set of capabilities owned by a user
defines the objects that user can call. The capabilities can
be held in directories, which provide a mapping from
names to capabilities. Directories are also objects, so a
user can insert capabilities for directories into other
directories in order to build a tree-like structure.

For efficiency reasons the MONADS-System uses a
two-level access strategy for objects. Before an object can
be called it must be opened. After the required calls have
been performed the object can be closed again. In this
way the effort for the dynamic binding and the checking
of the access rights is kept small since it is done only with
the open call and not with every call. The set of objects a
user can reach via the capabilities in his or her directories
are called the environment. The set of open objects is the
current context .

In order to reduce the complexity of system structures
the MONADS-System provides a single form for module
calls, whether they are interactive calls from the CLI or
calls from another object. Thus in the existing CLI on
which MASK is based the syntax of an interactive
command is:

< object name > . < routine name > { < parameter > }

For every interactively callable object the CLI needs a
template in which the information about how to call the
object is held (i.e. the names of the routines, the number
of parameters of a routine, the types of these parameters,
etc.). This information is extracted from the class
descriptions and held in objects of the template class.
Every directory entry consists of the capability for the
object and the capability for the template.

5.2. The system

Up to this point we can conclude that the semantics of
the command language depends on the objects in a user's
current context. Thus the existing MONADS-CLI was
semantically extensible in the sense of our definition but
not syntactically. The first step towards object-oriented
command language definition is to provide objects with
syntax rules. We decided to place the rules in the class
descriptions of the objects. From here they can be added

THE COMPUTER JOURNAL, VOL.38, No. 3, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/3/181/359132 by guest on 10 April 2024

A FLEXIBLE OBJECT INVOCATION LANGUAGE 187

to the information held in a template. Appendix A shows
a definition of the 'variable manager' class including
syntax rules.

We adhere to the following conventions in the meta-
language for the syntax rules. (A formal definition of the
meta-language syntax is given as Appendix B.)

• A BNF-like notation is used in conjunction with
additional transformation directives. A single syntax
rule consists of a non-terminal, a production and an
optional transformation. Different production-trans-
formation pairs for the same non-terminal are called
alternatives and are separated by a '|'.

• Non-terminals are simple identifiers; public non-
terminals are written in uppercase and private non-
terminals in lowercase letters.

• Terminals are in simple quotes for literals or delimited
by slashes for the identifier scanner and the external
scanners. The identifier scanner gives the user the
possibility of having an identifier recognised in the
input. If a type name is included in parentheses then
the identifier is subsequently type-checked. External
scanners give the user the possibility of invoking
hand-written scanners for special purposes (e.g. to
scan an integer literal or a valid user name).

• Transformations are strings enclosed in single quotes.
References to elements in the production are given as
< elem number > . The #name construct refers to the
name of the object from whose template the rule was
taken.

For the MASK system the syntax of the existing CLI is
the internal language into which the command lines
formulated in the external language must be trans-
formed. The external language is defined by the current
grammar, i.e. the sum of all rules of the objects in the
current context.

Each time an object is interactively opened the central
module of the CLI passes the object's template capability
and its name (as given in the directory entry) to the main
module of the MASK system. If it is the first open object
of its class all class rules are added to the current
grammar. All occurrences of '#name' are replaced by the
name of the instance. If there are new rules for a public
non-terminal that already exists in the current grammar
the alternatives are simply added to the existing ones.

Each time a command is entered by the user the CLI
passes the command line to the MASK module. MASK
checks whether it is a valid sentence of the current
language by trying to parse and transform it. If the
transformation is successful, the transformation result is
passed to the CLI as a valid command, otherwise an
error is signalled.

5.3. The transformation algorithm

The heart of the MASK system is the transformation
algorithm, which is based on the parsing algorithm of
Earley (1970). We chose Earley's algorithm for several
reasons:

• It does not need to precompile a given grammar.
Instead it directly interprets the grammar during the
parsing process. This suits the need for a compiler-
interpreter that is obviously given by the dynamic
environment in which the grammar can change with
every open or close call.

• It uses a top down strategy which is essential for the
use of distributed external scanners as described in
Section 4.

• It makes no restrictions on the form of the grammar
since it handles general context-free grammars and
can furthermore be easily extended to handle even
empty productions.

