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We describe the design of a directory-based shared memory architecture on a hierarchical network of
hypercubes. The distributed directory scheme comprises two separate hierarchical networks for handling
cache requests and transfers. Further, the scheme assumes a single address space and each processing
element views the entire network as contiguous memory space. The size of individual directories stored at
each node of the network remains constant throughout the network. Although the size of the directory
increases with the network size, the architecture is scalable. The results of the analytical studies
demonstrate superior performance characteristics of our scheme compared with those of other schemes.
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1. INTRODUCTION
Recently, distributed shared memory systems have been
introduced to overcome some of the deficiencies of
message passing and shared memory systems. Message
passing systems have efficient communication networks
and are scalable. However, message passing computers
are hard to program and partitioning data in such
systems is very difficult. On the other hand, shared
memory systems are easy to program as they are based
on single address space global memory concept. Shared
memory systems suffer from very poor scalability.
Distributed shared memory systems incorporate positive
features of shared memory and message passing para-
digms, and at the same time overcome some of the
drawbacks of these systems. In other words the
distributed shared memory paradigm enables shared
memory view of a loosely coupled distributed memory
system. The DASH prototype (Lenoski et al., 1990)
developed at Stanford University and the K.SR-1
machine manufactured by Kendall Square Research
(Ramanathan and Oren, 1993) are examples of such
systems. The DASH prototype belongs to the non-
uniform memory access (NUMA) class and makes use of
the directory-based protocol for maintaining cache
coherence, whereas the KSR-1 employs the cache-only
memory access (COMA) scheme (Hwang, 1993).

The DASH is a high-performance machine with single
address space and coherent caches (Lenoski et al., 1992).
In the DASH machine reduced memory latency is
achieved by caching of memory including shared
writable data (Lenoski et al., 1990). Lenoski et al.
(1992) have clearly identified the merits of directory-
based cache-coherence schemes as against snooping
schemes. The DASH architecture consists of a 2-D
mesh network of clusters; each cluster consists of a set
of processor elements (PEs) sharing a common

communication channel. The cache coherence protocol
is based on a four-level memory hierarchy protocol.
Lenoski et al. (1992) point out that even though the
above topology is employed for the DASH prototype,
the concepts used in DASH are topology independent. In
this paper we present an improvised network architec-
ture for implementing a directory-based NUMA dis-
tributed shared memory system. The network
architecture employed in the proposed scheme is a
variation of the extended hypercube (EH) architecture
presented in Kumar and Patnaik (1992).

In recent years the hypercube has been one of the most
popular topologies employed in building parallel com-
puting systems as it enjoys desirable properties such as
logarithmic diameter and connectivity, fault-tolerance,
and good embedding capabilities. Several variations of
the hypercube topology have been proposed in recent
years to overcome some of its drawbacks. The EH
proposed by Kumar and Patnaik (1992) is one such
architecture which combines positive features of hyper-
cube and n-ary tree topologies. The EH was proposed as
a candidate architecture for building large-scale message
passing systems as it has a hierarchical, modular and
recursive structure, and possesses such good topological
properties as constant connectivity, low diameter and
low cost factor. The EH architecture consists of two
types of nodes: processor elements (PEs) at level zero and
network controllers (NCs) at all higher levels. In the past,
the NCs of the EH have been successfully employed to
perform such house keeping jobs as message passing,
parallel I/O, algorithmic fault detection, task scheduling
and load balancing (Kumar, 1992). Recent studies have
revealed that the NCs can be successfully employed in
implementing an efficient directory-based NUMA
system based on a variation of the EH architecture.
The novel feature of such a scheme is the use of dedicated
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208 M. J. KUMAR et al.

nodes (NCs) for performing directory maintenance and
block transfer operations so that the PEs can concentrate
on executing the computational tasks of the application
problem. The high bandwidth network of the recently
proposed Stanford FLASH multiprocessor is expected
to consist of a large number of PEs (Kuskin et al., 1994).
Each PE node of the FLASH is augmented by a novel
custom controller called MAGIC (Memory And General
Interconnect Controller). The MAGIC architecture
facilitates high-speed data transfers for intra-node and
inter-node message passing, and contains a specialized
data path that moves data in a pipelined fashion and
enables the PE to update the protocol data and the
associated data transfers in parallel. The FLASH
prototype uses a dynamic allocation to maintain cache
coherence. In effect the FLASH uses a NC to implement
a directory-based NUMA system.

