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The m-way graph partitioning problem (GPP) is an intractable combinatorial optimization problem with
many important applications in the design automation of VLSI circuits and in the mapping problem for
distributed computing systems. In this paper, we introduce a technique based on a problem-space genetic
algorithm (PSGA) for the GPP to reduce the weighted cut-size while keeping the size of each subset
balanced. The proposed PSGA based approach integrates a problem-specific simple and fast heuristic
with a genetic algorithm to search a large solution space efficiently and effectively to find the best possible
solution in an acceptable CPU time. Experimental study shows that our technique produces better results
with respect to both the quality of the solution and the computational time over the previous work. The
PSGA is a simple, versatile and a generic optimization technique which can also be applied to other
combinatorial optimization problems.
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1. INTRODUCTION

This paper deals with the m-way graph partitioning
problem (GPP). Given a graph with weights on both the
edges and the nodes, the objective of the GPP is to find a
partition of the nodes of a graph into m disjoint, equal-size
subsets such that the sum of the weights of those edges
which are not in the same partition is minimized. GPP has
a lot of useful applications in VLSI cell placement
(Sherwani, 1993), high level synthesis (Gajski et al., 1992)
and task assignment problem in distributed computing
systems (Bokhari, 1987). GPP is an NP-complete problem
(Garey and Johnson, 1979) and hence heuristic techniques
are applied to get suboptimal results in a reasonable
amount of CPU time. In this paper, we introduce a
technique based on a problem-space genetic algorithm
(PSGA) to solve the general GPP. The PSGA integrates
a problem-specific heuristic with a genetic algorithm to
search a large solution space effectively and efficiently.

Different approaches have been reported in the litera-
ture to solve the GPP, such as the Kernighan and Lin
(KL) algorithm (Kernighan and Lin, 1970) and its
variants (Fiduccia and Mattheyses, 1982; Dunlop and
Kernighan, 1985; Lee et al., 1989), simulated annealing
(Johnson et al., 1989; Tao and Zhao, 1993), tabu search
(Tao and Zhao, 1993; Glover, 1989), mean-field
annealing (Van den Bout and Miller, 1990) and genetic
algorithms (GAs) (Jones and Beltramo, 1991; Laszewski,
1991). Most of these techniques start with some initial
solution, usually chosen at random, and search the
neighborhood of the current solution for a new solution.
This process is repeated until no further improvement in
the objective function is possible. KL proposed an
efficient graph bisectioning algorithm which starts with a
random initial partition and then uses pairwise swapping
of nodes between partitions until no further improve-
ment is possible. The time complexity of the KL

algorithm is O(N2 log2 N), where TV is the number of
nodes in a graph. The performance of the KL algorithm
degrades for non-unity weights on the nodes (Lee et al.,
1989). Several algorithms have been developed
to improve the basic KL algorithm. Fiduccia and
Mattheyses (1982) (FM) used a clever implementation
to achieve linear complexity by using an efficient data
structure. FM moves single vertex across partition in a
single move and it also permits the handling of
unbalanced partitions. Dunlop and Kernighan (1985)
have compared the KL algorithm with the FM and
found that the results of the FM are inferior to those of
the KL but that the CPU time is substantially shorter.

Lee et al. (1989) presented an iterative algorithm based
on the KL algorithm that exploits the problem
equivalence property by transforming the given
problem into a max-cut problem using a graph
transformation technique. It deals with nodes of
different weights and outperforms the KL for m-way
partitioning. Simulated annealing (SA) (Johnson et al.,
1989; Tao and Zhao, 1993) gives superior results, but it is
time consuming. Tabu search (Tao and Zhao, 1993;
Glover, 1989) is a meta-heuristic which starts from a
given solution and iteratively improves it by utilizing a
short-term memory in the form of a tabu list to escape
from any local minimum and uses the aspiration-level to
diversify the search for good solutions. Simulated
annealing and tabu search approaches iteratively improve
one solution at a time whereas approaches based on GAs
simultaneously perform a multi-dimensional search by
maintaining a population of potential solutions. Moreover,
the tabu search uses memory structure whereas GAs are
memoryless which rely on randomization and evolution to
conquer intractability. Mean Field Annealing (Van den
Bout and Miller, 1990) combines the characteristics of the
simulated annealing algorithm and the Hopfield neural
network, but does not handle weighted graphs.
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238 I. AHMAD AND M.K. DHODHI

An efficient algorithm for a general GPP is desirable to
get the best possible solution within acceptable CPU
times. In this paper, we introduce an approach based on
the problem-space genetic algorithm (PSGA). The
PSGA-based approach uses the inherent parallelism
provided by the GA and exploits the problem-specific
knowledge by using a simple and fast heuristic to search
a large solution space efficiently and effectively to get the
best possible solution within acceptable CPU times. GAs
are probabilistic combinatorial optimization techniques
in which the genetic operators such as selection,
crossover and mutation, which are derived from the
selection processes in nature, guide a population of
potential solutions to a problem towards better solutions
(Holland, 1975). The recent literature reports a number
of successful applications of GAs to a wide range
of problems in diverse fields, such as the GPP (Jones
and Beltramo, 1991, Laszewski, 1991), standard cell
placement (Shahookar and Mazumder, 1990), searching,
machine learning and machine identification (Goldberg,
1989).

