The ‘Cross’ Rectangle Intersection Problem

2

V. KAPELIOSI, G. PANAGOPOULOUI’Z, G. PapamicHAIL!, S. SIRMAKESSIS"?, AND
A. Tsakaripis'?

' Department of Computer Engineering and Informatics, University of Patras, 26500 Patras, Greece
2Computer Technology Institute, PO Box 1122, 26110, Greece
Email: panag@cti.gr

In this paper we present a solution for a special case of the general rectangle intersection problem that has
not been previously considered as a different case. This case, named the ‘cross’ intersection case, reports
the set of these iso-oriented rectangles that intersect a query rectangle but do not enclose it and do not
have one of their vertices inside it. We present solutions for unrestricted and restricted universe (grid) for
the R? space. In the case of unrestricted d-dimensional space, the problem is solved in time
O(log? 3 nloglogn + K) using O(nlog?3n) space, where n is the number of rectangles and K is the size of
the answer. In the case of restricted universe the same problem can be solved in O(log" ~1M+ K) time and
O(n\/Tog M** %) space, where M is the upper limit of the grid coordinates. Update operation in the
dynamized version of the problem for the unrestricted and grid case is performed in 0(log2"'2n) and

O(logd‘lM) time, respectively.

1. INTRODUCTION

The rectangle intersection problem has been tackled by
many scientists under various considerations, as it is one
of the most common problems in computational
geometry. With the term rectangle intersection probiem
in the plane, we mean the problem of determining the
subset of a set of n iso-oriented rectangles that intersect a
given query rectangle Q. Edelsbrunner and Maurer
(1981) presented a solution to the general rectangle
intersection problem with space O(nlog?n) [following
Knuth in (Knuth, 1976) a function will be said to be O(f)
iff it is no more than proportional to f, Q(f) iff it is at
least proportional to f and ©(f) iff it is both (f) and
O(f) (logn stands for log,n)] and time O(log?~'n + K),
where K is the size of the answer and d is the dimension of
space, using layered structures. In a dynamic environ-
ment, the above time is increased to O(log’n+ K).
Moreover, they also described how their solution can
apply to the determination of all intersecting pairs of a
given set of orthogonal objects. In their work, Edels-
brunner and Maurer adopted a unified approach for
orthogonal intersection searching which can be applied
to rectangle intersection searching particularly. Though,
the method proposed can not be applied to give answers
in special cases of intersection, such as rectangle
containment or enclosure.

Furthermore, Lee and Wong (1981) have solved the
intersection problem in O(logM'ln + K) time and
O(n log?®~'n) space when all inputs are not known
before the preprocessing. They also gave a unified
approach which solves the same problem when all
inputs are known at preprocessing stage, in
O(nlogn+ nlog?~3n + K) time. Both results hold for
the containment and edge intersection problems as they
stated in Lee and Wong (1981).

Correspondence to S. Sirmakessis

Both of these works solve the problem without
dividing it into distinct subcases. However, individual
problems that are actually parts of the rectangle
intersection problem, such as rectangle containment or
enclosure, are of special interest in computational
geometry. The solutions of the individual cases of
rectangle intersection are usually more complex and
have worst time bounds than the general case, since the
special characteristics of each distinct case (which are not
crucial in the general case) should be now taken under
consideration and handled separately. Taking advantage
of known results in the two particular cases, we can also
use them in order to solve a part of the general rectangle
intersection problem. Moving in this direction we can
divide the intersection problem into three different
subcases.

The first case is the problem of determining the
rectangles that have one or more of their vertices
included in the query rectangle (rectangle contain-
ment). This case has been solved in d-dimensions using
O(log®n+ K) query time and O(nlogd_ln) space executing
a two-dimensional range search (Willard, 1985).

The second case is the problem of determining the
rectangles that enclose the query rectangle (rectangle
enclosure). This particular case has been solved by
Bistiolas et al. (1993) using 0(log2d"n + K) query time
and O(nlog??~2n) space (dynamic version).

The third case is the problem of determining the
rectangles that intersect the query, but do not belong to
the solutions of the cases previously described. In other
words, the answer of this case-query are those rectangles
that do belong to the overall solution of the rectangle
intersection problem, but are excluded by the solutions
of the other two cases. This particular case has not been
previously considered as an individual problem and no
known results have been presented. This case of
intersection is of great importance in VLSI design and
testing for intersected layers of silicon (testing for

THE COMPUTER JOURNAL,

VoL. 38, No.3, 1995

¥20z 14dy 60 U0 1senb Aq L91L6GE//2Z/E/8E/e101ME/|Ulod/ W00 dno olwepeoe//:sdiy wolj papeojumoq

228 V. KAPELIOS et al.

FIGURE 1. A curve intersection in the BSPR tree.

contacts of silicon). Moreover, this intersection can be
found important for geographical information systems.
For example, the BSPR tree (Burton, 1977), used to
represent curves for GIS, answers curve intersection
queries by transforming them to intersections of
rectangles. More precisely, the BSPR tree stores curves
as polygonal lines by using approximations based on
rectangles (referred to as section rectangles). In the case
where we want to check whether or not two curves
intersect, we have to compute one clear intersection
between their associated section rectangles. A clear
intersection is defined as the case where two parallel
edges of the first section rectangle intersect with the two
parallel edges of the other rectangle (see Figure 1). For
more details of the problem refer to Burton (1977).