In this paper we describe implementation of a
directory scheme in a hierarchical network to enable
shared memory view of a message passing system. We
also show that the size of each subdirectory is the same
regardless of the size of the network. The paper is
organized as follows. The second section describes a
variation of the EH architecture that is used in the
proposed scheme. Distributed directory control and
cache coherence mechanisms are presented in Section
3. A comparison of our scheme with those of other
systems is presented in Section 4. Section 5 concludes the
paper with a discussion on the proposed work.

2. THE EH ARCHITECTURE

2.1. Topology of the EH and EHT

The EH architecture consists of two types of nodes, the
PEs and the NCs. The basic module of the EH,
represented by EH(&,1) consists of a /c-cube of PEs at
level zero and one NC at level one. Each PE of the fc-cube
is connected to the NC by a dedicated link. In general, an

02

FIGURE 1. Basic module of the EHT [EHT(3,1)].

FIGURE 2. EHT(3,2).

EH(k,l) is constructed by interconnecting 2k number of
EH(Jfc,/- l)s such that the NCs (of level / - 1) of the
EH(k,l- l)s and the NC of level / form an EH(*,Q. For
the implementation of the distributed directory scheme
we make use of a variation of the EH architecture and
represent it as EHT (Kumar, 1992). The basic module of
the EHT consists of a k-cube of PEs and two NCs as
shown in Figure 1. The 2k number of PEs are at the
zeroth level of hierarchy and the two NCs are at the first
level of hierarchy. An EHT with /+ 1 levels of hierarchy
is represented by EHT(fc,/). Each PE (child node) is
connected to two NCs (parent nodes) by dedicated links.
An EHT(&,1) can be extended to an EHT(&,2) by
interconnecting 2k number of EH(&,l)s as shown in
Figure 2. In general, an EHT(A:,/) can be constructed by
interconnecting 2k number of EHT(k,l- l)s. The EH (kj)
is a single rooted 2*-ary tree of height / with additional
horizontal links. Every node in an EH(k,l) is connected
to its neighbours: k siblings at level j (0 ^ j < I),
2k children at level (/-!)> a n d one parent at level
(y+1). Topologically, the EHJ(k,l) differs from the
EH(k,l). The EHT(&,/) is a 2-rooted 2*-ary tree of height
/ with additional horizontal links. Every node at level j
(0 < j < /) in an EHT(k,l) is connected to its neighbours:
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H I E R A R C H I C A L DIRECTORY 209

k siblings at level j , 2k children at level (J — 1), and one
parent at level (J+ 1). Every PE (node at level 0) is
connected to two parent nodes and k sibling nodes. An
EHT(fcJ) for j < I, is part of an EHT(A:,/) and an
EHl{k,j) represents the rest of the EHT(£,/). The
EHT(&,y) consists of two complementary NCs at level j
and their descendants, whereas the EWY{k,j) consists of
all those NCs and PEs which are not in the EHT(k,j).
The NCs reside at hierarchical levels one and above,
whereas the PEs reside at level zero. Topological and
architectural properties of the EHT(k,l) are similar to those
of the EH(A:,/) discussed in Kumar and Patnaik (1992).