GAs are blind search techniques and they require
problem-specific genetic operators (crossover, mutation)
to get good solutions. Storer et al. (1992) have proposed
a new search method, which integrates a fast, problem-
specific heuristic with the local search. The key concept
in this method is to base the definition of search
neighborhood on a heuristic/problem pair (h,p) where
h is a known fast heuristic and p represents the problem
data. Since a heuristic h is mapping from a problem to a
solution, the pair (h, p) is an encoding of a specific
solution. By perturbing the problem p, a neighborhood
of solutions is generated. This neighborhood forms the
basis for a local search. The problem space is generated
by perturbing the problem data. Let P be a set of m
problems obtained by perturbing the original problem
data. That is, P = {pj = p0 + 6, j' = 1,.. . , m), where p0

is the data for the original problem and 6 is the randomly
generated perturbation vector. The perturbation range
depends on the specific problem. In order to keep the
generated 'dummy' problem values in the proximity of
the original problem values, upper and lower limits on
the perturbation can be introduced. The solution subset
S corresponding to the problem set P can be created by
the application of an heuristic, h, S = {h(pj),
j=\,...,m}.

PSGA is different from the hybrid GAs (Jones and
Beltramo, 1991; Laszewski, 1991) for the GPP. Jones and
Beltramo (1991) solve the partitioning problems using
GAs by encoding partitions by two different methods;
one method uses group-number encoding in which
partitions are encoded as strings of group numbers and
the other method uses permutation encoding in which
partitions are encoded as permutations of TV-objects and
K — 1 group separators. They use a special crossover
operator for each of the encoding methods, otherwise
crossover may result in illegal solution. Laszewski (1991)
uses a parallel GA to solve the partitioning problem. The

selection of mates is limited to a local neighborhood and
an intelligent structural crossover operator was used
which copies a whole partition from one solution into
another in order to avoid loosing information from one
generation to another. In PSGA (Storer et al., 1992;
Dhodhi, 1992) the chromosome is based on the problem
data and all the genetic operators are applied in the
problem space, so there is no need to modify genetic
operators for each application. The solution is obtained
by applying a simple and fast known heuristic to map
from problem space to solution space, where each
chromosome guides the heuristic to generate a different
solution.

The PSGA-based technique (Storer et al., 1992;
Dhodhi, 1992) offers several advantages over the
simulated annealing-based approach as well as tradi-
tional GAs. By operating in problem-space, standard
crossover operators are trivially constructed and applied
on the perturbed problem data. PSGA uses a fast
heuristic to map from problem-space to solution space,
therefore it avoids disadvantages of probabilistic
approaches such as local fine tuning in the last stage of
traditional GAs and, moreover, PSGA has a fast
convergence rate as compared with standard GA. The
PSGA-based technique is objective independent, and
thus it can be applied to combinatorial optimization
problems with any objective functions. The rest of the
paper is organized as follows. Section 2 discusses the
proposed heuristic technique for the GPP. Experimental
results are provided in Section 3. Section 4 concludes the
paper.

2. THE PARTITIONING STRATEGY

In this section, first we formalize the GPP and then give a
summary of the proposed graph partitioning strategy
followed by its detailed discussion.

2.1 Problem formulation

Consider a finite vertex-weighted, edge-weighted,
undirected multigraph G = (V, E, Slx, fi2)> where
V = {vi v2,... ,i>N} is the set of nodes, E C V x V is
the set of edges, fii: E —> Z+ defines the weights on edges
and £)2: V —> Z+ defines the weights on nodes, where Z+

is the set of positive integers. For example, a graph with
nine nodes adopted from Sarje and Sagar (1991) is shown
in Figure 1. The w-way graph partitioning problem is to
find a mapping function:

II : V -> {TT, , 7T2,7r3,..., nm} where TT; = {v e V\U(v)

= 7r,}V/|UKm (1)

such that

7T,- D •Kj = <f> for / ^j and U TT, = KV/|1 ̂  i ^ m (2)

Let S(TTJ) denote the size of subset TT,- and be defined
as £fi2(v)Vt; € 7T,- and let Cy denote the weighted
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Node weight

Edge weight
'(40)

0 (60)

FIGURE 1. A graph with nine nodes.