• It has a time bound proportional to O(AJ3) (where n is
the length of the string being parsed). It has an O(n2)
bound for unambiguous grammars and it runs in
linear time on a large class of grammars, which
include most practical context-free programming
language grammars.

For a better understanding of our extensions to the
algorithm we give here a short description of its basic ideas.

5.3.1. The algorithm of Earley

In principle the algorithm uses a breadth first strategy, in
contrast to the depth first strategy used for example by
the recursive descent method (Davie and Morrison,
1982). This means that all possible derivations starting
with the start symbol are analysed and tested against the
input. Whenever a derivation ends because it does not
match the input, it is simply left out and no backtracking
need be done. Furthermore the algorithm notices if in
two distinct derivations the same non-terminal has to be
parsed at the same input position and avoids repetition
of the analysis. By parsing identical parts in different
derivations only once, the algorithm can provide good
time bounds. In Earley (1970) the algorithm is described
with a look-ahead. Since we process highly dynamic
grammars this feature is of no practical use for us.

The basic principle of the algorithm is to represent
each started derivation in a state and to process these
states into following states. A state is given by a
production, a position in that production that shows
how much of the production has already been parsed and
a token position in the input where the parsing of the
production started.

For example:
A : 'x' .B [0]

is the informal representation of a state, in which the
position is given by the dot and the start position by the
number in brackets. This example can be read as "the
attempt to find non-terminal A at token position 0 (at the
beginning of the input) has lead to the state where an x
has been found in the input and where the non-terminal
B has to be found next". If a production of B matches the
next tokens after the x the non-terminal A is found at the
beginning of the input stream.

THE COMPUTER JOURNAL, VOL.38, No. 3, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/3/181/359132 by guest on 10 April 2024

188 M. EVERED, A. SCH'MOLITZKY AND M. KOLLING

All states with the same current token position (not the
same start position) are collected in a state set. In the
previous example one token is scanned (the x), so the
current token position is ' 1 ' and the state would be in
state set S\. The states in a state set are processed in
sequence, adding states to the current or to the next state
set. Depending on the position of the dot in a state, one
of three operations is called to process that state.

The predictor is called when the dot is in front of a
non-terminal. For every alternative of this non-terminal
a new state is added to the current state set, all with the
dot at the beginning of the alternative. The scanner is
called whenever a dot occurs in front of a terminal
symbol in a production. The scanner tries to match the
next token in the input stream against this terminal and
adds a new state to the next state set, if it is successful.
Whenever the dot occurs at the end of a production this
means that it is fully parsed and the non-terminal on the
left side has been found. In this case the completer is
called to add all those states of a previous state set with
the dot before the non-terminal to the current state set
with the dot now behind it.

5.3.2. Our extensions

Distributed scanners. In order to support distributed
scanners we had to extend the information held in a
state. The token position is implicitly given by the state set
number in which the state is held but with distributed
scanners it is possible that in two distinct derivations the
nth token starts at different character positions in the input
stream. We illustrate this with the following example:

Assume the rules:

(i) COMMAND : 'lsw' PARAM
(ii) COMMAND : 'Is' /id(directory)/

are part of the current grammar. The user types 'lsw
myfile' to print 'myfile' on a laserwriter. Rule (i)
matches, so for this rule 'lsw' is the first and 'myfile' is
the second token. However, if there is a directory named
'w', rule (ii) can also be derived. For this rule the
command is split into three tokens. The second token is
'w' and it starts at character position 3 and ends at
position 4.

The current character position of a state and the
character position at which the current production
started must therefore be added to a state and be
handled by the predictor, scanner and completer.

Transformations. The algorithm as described in Earley
(1970) is only a recognizer. Further extensions had to be
made to make it a transformation algorithm. One
possibility was to keep all produced parse trees. After
the parsing is done, a selection can be made as to which
parse tree is the right one (if there is more than one) and
with that parse tree the transformation could be done.

In our implementation the transformation is done as
soon as a production has been completed, but instead of

doing string manipulations we represent the transforma-
tion in a tree structure. Only after a successful parse of
the whole command line is the costly expansion of this
transformation tree into the resulting string carried out.

With the special kind of grammar we are processing in
MASK (dynamic and distributed) in combination with
transformations, situations can occur where the time
bound can no longer be guaranteed to be O(n3). This can
be shown by a simple example:

A: A A
| 'a'--> '0'
| ' a ' - > T .