2.2. Addressing the nodes of the EHT

The PEs of the EHT(fc,/) are represented by /r-digit
numbers. Each digit is a modulo 2k number. In the
EHT(A:,1), the NCs are addressed by 0 and 0D and the
PEs are addressed by two-digit numbers: each digit is a
modulo 2k number. The first digit indicates the address
of the parent node and the second digit corresponds to
the position of the PE in the A:-cube; the addresses of all
pairs of neighbouring PEs differ in one digit position. In
general the nodes of a k-cube at level j are represented by
an (1+ 1 -y)-digit address, where O^y'^ /. Thus a node
at level j is represented by D/D/_! .. . Dy, and a node at
level 0 is represented by D/D/_, . . . D ^ Q . It is to be
noted that there are two NCs with the same address for
all levels j > 0; D/D,_ x . . . D7 and (D/D;_ iD,_2 • • • D/)D

or NC and NCD.

3. DISTRIBUTED DIRECTORY SCHEME FOR
THE EHT

Each PE of the proposed architecture comprises a
processing unit, cache and memory. Any state of the
art microprocessor could be used as the processing unit.
In the EHT there are two hierarchical networks: one
network is called the request network and the other is
called the transfer network. An NC at level j of the
request network is represented by (D/D/^D.. DJ)D.
Every NC of the request network maintains a directory
of all cache block transfers related to its descendants; this
has motivated us to represent all the NCs of the request
network with the superscript 'D'. An NC at level y of the
transfer network is represented by D/D/_ j ... Dy and it
performs all cache block transfers migrating to/from its

Request Network

2-Cube of NCDs

J

CD

1

C

X

2k#J)X

PE address

PE address

PE address

PE address

Block address

Block address

Block address

Block address

Status

Status

Status

Status

-t'(Ul) - log/M/P) -

Transfer Network

FIGURE 3. The request and transfer networks for an EH(2,2).

FIGURE 4. Format of cache directory at an NC of level/

descendants. The request and transfer networks for an
EHT(2,2) are shown in Figure 3. The use of separate
networks for transfer and request enhances the perfor-
mance of the system. In Section 4 we present a qualitative
analysis of the proposed network to demonstrate the
positive features of the network.

3.1. Directory configuration

The entire memory area is treated as a single contiguous
memory by each PE in the system. Physically, each PE of
the EHT(fc,/) consists of a processor, memory and cache.
Cache directories are maintained at all levels of
hierarchy. Each PE maintains two directories: one
maintains information about blocks migrating into the
PE and another maintains information about blocks
migrating out of the PE. These directories are called
CDin and CDout, respectively. Each NCD like the PEs
maintains two cache directories: one for incoming and
another for outgoing blocks represented by CDin and
CDOM, respectively (see Figure 4).

The CDout of an NCD at level j stores information
about blocks migrating from each of its 2k*j descendent
PEs to one or more PEs in the EHT(A:,./). The PE
address in this case (Figure 4) indicates the foreign PE
address this block is migrating to. The maximum
required size of CDout is determined by the possibility
that all cache blocks of EHT(&, j) have migrated from
EHT (kj). Hence the size of this directory is equal to the
sum of all the cache sizes (number of blocks) in the
EHT(k,j). Each cache block in the system not only
possesses an unique address, but also has an unique entry
in each directory (CDjn or CDout). As a result it takes
0(1) time to check the status of a block in any directory.

The CDin of an NCD at level j stores information
about blocks migrating from the PEs of the EHT(A:, j) to
one or more of the NCD's descendent PEs. The PE
address in this case(Figure 4) indicates the local PE that
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210 M. J. KUMAR el al.

the cache block has migrated to. The maximum size of
this directory is determined by the case when all cache
blocks of the EHT(£,y) have migrated from EHT(A:,y).
As explained earlier it takes 0(1) time to check the status
of a block in any CDin as well.