We name this case the ‘cross’ intersection case. This
name is due to the plane figure which is created by a
rectangle of the solution and the query rectangle (see
Figure 2).

More formally, the rectangles which belong to the set
of answers are those whose horizontal (vertical) sides
enclose the corresponding sides of the query and at least
one of their vertical (horizontal) sides is enclosed by the
corresponding sides of the query (see Figure 2, instances
1-3 and 4-6). The problem described above is solved,
using a 2-fold structure in O(log?n) time and O(nlogn)
space.

In this paper we present a solution to the cross
intersection problem for unrestricted and restricted
universes in d-dimensional space. This approach solves
the on-line problem (meaning that we find the set of
rectangles that intersect a query one) in time
0(log2d‘3nloglogn+K) using O(n logw“3 n) space in

E
=

FIGURE 2. The query rectangle is shadowed.

N
X 3

B

LSS ISIIAY.,

SSSLSSSS LSS |

(a) (b)

FIGURE 3. Two similar cases for the solution of Edelsbrunner and
Maurer.

the unrestricted universe, where n is the number of
rectangles and K the size of the answer. In the case of a
restricted universe the same problem can be solved in
O(log?~' M + K) time and O(ny/Tog M2d_3) space, where
M is the upper limit of the grid coordinates. The update
operation in the dynamized version of the problem for
the unrestricted and grid case is performed in O(log?~2n)
and 0(logd'1M) time, respectively. The solution of Lee
and Wong (1981), applied in the cross intersection case,
gives worse results for the time and space bounds in an
unrestricted universe than our solution and no reference
is done for the restricted universe.

Our result is different from the result of Edelsbrunner
and Maurer (1981). They have presented a unified way to
deal with intersection and enclosure without considering
them as separate problems. They approach every
intersection in a common way without knowing what
kind of intersection occurs. For example, using the
solution of Edelsbrunner and Maurer the two cases
presented in Figure 3 are treated similarly. If someone
wants to report only rectangles that have a cross
intersection (perhaps in VLSI design and testing) which
is the case (b) of Figure 3, he should execute a more
complicated query than the solution described in
Edelsbrunner and Maurer (1981). The solution of
Edelsbrunner and Maurer cannot report only cross
intersections since this case is more complex than the
cases presented in Edelsbrunner and Maurer (1981).
Instead of this, the results presented in this paper can be
used. That is the reason why the time and space bounds
of the cross intersection are worse than the bounds in
Edelsbrunner and Maurer (1981). Moreover the equiva-
lent problem for the grid case is not mentioned in their
work. Our solution can be used in this area.

This paper is organized as follows. Section 2 briefly
presents some known data structures used in our
solution. Section 3 introduces the basic 2-fold structure
which answers the cross intersection query in arbitrary
space. Section 4 introduces the corresponding two-
layered structure which answers the same query on a
grid. Problems, appearing in the appropriate combina-
tion of the various basic structures, are also tackled.
Section 5 shows how these structures can be modified in
order to answer the query in a dynamic environment.
Finally, Section 6 summarizes the results of this paper.

2. PRELIMINARIES

This section briefly reviews the major outlines of the data
structures used in our method. The first structure is the

THe COMPUTER JOURNAL,

VoL. 38, No.3, 1995

¥20z 14dy 60 U0 1senb Aq L91L6GE//2Z/E/8E/e101ME/|Ulod/ W00 dno olwepeoe//:sdiy wolj papeojumoq

CROSS RECTANGLE INTERSECTION 229

priority-search tree introduced by McCreight (1985). It is
a balanced binary tree used for representing a dynamic
set D of ordered pairs [x, y] over the set 0,1,...,k — 1 of
integers and it supports algorithms for the following
operations:

o InsertPair (x,y): Insert a pair [x, y] into D.

e DeletePair (x,y): Delete a pair [x, y] from D.

e MixXInRectangle (xg,X;,y;): Given test integers
Xp, X, and y,, among all pairs [x, y] in D such that
xo<x<x; and y<y,, find a pair whose x is
minimal.

e MaxXInRectangle (xg,X;,y;): Given test integers
Xg,x; and y;, among all pairs [x, y] in D such that
xg<x<x, and y<y,, find a pair whose x is
maximal.

o MinYInXRange (xq, X;): Given test integers x; and x),
among all pairs [x, y] in D such that x5 < x < x|, find
a pair whose y is minimal.

o EnumarateRectangle (Xg,X;,Yy;): Given test integers
Xg,X; and y;, enumerate those pairs [x, y] in D such
that xo < x < xy and y < y,.

This searching is actually described as 1.5-dimensional.
The data has two independent dimensions, but the
priority search tree does not allow equally powerful
searching operations on both. There is a major
dimension (x) permitting arbitrary range queries and a
minor one (y) permitting only enumeration in increasing
order. The tree stores points of the plane, where the
leaves correspond to coordinates according to one axis,
while the internal nodes are associated with a point.

More precisely, the point with the largest coordinate in
the other axis is stored in the root. Internal nodes store
the point with the largest coordinate that has not been
stored higher up in the tree. The tree occupies O(n) space
and answers three-sided (half-infinite) range queries in
two-dimensional plane in time O(logn + K), where K is
the size of the answer.