The grammar part of this rules defines all strings of
length > 0 consisting only of a's. But for a given string of
length n there are 2" transformation possibilities. The
string 'aaa' for example can be transformed into
000,001,010 .. . 111.

This means that the time bound of the algorithm with
transformations has in theory become exponential. We
do not believe this to be a serious problem in practice
because situations like this with two recursive rules with
identical productions and different transformations are
most unlikely to occur in a normal command language
environment.

Optimization. In the first state set (So) are those states
which have not scanned a terminal. Therefore this state
set does not depend on the input and need not to be
constructed again for each command line (only on a
change of the grammar). This is interesting especially in
our command language environment where there are
often many different possibilities to start derivations, but
after the first token is scanned most of them can be
excluded. In our test environment So was about five or
six times larger than the following state sets. This means,
if we assume an average number of tokens of five per
command, we achieve a time saving of about 50%.

We implemented this optimization by processing So

only on a change of the grammar. While processing this
state set the scanner calls are deferred. In this way
parsing of a command line can start directly with the first
scanner call in So-

5.4. Ambiguities

Our strategy for the resolution of ambiguities is based on
a simple, but effective assumption and is only practical
with distributed scanners: the less tokens a derivation
needs to match the command line the more specialized it
is and thus should be selected. A simple example:

COMMAND : 'list' /id/ -- >
COMMAND : 'list vars' - :

•#2.1ist\
'var_manager.list'.

If both rules are active and a user enters list vars' , the
second rule matches the command line in state set Si, the
first one in state set S2. Because the second rule is
obviously more specialized it should be chosen.

THE COMPUTER JOURNAL, VOL.38, No. 3, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/3/181/359132 by guest on 10 April 2024

A FLEXIBLE OBJECT INVOCATION LANGUAGE 189

For the transformation algorithm this means that as
soon as a derivation has matched the start symbol
against the whole command line the parsing process can
stop. Only the current state set must be finished. If there
is more than one finished derivation in the last state set
an interactive resolution is adopted. We believe that no
automatic mechanism will provide an acceptable success
rate.

To demonstrate how an interactive resolution is
performed we assume that the two syntax rules:

COMMAND : 'list' --> 'var_manager.list'.
COMMAND : 'list' -- > 'directory.list'.

are both part of the current grammar. If a user enters the
command 'list' he or she is prompted with the following
output:

$ list
Warning: ambiguous command.
< 1 > var_manager.list
<2> directory.list

By entering the appropriate number the user can select
the correct transformation.

5.5. Error handling

The current version of the MASK system offers no
mechanism for the rule writer to provide explicit error
messages with the rules. Instead an implicit mechanism
tries to give informative error messages based on various
assumptions:

• If at least one literal has been scanned in a derivation,
the next expected symbol for all derivations in the last
state set is reported.

• If no literal has been scanned the parsing of the
command line is repeated without type checking. If
this time the parsing succeeds a type error is reported.

• If no literal is scanned and no type error can be
reported only a general error message can be given. If
the command line is partly parsed the message is:

ERROR: illegal Symbol for this position.

with a marker at the command line position where the
parsing stopped. If no token at all could be parsed the
only message the error mechanism can provide is:

ERROR: illegal command.

5.6. in use

To demonstrate the utility of the system we give some
examples of commands now in regular use on the
MONADS-PC. Some users are totally unaware that
the command syntax is distributed in various class
definitions rather than defined centrally in the CLI.
Others have themselves defined special syntax rules in
their own class definitions.

Examples:
date ~ > date.show

This command displays the current date and time by
calling the object 'date'.

mkdir dir ~ > directory_manager.create dir

A new directory with the name 'dir' is created,

var i:integer ~ > var_manager.define_var "i" "integer"

This command defines a new CLI variable 'i' of type
integer'.

i: =j + 1 - > var_manager.assign_integer"i" (int_lib.addj 1)

The Pascal-like syntax of this command is transformed
into the appropriate calls for manipulating integer values
and variables.

x? ~ > help_manager.object_help "x"

This concise syntax can be used to obtain help about an
object.