The CDin (CDout) of an NC of level 1 is the
concatenation of the CDins (CDouts) of all its child
PEs. Each NCD at level 1 serves 2k children. However,
the NCD of level 1 accepts one request at a time from
each child PE. In general, the NC at any level cannot be
pre-empted when it is servicing a request. At any given
time the number of requests waiting to be serviced at any
NCD does not exceed 2k. In other words, a PE can make
one request at a time. This means that while the request
can be blocked at the PE level, there is no further propa-
gation of this blocking through the hierarchy of the EHT.
This can be maintained by a simple flag called the request
flag at the PE level. When a PE is required to make a
request with its parent NCD, it checks the request flag; a set
flag indicates a pending request. If the flag is not set, the PE
makes the request and sets the flag. The flag is reset upon
receipt of an acknowledgement from the parent NCD at
level 1. The PE maintains a queue of the requests.

Division of the directory into CDin and CDout reduces
the search area for each directory update. In the
remainder of this section we analyse the properties of
our directory scheme. The main memory capacity of each
PE is assumed to be M bytes, which is logically divided
into P blocks. The address of a given block in main
memory of a PE (see Figure 4) is given by:

(block)page_address = D/D/_ ,D/_2D/_3. . . DQD^,

where each D, (0 ̂  i < /) corresponds to the address of the
NCD at level /, and is a k-bit mod 2k number. Dp is the
block number in the main memory and is log2(M/P) bits
long. Thus, a block address at level 0 is represented by
{k(l+ 1) + log2(M/P)} bits. If the status of a cache block
is represented by m bits then an arbitrary directory entry
at any PE in EHT(A:,/) is composed of

Q = {k(l + 1) + log2(M/P) + m) bytes.

The status keeps track of the status of the block with
respect to read, write or validity. The size of the directory
to address the cache of a PE is given by XQ, where X is
the number of blocks in the cache. Prior to modifying a
block, the active PE initiates a block invalidation
command which is broadcast by the parent NCD to
all other PEs holding a copy of that block. Block invali-
dation involves changing the status of that block
in all relevant directories. As opposed to the global shared
memory model, individual blocks in the memory can be
copied, read and written, but can never be relocated. An
active PE requiring access to a block of memory, must
copy the block into its cache. In section four we discuss the
usage of the directory in more detail.

We use the following notations in the rest of this paper.

PEa PE that makes the request (to
read, write or copy)

NCactive, NCD
ac t ive parent nodes of PEactive

PEhost PE that owns the requested block
NCh0St, NCD

h o s t parent nodes of PEhost

PEdirty remote PE containing the dirty
block

NCdirty, NCD
d i r t y parent nodes of PEdir ty

Note: NCX is in the transfer net and NCD
X is in the

request net.

3.2. Directory properties

In this section, we outline some properties of the
directory architecture proposed. We provide proof of
the fact that the distance travelled by a request message
and the corresponding cache block is O(k +1).

THEOREM 1. The maximum number of hops a request
message travels is {k + 2(l — 1)}

Proof The request message travels from a PEactive to
an NCnost, which is the parent node of PEhost. The
distance between PEactive and PEhost is always greater
than the distance between PEactive and parent of PEhost.
The maximum distance between any pair of PEs in the
EH(fc,/) is given by {k + 2(1 - 1)}, the diameter of the EH,
hence the proof of the theorem. •

COROLLARY 1. The maximum number of hops a
block travels is given by O(k + 2(1 - 1))

Proof. The maximum distance a block travels is
equal to the diameter of the EH. •

COROLLARY 2. The time taken to perform a block
invalidation is also given by O(k + 2(1— 1))

Proof. Complexity of a broadcast operation is given
by the diameter of the network. •

THEOREM 2. Given EHT(k.l), for every i and j ,
1 ^ i < /, 1 < j ^ / the size of the cache directory at
level i, is the same as the size of the cache directory at
level).

Proof. The maximum size of a directory in an NC D

is the sum of the sizes of CDin and CDo u t . We consider
the sizes of CDin and CDo u t separately, and then we will
compute the sum. •

The size of the directory is the same for all NCs. This is
proved as follows.