cut-size between two subsets TT,- and nj of II and be
defined as En,(M,v)V(M,v) e E\u £ TT,- and v € TT,-. Now
the objective of partitioning is to minimize the weighted
cut-size of II:

Cut (II) = EC,-,- Vi,y|l (3)

such that the imbalance W(II) between the size of each TT,-
is minimum.

j | l <i<j^m (4)W(Yl) = ElSfa) - S(nj)

2.2. Outline of the algorithm

The outline of the proposed scheme is depicted in Figure
2. First we read the graph and build a database which
includes the adjacency list for each node in the graph.
Then we get the user defined parameters such as the
population size Np, the number of generations Ng, the
crossover rate Pc, the mutation rate Pm, the number of
disjoint subsets into which we want to divide the nodes of
the given graph m, scaling factor a which controls the
perturbation range in the proximity of the problem data
and weight parameters uu UJ2. The first chromosome in
the initial population is built based on problem data and
the rest of the chromosomes are generated by perturbing
the first chromosome. Then we apply the partitioning
heuristic to generate a solution for each chromosome in
the initial population, and evaluate the cost and fitness
for each solution. We save the current best solution in a
database. Then we select chromosomes from the current
population based on their fitness, and apply crossover
and mutation to generate a new population. The whole
process of applying partitioning heuristic and cost and
fitness calculation is repeated until the termination
criterion (the number of generation Ng) is met. Finally,
we report the best solution.

2.4. Initial population

An initial population of size 6 for the graph in Figure 1 is
shown in Figure 3. Each chromosome in the initial
population for the GPP at hand consists of an array of
real numbers representing the priority for each node of
the graph. The priority (Pro)' of each node i for the first

/ Read input graph, Ng, Np> P m , Pc, co j , a^, m and a I

I
Build_graph_database();
initial_pop •<- Generate_initial_pop(
current_pop -^- initial_pop;

current_solutions -<-Partitioning_heuristic(current_pop, m);
sum_of_fitness -<- Evaluate(current_solutions);
best_solution •<- Find_best_solution();

Person •<- 0; new_j>op •<- { }; j

Yes

mom -<- Select(current_pop, sum_of_fitness);
dad •<- Select(current_pop, sum_of_fitness);

I
new_pop •<- new_popuCrossover(mom, dad,
new_pop -<- Mutate(new_pop, Pm) ;

i.
Person •<- Person + 2;

| current_pop -^- new_pop; |

^Repor t the best solution^

FIGURE 2. Outline of the proposed scheme,

chromosome is computed as below:

{ProY = * Random(0,1) * N; (5)

where iV is number of nodes in a graph. The objective is
to keep some knowledge about the problem data in
determining the priority of the nodes. The rest of the
chromosomes in the initial population are generated by a
random perturbation in the priority as given below:

, ) '= (/»„,)' +Uniform (-t (6)

Where (PT0)' is the priority of node / in the first
chromosome based on the original problem data,
Uniform (—77, /j) is a random number generated
uniformly between — 77 and \L. We are taking the value
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Node priorities from
#1154 | 70 | 37 |l06| 148|l07197 1195| 162 | -*- problem data

1 2 3 4 5 6 7 8 9 -+— Node number

#21 7 | 73 |39 | l68 | l36 |73 | l56 |229 | l9 l | |
1 2 3 4 5 6 7 8 9

#3|70 | 30|l02|l7l |213|95 | l2l | 1 9 2 f l ]
1 2 3 4 5 6 7 8 9

Perturbed priorities
#4134 | 88 | 50 |U6|21l |66 |l47|217| 146| from chromosome#1

1 2 3 4 5 6 7 8 9

#5 | 19 | 45 | 81 | lO4| l75|92|93| l95| l55|
1 2 3 4 5 6 7 8 9

#6|lO8|44 | 27 |13O|1Q7|125|11O|235|224"|1
1 2 3 4 5 6 7 8 9

FIGURE 3. An initial population of six chromosomes.

of r] = fj, = Max,{(Pro)'}/a, but rj and /j, do not need to
have same values. (Pr)' is the priority for node i of the
chromosome calculated by perturbing the original
problem data, a is a user denned parameter to keep the
lower bound (rj) and upper bound (n) on the perturbed
dummy values in proximity to the original problem. As
one can see from Figure 3, each chromosome has a
different priority value for each node in different
chromosomes. So each chromosome guides the heuristic
to generate a different solution. We show a small
population size for demonstration purposes only. Once
the initial population (G°) is constructed, the PSGA-
based technique generates subsequent populations G1,
G2,... ,G'~i, G' by applying the genetic operators
(selection, crossover and mutation).