Another basic structure used in our method is the
range tree. It was introduced in Willard and Lucker
(1985) solving the range searching problem, in two
dimensions, in O(log?n + K) time using O(nlogn) space.
A range query is the problem that fits the following
general description:

Given a set of objects X in R, store X in a suitable data
structure so that for any query object y (regarded as
‘range’), those x € X' such that xNy #0 can be
identified quickly.

A one-dimensional range tree can be considered as a
leaf-oriented balanced binary search tree, for the
coordinates of points in one dimension. A d-dimen-
sional one is a (d — 1)-dimensional range tree, where
each internal node corresponds to a one-dimensional
range tree that organizes the points descending from that
node according to the last coordinate.

For a set of n points in R, we would like to retrieve
quickly all points in any specified orthogonal box. Range

trees allow us to solve orthogonal range queries in time
O(log®n) and space 0(logd‘]n). Consider the case d = 2.
For a query rectangle [, b] X [c, d], we decompose the x-
range [a,b] into logn intervals and perform in each
interval a one-dimensional search in an auxiliary y-tree.
The query time is O(log’n + K) if k points are retrieved.
The same method applies for the generalization in d-
dimensions.

Other data structures used in the solution of the
problem in restricted universe (grid) are the p- and g-fast
tries. By the term grid we refer to a d-dimensional space,
where each coordinate can take only distinct, discrete
values under a highest limit M. We say that all points
have coordinates in any axis from the finite set [1,..,M].

The trie, as a hybrid data structure that combines
arrays and pointers, was proposed by Fredkin (1962). It
is a simple way to structure a file by using the digital
representation of its elements. The general condition is as
follows: the universe U consists of all strings L over some
alphabet of say k elements, i.e. U = {0,1,...,k— 1)-. A
set S C U is represented as the k-ary tree consisting of all
prefixes of elements of S. An implementation which
immediately comes in mind is to use an array of length &k
for every internal node of the tree. Then operations
access, insert and delete are very fast and are very simple
to program. The algorithms take time O(L) = O(log; N)
where N = |U|. Unfortunately, the space requirements
of a trie as described above can be horrendous: O(n-L-k).
For each element of set S, |.S| = n, we might have to store
an entire path of L nodes, all of which have degree 1 and
use up to space O(k).

There is a simple method to reduce the storage
requirements to O(n-k). We only store internal nodes
which are at least binary. Since a trie for a set S of size n
has » leaves there will be at most » — 1 internal nodes of
degree 2 or more. Chains of internal nodes of degree 1
are replaced by a single number; the number of nodes in
the chain. A trie can support the following three
operations:

o Successor(x): Find the least element in the set S with
key value greater than x.

o Predecessor(x): Find the greatest element in the set S
with key value less than x.

o Subset(x1, x2): Find the list of those elements of S
whose key value lies between x; and x;.

The structures p- and g-fast tries are two modified
versions of tries presented by Willard (1984). These kind
of tries use additional fields (structures) in each of their
internal nodes, performing retrieval and update opera-
tions in O(v/log M) time. Their only diff/eLen_ce is the
space requirements, which is O(ny/Tog M2V'°¢M) for the
p-fast trie and declines in linear O(n) for the g-fast trie
(where #n is the number of elements stored in them).

The p-fast trie is a trie where a new internal node is
stored if and only if it is the ancestor of some elements in
the set of integer keys stored in the structure. Moreover
each leaf of a p-fast trie contains a pointer to the leaf that

THE COMPUTER JOURNAL,

VoLr. 38, No. 3, 1995

¥20z 14dy 60 U0 1senb Aq L91L6GE//2Z/E/8E/e101ME/|Ulod/ W00 dno olwepeoe//:sdiy wolj papeojumoq

230 V. KAPELIOS et al.

lies to its immediate left and another pointer to the leaf at
its right. A g-fast trie is a data structure which represents
a set S by employing two substructures, called the upper
and lower parts. Its upper section is a p-fast trie that
represents a partition of S. Its lower part is a forest of
two to three trees whose ith tree represents the sub-set S;
of each partition of S. The reduction in space of g-fast
trie is achieved after prunning of the bottom of the p-fast
trie in order to conserve memory. A detailed analysis of
p- and g-fast tries can be found in Willard (1984).

Another type of fast tries are the x- and y-fast tries
(Willard, 1983). These kinds of tries use as the basic
structure a binary trie and are augmented by a level-
search structure (Fredman ez al., 1982) for each level of
the trie (the total number of levels is 4). Using these
structures, the overall retrieval complexity is
O(loglog M) for both tries [the retrieve operation is
based on perfect hashing (Mehlhorn, 1984; Jacobs and
van Emde Boas, 1986) using additional information in
each internal node]. They only differ in the occupied
memory space; the x-fast trie needs O(nlogM) space,
while the y-fast trie only ©(n), as the pruning technique is
applied.

In a few words, comparing the two kinds of fast tries (p
and ¢ with x and y) we can mention that the latter
achieves better time bounds for the retrieval operation in
the same space, but the preprocessing time is significantly
higher (because of perfect hashing structures). In
addition only p- and g-fast tries support update
operations in time proportional to the retrieval time.