3.2.1. Directory of incoming blocks (CDin)

The maximum size of the directory for an NCD at level 1
to hold information on incoming blocks corresponds to
the case when every cache block in the local cluster has
migrated from elsewhere. For a cluster at level 0
containing 2k PEs, each of which has a cache directory
of size XQ, the directory size is given by

[2kXQ) bytes
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HIERARCHICAL D I R E C T O R Y 211

TABLE 1. Directory of sizes at different hierarchical levels

Level CD* (bytes) CDOUI (bytes)

128K
1M
8M

8064 K
7M

nil

In general, the directory size for an NC D at an
arbitrary level j in the hierarchy is given by

(2k'jXQ) (1)

3.2.2. Directory of outgoing blocks (CDout)

The maximum size of the directory at an NCD at level 1 to
hold information on outgoing blocks corresponds to the
case when every cache block external to this cluster has
migrated from this cluster. Thus, for an EHT(fc,/), the
number of blocks external to the current cluster is given by

(2k'! - 2k)

The size of the directory containing addresses of 2k ' - 2k

cache blocks is given by

(2**' - 2k)XQ bytes

Thus, the size of the directory at level j for the outgoing
blocks is given by

(2**' - 2k'J)XQ bytes (2)

The size of CDin of a PE is XQ bytes and the size of
CDo u t is PQ bytes. For example if each PE has 16 Mbytes
of memory, and each memory block is 128 bytes, CDo u t

will be 128 Kbytes. In Table 1 the sizes of the NC D

directories at successive hierarchical levels of an EH(3,3)
are shown when the size of each cache is 512 K bytes.

3.2.3. Total directory size

The total directory size is thus given by (1) and (2) as

2k'JXQ + (2k'' - 2kj)XQ = 2k''XQ (3)

This result is independent of j , hence it holds for an
arbitrary j , 1 <y </ .

The size of CDin for NC D at level j is greater than the
size of CDin for NC D at l e v e l ; - 1,1 < j ^ / and size
CDo u t for NC D at level y is greater than the size of CDo u t

for NC D at level j+l. However, the total size of the
directory is the same for all NCs. The size of each

directory increases with the network. For example, if an
EH(k,l) is extended to an EH(A:,/+ 1), the size of each
directory increases 2^-fold.

Ghose and Simhadri (1991) discuss a MIN (multistage
interconnection network)-based scheme that uses switch
directories to maintain cache coherence. In a MIN
employing switches, each PE has (m — 1) sibling PEs
connected by the switch. In contrast, the PEs of the
EHT(fc,/) are directly connected to k neighbouring PEs.
Further more, the EHT employs two separate networks for
servicing requests and performing transfers. Andrews et al.
(1991) propose notification and multicast networks for
Synchronization and Coherence. Their scheme assumes use
of networks as processor-memory interconnects and hence
is differs from our scheme and those of Hagersten et al.
(1992), Kuskin et al. (1994) and Lenoski et al. (1992), where
the processor and its memory reside on the same node.

4. USING THE DIRECTORY

A PE requiring to read or write a block of memory needs
to perform different steps depending on where the original
block is stored and where its copies are being held.

To demonstrate the use of the directory we consider
the following three cases:

1. PEactive wants to read a block which resides in its own
memory.

2. PEactjve wants to write to a block which resides in its
own memory.

3. PEactjve wants to copy a block from PEhost; PEactive
and PEhost may or may not be in the same cluster.

4.1. Case 1: PEactive wants to read a block b which
resides in its own memory

In this case, PEactjve and PEhost a r e the same. In our
scheme, only valid blocks are retained in the caches. On a
cache hit, it is not required to check the block's status. If
the required block is not in its cache, that is on a cache
fault, the PEactive probes its CDout to see if the block has
migrated out and if so check's the block's current status.
If the block has neither migrated nor is dirty, the PEactiVe
reads the block from its memory. On the other hand, if
the block has migrated out to a remote PE and is dirty,
then the NCD

ac,ive in conjunction with the NCD
dirty

initiates transfer of the block. The following steps are
carried out:

if cache fault
PEactive probes i t s CDout to check the status of block b

if b has migrated out and i s dir ty then {
NCD

active requests TA(fAiny to send a copy of block b
NCactive copies b from NC d l r t y

PEactive copies b from NCactive

}
PEactive copies b from memory to cache

read b from cache
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212 M. J. KUMAR et al.