Of course the advantages of such a flexible command
syntax are of no use if the users reject the system as
having an unacceptable response time. In fact the MASK
system was installed on the MONADS-PC without
informing the users (this was possible because syntax
rules exist which allow the previously accepted CLI
syntax to be used as before) and no user complained of a
noticeable increase in the system's response time.

Command lines tend to be very short on average so
that the time required for parsing and transformation
depends primarily on the number of rules in the current
grammar. Tests have shown that the time for transfor-
mation (with the rules currently installed on the system)
is roughly proportional to the number of active rules, i.e.
to the number of open objects. This explains the good
response times since in general relatively few objects are
simultaneously open.

Even if many objects are kept open, however, the
advantages of the flexible syntax outweigh the disadvan-
tages. With over 100 active grammar rules the time
required for parsing and transformation has been
measured at 1.1 s on the MONADS-PC (a 0.5 MIPS
machine). This may seem a long time but considering the
time required to enter:

var_manager.assign_integer "i" (int_lib.add j 1)

in comparison with:

the overall gain is nevertheless clear. (Not to mention the
time required to consider what exactly must be entered in
the former case.)

The time for the transformation is partly accounted
for by the fact that the MONADS-PC hardware is over
10 years old. On modern hardware a time of some 40 ms
for the same number of rules could be expected. This
would then hardly be noticeable.

6. CONCLUSION AND FUTURE WORK

An object invocation language based on the concept of

THE COMPUTER JOURNAL, V O L . 3 8 , No. 3, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/3/181/359132 by guest on 10 April 2024

190 M . EVERED, A . SCHMOLITZKY AND M. K.OLLING

object-oriented language definition as described in this
paper can be extended flexibly to adapt to new user
domains and individual user preferences. Not only the
set of available commands, but also the notation for the
invocation of the commands can be tailored to a
particular user's needs at a particular time. The notation
to be used in invoking objects of a certain class is
described together with the rest of the class definition.
The notations understood by various classes are
combined with each other to define the command
language.

The implementation described in this paper demon-
strates that this approach is not only useful in theory but
is also realizable with sufficient efficiency to be accepted
by normal users. It has also shown that normal users are
capable of making use of the system to define appro-
priate commands for their own needs.

Further work must be done on handling errors in
input lines. The error messages produced currently,
although formally correct, are not particularly helpful.
The rule definitions could be extended to incorporate the
texts of error messages which should be output if the
parsing fails at a certain point.

Another interesting area of further research is the
possibility of transforming not only a user's input to the
system but also the system's output to the user, whether
this be results returned by an operation on an object, or
exceptions caused by inappropriate parameters. This
would conform to the aim of unifying command
languages and response languages into a single dialogue
language as proposed in, amongst others, Mac an
Airchinnigh (1986).

REFERENCES

ANSI (1983) The Programming Language Ada—Reference

Manual (ANSI/MIL-STD 1815A). American National
Standards Institute/Springer-Verlag, New York.

Balzert, H. (1988) Introduction to Software Ergonomics. De
Gruyter, Berlin.

Beetem, A. and Beetem, J. (1989) Introduction to the Galaxy
language. IEEE Software, May, 55-62.

Cardelli, L., Matthes, F. and Abadi, M. (1993) Extensible
grammars for language specialization in database program-
ming languages. In Proc. Database Programming Languages
Workshop. Springer-Verlag, New York

Davie, T. and Morrison, R. (1982) Recursive Descent
Compiling. Ellis Horwood, Chichester, UK.

Earley, J. (1970) An efficient context-free parsing algorithm.
Commun. ACM, 13, 94-102.

Evered, M. (1993) An Object-Oriented Approach to Language
Definition. Technical Report, University of Bremen.

Goldberg, A. and Robson, D. (1989) Smalltalk-80: The
Language. Addison-Wesley, Reading, MA.

Hitchens, M. (1989) The structure of a command language
interpreter. In Proc. 4th IFIP Working Conf. on User
Interfaces. North Holland, Amsterdam.

IBM (1966) IBM System/360 Operating System: Job Control
Language. Form C28-6539.

Keedy, J. L. and Thomson, J. V. (1986) Command interpreta-
tion and invocation in an information-hiding system. In
Hopper, K. and Newman, I. A. (eds), Foundation for Human-
Computer Communication. North Holland, Amsterdam.