3. THE CROSS INTERSECTION CASE

First of all we solve the two-dimensional case of the
rectangle intersection assuming that we have n rectangles
in the plane, where a subset of them intersect a query
rectangle Q in the way we previously described. For the
sake of simplicity, we try to find the rectangles that
enclose the query rectangle according to the y-axis and
one at least of its sides is partly included in the query
(except its vertices) according to the x-axis. (Figure 2,
instances 1-3). The other symmetric case (Figure 2,
instances 4-6) is tackled in an analogous way.

We assume that the query rectangle Q is represented
by its coordinates in the two axes, forming the four-
element tuple [xgi, Xgr, Yob, You)- A random rectangle is
represented by the tuple [x;, x;, yip, Val, (1 < i < n).

The pairs [x3, Vi), [Xirs Vin] represent a two-dimen-
sional point (more precisely vertices of a rectangle). We
construct our 2-fold structure as a two-dimensional
range tree for the 2n points:

[xll:ylb]a [xln}’lb]; e [xnl:ynb]: [xm')ynb]

modified in the second dimension in order to be
combined in a priority search tree. In other words,
every node v of the range tree in the first layer points to a
priority search tree for the [y, y;] pseudopoints, which
correspond to leaves of the subtree rooted at v. In this

answer

Xa Xor You

FIGURE 4. The 2-fold structure.

way, the coordinates of rectangles are stored in our
structure. Finally, the priority trees are organized having
the largest value y, stored in the root.

3.1. The algorithm

Let T be the first layer of our structure and T, the second
layer which is associated with each internal node v of T.
The algorithm that answers the query is described below.

Step 1. Search for xg and xg, in tree 7. In this way
two paths are defined, as illustrated in Figure 4. Let
vy, y, ..., U; be the sons of the nodes forming the paths to
xg1 and xg,. without belonging to the path themselves
and they also lie between the two paths. Observe that the
trees Ty, T2, ..., Ty; Of the second layer store all the
rectangles, having at least one of their vertical sides
included between the lines x; = xg and x; = xg,.

Step 2. Search for ygy, in every second layer tree T,
(Figure 4 shows only one of them). The answer is
contained between the search paths to yg, and the
leftmost leaf of the tree. We traverse top-down all T,
trees and report all pairs [yy,ys] (corresponding
rectangles) until the condition y, < y; holds (the
largest y; values are pushed to the root).

Additional inspection is needed for the path leading to
Yob, the rightmost of the examined paths. This is so
because in this path pseudopoints can be stored
(corresponding rectangles) with ys, > yop, (While all the
paths on the left have surely stored points with
Vi < ¥gb)- So, for each possible answer from this path,
we must examine if the above condition holds too. This
additional traversal of the path does not bring any
changes to the overall time complexity.

LemMmA 1. The presented algorithm reports all the
rectangles that belong to the cross intersection case once
and only once. Exceptions to the rule above are the ones
whose sides are included partly in the query according to
one axis; these rectangles are reported twice.

Proof. The fact that we find all the answers of the
query follows from the definition of the range and
priority trees. Besides, the rectangles that belong to the
answer and have one coordinate [e.g. in (xg, xg,)] are
reported once and only once, while those with both of
their x-coordinates in the range above are reported
exactly twice. At step 1 we can find the second layer trees

THe COMPUTER JOURNAL,

VoL. 38, No. 3, 1995

¥20z 14dy 60 U0 1senb Aq L91L6GE//2Z/E/8E/e101ME/|Ulod/ W00 dno olwepeoe//:sdiy wolj papeojumoq

CROSS RECTANGLE INTERSECTION 231

Tvl:TVZ:":Tvi that store pOiIltS [xﬂayib] and [xir’ayib’]
that satisfy the conditions xg < x5 < xo, and
Xgi < Xi' < Xgr accordingly. The points [x;,ys] and
[xir, yinr] can belong to different rectangles (in this case
the corresponding rectangles are reported once) or to the
same one (thus [x;, ya/] = [xi, Vip]) so that is reported
twice (once for the [x;, y] and once for [x;, y))-

Comment. The attribute of the algorithm described
above does not stand as a disadvantage. We can keep a
vector of bits where each bit corresponds to a rectangle
and set it at a predefined value every time we find an
answer. Finally we can check the vector and report only
the rectangles whose entry has the predefined value.

3.2. Space and time analysis

THeoreMm 1. The space occupied of the structure is
O(nlogn) and the answer is calculated in time
O(lognloglogn + K), where K is the cardinality of the
answer and n the number of rectangles.

Proof. The total space occupied by our two layered

structure is O(nlogn), because every point [xz,ys] or
[xirr, y'] is stored in O(log 2n) nodes of range tree (first
layer) and every priority tree occupies O(n;) space
(n; < n) for every one of the n; pseudopoints [y, yul,
that are stored in it.
As the time bound in static case is concerned, we
consume O(log? n + K) time, since in Step 1 we traverse
two paths of length logn and in Step 2 we answer the
enclosure query using a priority tree in O(logn; + K;)
with n; < n (K; is the answer taken by every second layer
tree T,,) for every node v;,v;,...,v; found in Step 1.