4.2. Case 2: PEacdve wants to write to a block b which
resides in its own memory

In this case, PEactive copies the block into its cache after
following the procedure for reading a block as outlined in
Case 1. Then NCD

active invalidates the status of this block
in its directory and requests all remote NCDs to which this
block has migrated to invalidate the block's status. The
PEactiVe then sets a semaphore bit to lock the block prior to
writing and releases the semaphore after write operation is
completed. The PEactive then performs the write operation
on this block. This process is detailed below:

Block copy from a remote PE is performed as
follows:

4. The PEactive sends a request to its parent NCD at level 1.
5. The NCD at level 1 sends a request to one of its

siblings or its parent; this is repeated till the request
reaches the parent NCD of the PEhost.

6. The PEhost transfers the block to its parent NC which in
turn transfers the block to one of its siblings or children;
this is repeated until the block reaches the requesting
PE.

if cache fault
PEactiva probes i t s CDout to check the status of block b

if b has migrated out and is dirty then {
NCD

active requests NCD
dirty to send a copy of block b

NCactive copies b from NC d i r t y

PEactive copies b from NCactive

}
PEactive copies b from memory to cache
PEactive issues block invalidation command to NCDa<rtlve
NCD

active invalidates all entries of block b in its directory
NCD

actlve requests all remote NC
Ds holding copy of block b to invalidate its status

PEactive locks the semaphore and performs write on b
PEactive releases the semaphore.

4.3. Case 3: PEactjve wants to read/write a block b
whose address is in a remote PEhost

When copying from its own cluster (but another PE's
memory), the following block transfer procedure is
carried out:

1. PEactive sends a request to its parent NCD.
2. NCD sends a command to the PEhost, to initiate the

block copy (the NCD may also give the command
without being prompted by the receiving PE).

3. The PEhost transfers the block to PEactive by employing
the PE-to-PE links of the A>cube at the zeroth level.
(Note: if the size of the network is restricted to only two
levels, block transfer among non-neighbouring PEs is
performed by using the PE-NC-PE path).

When a PEactive wants to read or write a block whose
address is in a remote PE and not currently in its cache, it
probes through its NCD

actjve to check if this block
is available in the active cluster. If the block is available
in the active cluster, and is not dirty, the block can
be transferred to PEactjVe- If the block is not available in
the active cluster at level 1, the request to find the block
is transmitted to level /— 1 and once again the block
can be transferred to PEactive if the block is not dirty. If
the block is found at any level, but is found to be dirty,
then the block must be transferred from the remote PE.
If so, the remote PE, through its NCD requests transfer
of the dirty block both back to itself, and to the PEactiVe
that is requesting this block. This process is described
below:

if cache fault
PEactive requests NC âctive t o check b ' s status in i t s CDin
if b i s available on a sibling PE and not dirty then

NCD
active directs the sibling PE to send a copy of b to PE active via PE-to-PE links

else {
NCD

active requests NC^st to send a copy of b
NCD

host checks i t s directory CDout

if b has migrated out and is dirty
D ^NCD

hOst requests to send a copy of the updated block to PEhO3ty
NChost sends a copy of block b to the PEactiVe
>

PEactivo copies block b to i t s cache
if i t i s a write operation {

NC âctive invalidates a l l local directory entries of this block, and requests a l l NC11 s with an
entry for b (including NCD

hoat) to invalidate b's status.
PEactive locks the semaphore and performs write
PEactive releases the semaphore.
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FIGURE 5. (a) Read of dirty remote cache.