Leavenworth, B. M. (1966) Syntax macros and extended
translation. Commun. ACM, 9, 790-793.

Mac an Airchinnigh, M. (1986) Responses—the weak part of
dialogues? In Hopper, K. and Newman, I. A. (eds),
Foundation for Human-Computer Communication. North-
Holland, Amsterdam.

Ritchie, D. M. and Thomson, K. (1974) The UNIX time-
sharing system. Commun. ACM, 17, 365-375.

Rosenberg, J. and Abramson, D. A. (1985) MONADS-PC: a
capability based workstation to support software engineer-
ing. In Proc. 18th Int. Conf. on Systems Sciences, pp. 515-522,
Hawaii.

Standish, T. A. (1975) Extensibility in language design. ACM
Sigplan Notices, July, 18-21.

Stroustrup, B. (1989) The C+ + Programming Language.
Addison-Wesley, Bonn.

APPENDIX A: AN EXAMPLE OF A CLASS DEFINITION

var_manager = class

function define_var (varname : string;

basetype : string;

logtype : string) : integer;

function delete_var (varname : string) : boolean;

procedure list (long : boolean);

function get_type (varname : string;

var basetype : string;

var logtype : string) : integer;

function assign_int (varname : string;

val : integer) : integer;

{syntax
COMMAND : / id / ' : ' logical_type basetype --> '#name.define_var " # 1 " " # 4 " " # 3 " '

I ' v l ' mode -->; #name.list #2'
I typeof / id / --> ' #name. get_type " # 2 " si s2; ?sl; ?s2'
I vrm' vrm_params j > #2
I assignment.

basetype : ' integer ' I 'boolean' I ' rea l ' I 'modcap' I 'string' .
logical_type : / id / '=' --> '#1 ' I .

THE COMPUTER JOURNAL, VOL. 38, No. 3, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/3/181/359132 by guest on 10 April 2024

A FLEXIBLE OBJECT INVOCATION LANGUAGE 191

mode : 'long' --> 'true' I 'short' --> 'false'
I --> 'true'.

vrm_params : /id/ --> '#name.delete_var "91"'

| vrm_params /id/ — > #1; #name.delete.var " # 2 " ' .

assignment : /id(string)/ ': = ' STRING --> '#name.assign_string " # 1 " #3'
I /id(integer)/ ': = ' INTEGER --> '#name.assign_int " # 1 " #3'
I /id(modcap)/ ': = ' MODCAP --> #name.assign_modcap " # 1 " #3'
I /id(boolean)/ ': = ' BOOLEAN --> #name.assign_bool " # 1 " #3'

}
end; { class var.manager }

APPENDIX B: THE SYNTAX OF THE MASK META-LANGUAGE

syntax_part :
syntax_rule :
head :
alternatives :
alternative :
production :
element :
literal :
nonterm :
private_nonterm :
publicnonterm :
ident_scan :
external_scan :
transformation :
transf_string :
transf_char :
special_char :
reference :
identifier :
uppercase_ident
lowercase_ident :
letter :
uppercase_char :
lowercase_char :
digit :
character :

: = 'syntax' { syntax_rule } .
:= head ':' alternatives '.' .
: = private_nonterm | public_nonterm .
:= alternative {'|' alternative } .
: = production ['-- > ' transformation] .
: = { element } .
: = literal | nonterm | ident_scan | external_scan .
: = " ' { character } " ' .
: = private_nonterm | public_nonterm .
: = lowercaseident .
: = uppercase ident .
: = '/id' ['(' identifier ')'] '/' .
:= '/' identifier '.' identifier '/' .
: = transf_string { transf_string } .
: = " ' { transf char | special char | reference } ' '
:= character except ('#', '/', '{'}') .
: = '/' character .
: = '#' digit | #'name' .
: = letter { letter | digit | '_' } .
: = uppercase_char { uppercase_char | digit | '_']
: = lowercase_char { lowercase_char | digit | '_' }
: = uppercase char | lowercase char .
:= 'A'.. Z' .
: = 'a' .. 'z' .
:= '0' . . ' 9 ' .
: = (anv ASCII character) .

THE COMPUTER JOURNAL, VOL.38, No. 3, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/3/181/359132 by guest on 10 April 2024

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/3/181/359132 by guest on 10 April 2024