The time complexity can be reduced to
O(lognloglogn + K) by using extended priority trees
(Fries et al., 1987) as the second layer of our structure,
instead of a simple priority search tree. O

3.3. The d-dimensional case

Considering the problem in 4 dimensions, we can state
that the d-dimensional rectangles that belong to the set of
answers are those that enclose the query according to
d-1 dimensions and at least one of their sides is partly
included (without the vertices) in the query one
according to one dimension. More precisely, let
[xh, xk), [x3, x2], ..., [xd, x£] be the pair of coordinates in
each of d axis of the rectangle and [x'Q,, xbr], vy [x‘é,, x‘é,]
the corresponding pairs of the query. We must now find
all the rectangles whose d—1 pairs enclose (as intervals)
the corresponding pairs (intervals) of query and at least
one of the two coordinates of the last pair is included in
the corresponding pair of the query.

The above statements are true because if, for example,
a rectangle encloses the query according only to d-2
dimensions, then the vertex which is formed by the
coordinates in two other dimensions (axis) is surely
included in the query. Then, the intersection of these two

rectangles is reported by range searching, as described in
Section 1 (first case of intersection).

In order to enlarge our structure for more than two
layers to answer the query in d dimensions, we take into
account that the layers added must solve the problem of
segment enclosure. Having these observations in mind,
we simply add two layers of range trees for every
dimension above two, where the problem is set. Each one
of the two layers of range tree stores rectangles according
to the one of the two coordinates [x},x]] in the j
dimension, and we simply search in the first tree for
rectangles having x) < x;, and in the second tree for
the ones having x}. > xp,.

As a result, our structure in d dimensions will be a
(2d-2)-dimensional range tree modified in the last layer,
as we described previously, such that every node of layer
2d-3 points to a priority search tree.

Let us find the rectangles that have at least one side
partly included in the query according to the first
dimension and enclose the query according to the other
d-1 dimensions. The other d—1 symmetric instances of
the problem are solved in an analogous way. In the first
layer of our structure we store the 2n (2d-2)-dimensional
points of the [x}, x3, x3, ..., xd), [xk, X%, x3..., x] in order
to find the rectangles that have at least one coordinate
according to dimension 1 in the range [x'Ql,x‘Q,]. The
subsequent 2d—4 layers are range trees that were used to
solve the enclosure probiem according to d—2 dimensions
(each pair of layers solve the problem in one dimension,
see Figure 5). At layer 2d-3 we have already solved the
problem according to d—1 dimensions and we have to
select from those rectangles found that also enclose the
query according to the d dimension. Using the priority
tree in the same way as we did in two dimensions, we can
locate the answers in only one layer.

THEOREM 2. The space bound in the solution for the 4-
dimension case is O(nlogz‘Hn) and the answer can be
achieved in O(logZd"3nloglogn+K) time, where K is
the cardinality of the answer and n the number of
rectangles.

Proof. From the discussion above, it follows that the
overall query time in d dimensions is O(log?~%n + K). A
time reduction in O(log”>nloglogn+ K) can be
achieved if we replace the ordinary priority tree of the
last layer with an extended priority search tree. The space
bound is O(n logZd'3n), since each one of the »n rectangles
is stored in 2d-3 layers of the range tree and the priority
tree in the last layer occupies linear space. O

4. ANSWERING THE QUERY IN A
RESTRICTED UNIVERSE

So far, we have assumed that the rectangles involved in
our problem are set in two-dimensional or generally in d-
dimensional space R?. This assumption requires that the
values of the rectangles’ coordinates are real numbers.
This accuracy in values may be impossible or even

THE COMPUTER JOURNAL,

VoLr. 38, No. 3, 1995

¥20z 14dy 60 U0 1senb Aq L91L6GE//2Z/E/8E/e101ME/|Ulod/ W00 dno olwepeoe//:sdiy wolj papeojumoq

232 V. KAPELIOS et al.

__ 2d-4

/ levels

fina!
answer
-«
03
—_

24-2 xld-J
X Qt Qr

FIGURE 5. The multi-layered structure.

undesired when algorithms of computational geometry
are used in real applications (VLSI design, computer
graphics, etc.). For this reason, solutions to known
geometrical problems on a grid have received an
‘increasing amount of attention. As we mentioned
earlier, the grid is the geometrical space, where points
have integer coordinates from a finite set [1,...,M].

Many optimal solutions in arbitrary space cannot be
proved on a grid. Innovated data structures, such as
those presented in the Introduction, can solve efficiently
various geometrical problems.

jthlevel — — ‘;fast trie
2nd level
Ist level

8

v i;

R} ;
8, L,52

4.1. The modified data structure

We present only the solution of the problem reporting
the two-dimensional rectangles that enclose the query
according to the y-axis and have one vertical side
partially included (without the vertices) in query
according to the x-axis. The symmetric situation is
handled in analogous way.

The first layer of our structure is a p-fast trie which
stores the 2n points [xg, ym][X1s Vi), -+, [Xm, Vab) accord-
ing to the x-coordinates in its leaves. This trie is
augmented in the same way as proposed by Overmars
(1988) for efficient searching. More precisely, every leaf
6 of the p-fast trie is associated with a set of lists

R}, ...,Rg‘/ml where every list R;, holds pointers to
internal nodes which are right sons of the nodes
consisting the path to 4, but they do not belong to the
path and in addition they are in a level less than i (the
length of every path in the p-fast trie is [v/log M| and the
level is counted bottom to top).