The schematic diagrams shown in Figure 5 illustrates the
operations carried out for reading remote dirty cache
block and writing into a shared remote cache block.

The protocol mechanisms employed in the NUMA-
based scheme presented in this paper is different from
those used in COMA-based architectures such as the
Data Diffusion Machine (DDM) proposed by Hagersten
et al. (1992). The DDM employs a hierarchical network
structure based on the COMA memory organization
(Hagersten et al., 1992). Due to lack of fixed home
locations, additional hardware is used to keep track of
data in the machine. The leaf nodes consist of PEs and
attraction memories, whereas the higher level nodes
consist of directories only.

However, both these architectures employ hierarchical
directories. In the DDM machine, the directory size
increases with the hierarchical level and the higher level
memories are expensive and slow. In contrast, all NCs
have directories of equal size and a typical search takes
0(1) time on each directory of our scheme. However, a
typical read (or write) operation of our scheme requires
the request message to be directed to the remote PE via
the host PE, whereas in the DDM as there is no such
thing as host PE, the request message is transmitted
directly to the shared PE. In addition, in our scheme
transfer of cache blocks (or items) involve the path via

the host PE, whereas in the DDM these transfers are
from the shared PE to the requesting PE via the least
common ancestor node.

5. ASSESSING THE LOAD AT EACH LEVEL

In this section we estimate the rate of service that is
required at an NCD of level j in order to service the
requests coming in from the rest of the network.
Consider the arrivals from the siblings and children at
the NCD at level /, the root of the network in a EHT(fc,/),
to be represented as a/ (Figure 6). At the root, there are
no siblings from which requests arrive. Let a.j be the
arrival rate of requests at the NCD of level j . We can
assume that this traffic will on a statistical basis be
equally divided among all its 2k children and k siblings.
That is a,l(2k + k) of the arrivals at NCD of level / will be
directed towards each NCD (or PE) of level / - 1. At the
NCD of level / — 1, the total arrivals is given by (a//
(2k + k) + a/_i). By proceeding in this manner, we can
derive the arrival rate at the NCD of level 1 as (at + a2/
(2k + k)+ ... +a,l(2k + k)'- 1). If m were to represent
the rate of service of requests at each PE then

li = (a, /(2* + *) + a, /(2* + kf ... + a,/(2k + k)'~'

(4)
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ACTIVE

1. Write Request to
Home

3. Copy Requested
Block to Active PE

2. Block Invalidation to all PEs

with shared copy of Block

HOST

PE,
host

lOSfc

'•••/

N/ V
i

V

/ \

host

FIGURE 5. (b) Write to shared remote cache block.

<V(2 <*;

k siblings

2k children

(a + a,/(2k +k)+

FIGURE 6. Arrival of requests at different levels.
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TABLE 2

(12/U)a
(133/121)Q

TABLE 3

TABLE 4.

Scheme

DASH
EH-Based

Communications steps for typical operations such as
memory read and block invalidation

64PEs

9a

5

512 PEs

16"
7

4096 PEs

28°
9

a 4 PEs per cluster and a 4 x 4 mesh of clusters.
b 8 PEs of per cluster and a 4 x 4 x 4 mesh of clusters.
c 8 PEs per cluster and an 8 x 8 x 8 mesh of clusters

7/6a
12/lla
21/20a

If, a = a}=a2 = ...ah M = <*(l - (1/(2* + k))'~1)/
( l - ( l / ( 2 * + *))). When / is large, /i = a ( l / ( l -
(l/(2k + k))) To consider the service rate, we examine
equation (1), for k = 3. Then, for different values of / we
have, Table 2 demonstrates the linear relationship
between /i and a for varying hierarchical levels /.
Similarly, for 1=3, Table 3 shows the relationship
between \i and a for different k.

From Tables 2 and 3 it is clear that the service rate /z is
dependent on the arrival rate and is independent of the
size of the network. Furthermore, the service rate is
approximately equal to the arrival rate.