Similarly every leaf & is associated with a set

L};,...,Lg' log M } of lists. Every list has pointers to left

sons of nodes which belong to the path to é and do not
form the path themselves in a level less than i (Figure 6
depicts the first layer of the structure and associated lists
of leaves 8, and &,). Every list needs O(1/log M) space. We
have O(y/log M) lists (the cardinality of levels) for every
leaf, leading to O(logM) space compiexity for each leaf.

The second layer of our structure (see Figure 6) is a set
of priority search tries; everyone of them is pointed by an
internal node of a first layer structure. A priority search
trie (in Figure 6 only one of them is showed) is a g-fast
trie that stores the pseudopoints [yy,y4] (1 i< n)
sorted by yy, coordinate to its leaves and every internal
node has a priority field identical to the corresponding
priority tree (McCreight, 1985) forming a heap structure
in the trie. The organization of a priority search trie is
based on the placement of the largest y;; value at the root.

priority-search trie
E./ (based on g-fast trie

answer

L,

FIGURE 6. The 2-fold structure for a restricted universe (grid).

THE COMPUTER JOURNAL,

VoL. 38,

No. 3, 1995

¥20z 14dy 60 U0 1senb Aq L91L6GE//2Z/E/8E/e101ME/|Ulod/ W00 dno olwepeoe//:sdiy wolj papeojumoq

CROSS RECTANGLE INTERSECTION 233

The g-fast trie, which is the basic structure of priority
search tries, is also augmented in order to support
efficient searching. More precisely, every leaf A of a
priority trie is associated with a priority trie PT,, which
stores the O(y/log M) points [y, ¥;], found in the path
towards A. Every path of PT, has O(log+/log M)
nodes.

Furthermore, every leaf)\ is associated to a list L,
consisting of points to nodes that are left sons of nodes
belonging to the path towards A, but do not belong to the
path themselves. These nodes are stored in descendant
order of y;, values of points which are associated with
their priority fields.

Because of the pruning used to g-fast tries’ construc-
tion (Willard, 1984), a number of pseudopoints [y, Vil
are not ‘pushed’ to internal nodes’ priority fields and
accordingly stored in list Ly of their leaf. Consequently,
we construct a list LIST, (as in Overmars, 1988) of
pseudopoints similar to those previously mentioned. The
pseudopoints are stored according to largest y; values.
Every list LIST), occupies O(v/log M) space.

Let [xg1, Xgr, Yob, Yoi] be the discrete integer coordi-
nates of query rectangle, T the p- fast trie of the first layer
and T, the priority trie of the second layer associated
with the v node of T.

Step 1. First, we search for x5 and xp, in T. Let §,
and 6, be, respectively, the leaves where the search ends.
The nodes vy, vy, ..., v are the sons of the nodes forming
the paths to 8, and 8§, without belonging to the path
themselves and they also lie between the two paths. These
nodes store the rectangles that have at least one of their
x-coordinates in the interval [xgy, xg,].

In order to locate these nodes and consequently the
second layer tries that they are associated with, we firstly
find the common ancestor of leaves 6; and 4,. This can be
done in only O(y/log M) time. Let j be the level of the
common ancestor. Then the lists R} and R (see Figure
6) have pointers to the nodes and to the tries
T,,, Ty, T, of the second layer which must be further
searched. So, in time O(v/logM) we can find all the
rectangles that have at least one x-coordinate (corre-
sponding vertical side) in interval (xgy, xg,).

Step 2. In every priority trie Ty, ..., T,, we search for
Yob in O(v/log M) time for each priority trie. Let A be the
leaf where the search for Yob ends. The rectangles that
belong to the answer must satisfy the conditions
Yo < Yoo and yy < you.

First we examine the rectangles stored in the path
towards A. In other words, we perform the enclosure
query in priority tree PT) as it was described in Step 2 of
the algorithm for the arbitrary universe. This can be done
in O(logv/log M + K;) time, where K; are the answers
reported from the path.

We traverse top-down each subtrie rooted from nodes
pointed by list L, reporting all rectangles having
Vi = Yo The traversal may be continued to the
elements of LIST,, where « is any leaf between the

leftmost leaf of priority trie and A, but even in that case
we report answers. If we find a node with priority field
Ya < You the traversal in this subtrie is immediately
stopped. For each priority trie, O(yv/log M + K;) time is
consumed in order to report k; answers.

4.2. Space and time analysis

TueoreM 3. The grid case of the cross rectangle
intersection problem can be solved in O(log M + K) time
using O(n\/log M) space, where K is the cardinality of the
answer and M is the size of the grid.

Proof. From the description of the algorithm and the
observation that O(y/log M) priority tries at the second
layer are examined, it can be concluded that
O(log M + K) overall time is needed to answer the
query on a two-dimensional grid.

As the space complexity is concerned, it is obvious that
each of 2n points of p-fast trie T is stored in /log M
internal nodes which occupies G(ZW) space. Further-
more, each leaf of T occupies O(log M) space due to the
Ry and Lg lists (1 <j <+ylogM). As a result, the
first layer needs totally O(ny/Tog M2V°6M) space. The
priority trie uses linear space on the number of points
stored at it. However, every leaf A of such a trie occupies
O(vlog M) space because of the lists Ly and LIST),
associated with it, as well as the priority tree PT,.
Consequently every T, priority trie occupies:

n
0(—W v M)
= O(n) space
n
——— are the number of leaves of g-fast trie }.
(/l—ogMz\/logM)

From the discussion above follows that the overall
space complexity of our structure on a grid is
O(n\/Tog M2Vee M),

The space complexity can be reduced to O(n+/log M)
provided that we use a g- instead of a p-fast trie as the
basic structure of the first layer, taking advantage of its
linear space. More specifically the augmentation of this
trie with the set of lists R} and L} only increases the
space to O(n/log M) from the O(n) bound of the g-fast
trie. However, the complexity above is exactly the overall
one needed by our 2-fold structure since the height of
first layer is O(+v/log M) and every one of the 21 elements
(corresponding rectangles) are stored in a path of the first
layer. O

4.3. Generalization to d-dimensions

The extension of our structure in the d-dimensional grid
follows the ideas stated at Section 3.3 for an unrestricted
universe using the g-fast trie as the basic structure. The
first and last layer are constructed in exactly the same

THe COMPUTER JOURNAL,

Vor. 38, No.3, 1995

¥20z 14dy 60 U0 1senb Aq L91L6GE//2Z/E/8E/e101ME/|Ulod/ W00 dno olwepeoe//:sdiy wolj papeojumoq

234 V. KAPELIOS et al.

way as we described in the two-dimensional case. In
order to achieve efficient searching in the intermediate
2d-2 layers (depicted in Figure 5), we have to construct a
list Rs or L in each leaf of these tries, aiming to find the
rectangles which have xJ. > x’ or x) < x’ (1<i<N
and 1 €j < d), respectlvely

Finally, we answer cross 1ntersect10n queries in a d-
dimensional grid in O((v/Tog M K) = O(log)*™"
M + K) time and O(nv/log M M) space.

4.4. An alternative solution

Although the method described above gives a satisfying
solution to the intersection query on a grid, there are
other structures (tries) which can achieve even better
performance in retrieval operations. The x- and y-fast
tries (Willard, 1983) have overall retrieval complexity
O(loglog M). As the condition loglogM < /logM
holds in general, one could expect that using these
tries, in order to build our structure, might have better
performance results. We have already mentioned that a
disadvantage of these tries compared with the p- and g-
fast tries is the high preprocessing time and the fact that
they do not support a loglogM time for update
operations in a dynamic environment.

From the above observations, we can construct the 2-
fold structure which answers the query in the plane,
following exactly the same way as before, replacing only
the g-fast trie in the two layers by a y-fast trie . We
augment the y-fast trie of the first layer with lists L} and
R} (1 €j < logM) for each of the 2n leaves. In the
second layer each priority trie, associated with a node of
the first layer, is constructed using a y-fast trie as the
basic structure. The corresponding structures (L), PT),
LIST,) are added in the same way as in g-fast tries. The
priority tries based on y-fast tries are organized by
placing the largest y;, value at the root.

The algorithm works similarly in this structure by
searching for xg and xg, in the first layer structure (y-
fast trie) and locating the priority tries which must be
further searched using the lists Ly, and Rj,. (We
remember that § and 8, are the leaves where the search
operation for xy and xp, terminates and j is the level
where these two paths split). The actions above cost only
O(log log M), but the priority tries which must be further
examined are O(log M) (proportional to the height of the
binary y-fast trie). The search for the pseudopoints
(corresponding rectangles) which satisfy both of the
conditions ys, < ygp and y; < yg, in each of the priority
tries found, consumes O(log MloglogAM + K) time
(where K is the size of the answer). The space occupied
by this new 2-fold structure is O(nlog® M) since each one
of the 2N points in the first layer is stored in log M nodes
of the x-fast trie and everyone of its leaves occupies
O(log® M) due to the lists R} and L. Furthermore, each
one of the priority tries of the second layer occupies
O(nlog M) space. However, we can save some space if we
prune the y-fast trie of the first layer so that every leaf

corresponds to log?M elements (thus the trie has
0() leaves). Consequently, the overall space com-
plex1ty falls to O(nlog M). In a d-dimensional grid, the
method described above answers the query in 0(log2d 3
M loglog M + K) time and uses O(n logZd“3M) space.

S. ANSWERING THE QUERY IN A DYNAMIC
ENVIRONMENT

So far, we have consider ways of answering the query in a
static environment, i.e. the set of rectangles (their
coordinates) are given as an input once and for all. Of
course, the only element changed every time we perform
an on-line query is the coordinates of the query rectangie.
If we consider our problem in an environment where the
given set of rectangles is modified through time, then we
say that the query is set in a dynamic environment.

The dynamization of our structure in arbitrary space is
achieved by using BB[a] and BB trees as the basic
structures for implementing the first and the second
layer, respectively. In this way, the amortized time for
each update is O(log?n) for the plane and O(logz‘i‘2 n) for
a d-dimensional space. By applying the method proposed
by Willard and Luecker (1985) we can have 0(log2d ~2n)
time for each update operation.