6. COMPARISON WITH DASH DISTRIBUTED
SHARED MEMORY

The DASH distributed memory prototype is constructed
in four levels (Lenoski et al., 1993):

1. The processor level.
2. The local cluster.
3. The home cluster level.
4. The remote cluster level.

Two aspects of the shared memory architecture in the
DASH architecture and our scheme on the EH
architecture are compared: memory bandwidth and the
scalability of directory costs.

In the proposed scheme, as in the DASH system, there
are two underlying networks: one for transferring the
status and requests from point-to-point and another for
transferring the blocks within the network. In the DASH
architecture, this is possible at the local level by
distributing physical memory among the clusters, and
at the global level by having a scalable connectable
network and point-to-point messages among the clus-
ters. In the EHT architecture, the total memory
bandwidth scales linearly with the number of processors
as at a local level the physical memory is distributed in a
hierarchy of EHs. On a global level, like the DASH
architecture, the hierarchy of the EH lends itself to a
scalable connectable network and the communication
between remote points is also point-to-point between
NCs. The topology of the network in effect determines

Scheme

DASH
EH-Based

TABLE 5. Total

512 PEs

16Gbytes
584 Mbytes

directory sizes

4KPEs

1 Tbyte
36.5625 Gbytes

the number of communication steps required to perform
operations such as block invalidation and block trans-
fers. It is desirable to have a small network diameter to
reduce the time taken for performing these operations.
As discussed in Section 2, the EH has a small diameter as
compared with that of the DASH prototype whose
topology is a combination of the bus and mesh
topologies. In Table 4 we compare the maximum
number of communication steps required to perform
typical broadcast or block copy operations on the DASH
prototype and the EH-based scheme proposed by us.

In the DASH architecture, the directory memory
required is given by C2 M/L, where C is the number of
clusters, M is the number of bits per cluster and L is the
cache line size in bits. The growth of the directory
information is proportional to C/L. Although for small
numbers of clusters, this overhead is not significant, for
large number of clusters there is a significant overhead.

In the EH architecture, for a given EHT(k,l), the size
of the directory at any network controller in the
hierarchy is given by 2k*lXQ. Thus, if the dimension /
of the hypercube is increased to say /+ 1, the directory
increases by a factor of 21. In Table 4 we compare the
total directory sizes in the DASH prototype with those
our scheme. We assume that each PE has a memory of
size 16 Mbytes and cache of size 128 Kbytes. Further, the
cache consists of 32 byte blocks or lines. We compare
directory sizes for two cases:

1. DASH with 512 PEs, 64 clusters, eight PEs per cluster
and an EH(3,3) with 512 PEs.

2. DASH with 4096 PEs, 512 clusters, eight PEs per
cluster and an EH(3,4) with 4096 PEs.

Directory sizes for the above two cases are shown in
Table 5.

7. CONCLUSION

In this paper we examine the design of a directory scheme
for maintaining cache coherence in a distributed shared
memory system based on the hierarchical network of
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hypercubes. The architecture comprises two networks:
one for request and one for transfers. We show that the
entire shared memory can be viewed as a single address
space, and that the directories required to maintain
information of blocks migrating in and out of a cluster
are of constant size. This distributed shared memory is
compared with the DASH distributed memory with
respect to memory bandwidth and scalability of direc-
tory cost. Our comparisons indicate that the proposed
scheme requires a small memory space for directories
and communication efficient. Further, we have com-
pleted the design aspects of a prototype system using
Intel's 80 x 86 processors. The proposed scheme assumes
one outstanding request per processor, whereas the
DASH can support multiple requests per processor. It is
planned to carry out a number of simulation studies of
the proposed scheme and evaluate its performance while
executing applications problems. The effect of multiple
requests on the overall performance of the system needs
to be evaluated. We are in the process of carrying out a
simulation study of the proposed architecture.
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