As far as the update operation on a grid is concerned,
we must keep in mind that p- and g-fast tries support
update operations in time analogous to retrieve opera-
tions, while x- and y-fast tries do not have this property.
Furthermore, except for other modifications, an insert
operation adds two more leaves in the first layer
(Ixa, Y], [Xie, o)) and one more (v, yi]) in the priority
trie of the second layer. Because each update operation
affects O(v/Tog M) priority tries in the second layer and
the time needed for update in g-fast trie is O(v/log M),
the amount of time spent for update in our structure is
O(log M). However, after an insertion in our 2-fold
structure two more sets of R} and Lj in new leaves 6 of
the first structure must be created, as well as L), PT),in
new leaf A of the second structure. The construction of
the /log M lists R; and L; of O(/log M) elements each
consumes O(log M) time totally for each added leaf.
Besides, the construction of a list Ly, having length
O(v/log M), and the priority tree PT,, storing /log M
points of the path leading to new added leaf A of the
second layer, costs O(y/log M) totally. The deletion does
not add any further complexity in update execution, if we
assume that the release of space costs constant time.

From the discussion above, it is obvious that no
matter what modifications are made in the structure the
overall time complexity remains O(log M) (analogous to
the retrieval time of our two-dimensional structure on a
grid). Consequently, an wupdate in a d-dimensional
structure on a grid costs O(log?~2M) time.

6. CONCLUSION

Using the results presented in Section 1 with the results
presented here we have solutions for each individual case

THE COMPUTER JOURNAL,

Vor. 38, No. 3, 1995

¥20z 14dy 60 U0 1senb Aq L91L6GE//2Z/E/8E/e101ME/|Ulod/ W00 dno olwepeoe//:sdiy wolj papeojumoq

CRrOSS RECTANGLE INTERSECTION 235

TABLE 1. The results of this paper

Answer of cross Time complexity

intersection query

Update of
dynamized structure

Space complexity

Arbitrary (unrestricted)
universe

Restricted universe Case A? O(log™' M + K)

(grid)
Case B®

O(log® nloglogn + K)

O(log¥~3 Mloglog M + K)

O(nlog®3 n) O(log?~%n)
O(n/log 1 O(log?™' M)
O(nlog¥~3 M) —

* Combination of augmented g-fast trie with priority search trie (based on g-fast trie).
5 Combination of augmented y-fast trie with priority search trie (based on y-fast trie).

of the rectangle intersection problem. More precisely, we
can answer on-line the cross intersection case in
0(log2d_3n loglogrn + K) time, while the enclosure
query is answered (Bistiolas et al, 1993) in
O(log®~'n+ K) time and the range query (Willard,
1985) in O(log®n + K) time. These results give an overall
and complete consideration of the various instances of
the problem.

The solution approach on grid can give some hints of
the way that this and similar problems may be handled,
taking advantage of already proposed structures and the
particular cases that occur in restricted universe. Table 1
summarizes the results for the cross intersection on-line
queries previously proved.

ACKNOWLEDGEMENTS

This work was partially supported by ESPRIT Basic
Research Action Program (ESPRIT), p 4171 (ALCOM
II).

REFERENCES

Bistiolas, V., Sofotassios, D. and Tsakalidis A. (1993)
Computing Rectangle Enclosures. Comp. Geometry J.:
Theory and Applications, 2, 303-308.

Burton, W. (1977) Representation of many-sided polygons and
polygonal lines for rapid processing. Commun. ACM, 20,
166-171.

Edelsbrunner, H. and Maurer, H. A. (1981) On the intersection
of Orthogonal objects. Inform. Process. Lett., 13, 74-79.

Fredman, M. L., Komolos, J. and Sremeredi E. (1982) Storing
a space table with O(1) worst case access times. In Proc.
23rd IEEE Symp. on Foundations of Computer science, 165—
169.

Fredkin, E. (1962) Trie memory. Commun. ACM, 3, 420—429.

Fries, O., Mehlhorn, K., Naeher, S. and Tsakalidis, A. (1987) A
loglogn data structure for three-sided range queries. Inform.
Process. Lett., 25, 269-273.

Jacobs, T. M. and van Emde Boas, P. (1986) Two results on
tables. Inform. Process. Lett., 22, 43-48.

Knuth, D. E. (1976) Big omicron, big omega and big theta.
SIGACT News, 8, 18-24.

Lee, D. T. and Wong, C. K. (1981) Finding intersection of
rectangles by range search. J. dlgorithms, 2, 337-347.

McCreight, E. M. (1985) Priority search Trees. SIAM J.
Comput., 14, 257-276.

Mehlhorn, K. (1984). Data structures and algorithms I: sorting
and searching. EATCS Monographs on Theoretical Computer
Science, Springer, Berlin.

Overmars, M. H. (1988) Efficient data structures for range
searching on a grid. J. Algorithms, 9, 274-295.

Willard, D. E. (1983) Log-logarithmic worst-case range queries
are possible in space O(N). Inform. Process. Lett., 17, 81-84.

Willard, D. E. (1984) New trie data structures which support
very fast search operations. J. Comp. Syst. Sci., 28, 379-394.

Willard, D. E. (1985) New data structures for orthogonal range
queries. SIAM J. Comput., 14, 232253,

Willard, D.E. and Luecker, G.S. (1985) Adding range
restriction capability to dynamic data structures. J. Associa-
tion for Computing Machinery, 32, 597-617.

THE COMPUTER JOURNAL,

VoL. 38, No.3, 1995

¥20z 14dy 60 U0 1senb Aq L91L6GE//2Z/E/8E/e101ME/|Ulod/ W00 dno olwepeoe//:sdiy wolj papeojumoq