2.5. Partitioning heuristic

Pseudocode for the partitioning heuristic is given in
Figure 4. The inputs to this heuristic are the chromosome
and m, the number of disjoint subsets into which we want
to divide the nodes of the given graph. The partitioning
heuristic was applied to generate a solution from a given
chromosome with the objective of balancing the size
S(TTJ) among given w-subsets. In this heuristic the nodes
in each chromosome of the population are sorted into
descending order according to their priority. Then the
partitioning heuristic selects a node with the highest
priority and assigns it to one of the subsets TT, which has
the lowest size S(TTJ) currently among the given m-subsets
to keep the size of each subset nearly equal. The size of
each subset is the sum of the weight of all the nodes
mapped to that subset.

Partitioningheuristic (chromosome, m):
Build prioriry_list of nodes based on their priority value in the chromosome.
while (priorityjist o null) do begin

Select Jij with minimum S(jtj) currently.
Select the node j from priorityjist with the highest priority.
Assign node j ton j.
Update S(7ii) by adding to it O2(vj).
Delete node j from prioriryjist.

end while
End Partitioningheuristic.

FIGURE 4. Pseudocode for the partitioning heuristic.

The partitioning heuristic gives the size S(TTJ) of each
subset, the cut-size Cut(II) and the imbalance W(Jl) of
each solution generated by this heuristic is computed by
a separate procedure using (3) and (4). When we apply
the above heuristic the solutions for each chromosome in
the initial population are shown in Table 1 with the value
of m as 3.

2.6. Cost and fitness function

The cost function is the key issue as it reflects the goal of
the optimization. We take the sum of both the weighted
cut-size Cut(II) (3) and the imbalance W(U) (4) as a cost
function as shown below:

Cost(i) = w, * Cut(n) + LJ2 * IV (U) (7)

Where LO\ , LJ2 are the weight parameters which control
the objective function, whether we want the minimum
cut or more balanced partitions. The following cost-to-
fitness mapping function was used to calculate the fitness
of each chromosome (Storer et al., 1992):

(MaxCost - Cost(/))T

(8)

^(MaxCost - CostO))r

Where f(i) is fitness of chromosome i, MaxCost is the
maximum cost of a chromosome in the population,
Cost(/) is the cost of chromosome i, Np is the population
size, and r is a parameter which is used for fitness scaling
to balance convergence and diversity. Generally r is in
the range of 1 to 5. The fitness of each chromosome in the
initial population is given in Table 1 with the value of r
as 3 and ui\ = u>2 = 1.

2.7. Selection, crossover and mutation

Genetic operators such as selection, crossover and
mutation are the key elements of GAs. The selection
operator selects chromosomes for reproduction from the
current population based on their relative fitness.
Chromosomes with higher fitness will have a higher
probability of contributing one or more offspring in the
next generation. The selection method was implemented
using a biased roulette wheel where each chromosome in
the population has a slot sized in proportion to its fitness
(Holland, 1975; Goldberg, 1989). Each time we require
an offspring, a simple spin of the weighted roulette wheel
gives a parent chromosome. The chromosomes selected
for reproduction from an initial population depending
upon their fitness are given in Figure 5.

The crossover operator takes two parent chromo-
somes selected by the selection operator from the current
population and generates two children by incorporating
features from both parents. The premise here is that
through this process desirable features are enhanced
while most undesirable features are suppressed. We have
applied a one-point crossover operator to the priority of
the chromosome. In the one-point crossover operator, a
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O N THE W - W A Y G R A P H PARTITIONING PROBLEM 241

TABLE 1. Cost and fitness calculation for population G°

Solution "3 Cut(U) Cost Fitness

1
2
3
4
5
6

{1,2,8}
{1,2,8}
{5,6,9}
{1,2,8}
{6,8}

{1,8}

{3,4,9}
{3,7,9}
{1,3,8}
{5,6,9}
{2,3,4,5}
{3,5,6,9}

{5,6,7}
{4,5,6}
{2,4,7}
{3,4,7}
{1,7,9}
{2,4,7}

120
110
80
110
110
20

82
69
74
72
68
84

204
179
154
182
178
104

0.000000
0.013368
0.106943
0.009110
0.015037
0.855542

{1,2,8} means node vt

Parent chromosomes
(before crossover)

#31 70 | 30 |lO2
1 2 3

#6|l08| 44 | 27

Offspring chromosomes
(after crossover)

171|213|95|121|192|145| (dad) # 1 |7Q | 30 |l02[l30|l07|l25|ll0l235]224]
6 7 8 2 3 4 5 6 7 8

130|l07|l25|n0|235|224| (mom) #2|lQ8|44 127
6 7 8 1 2 3 4

| 95 |l2l|l92|l45|

Crosssite
6 7 8

FIGURE 5. Crossover to generate a new population.

cross site is selected randomly and the value of the
priority to the right of the cross site is swapped among
the two mating chromosomes. The crossover is applied
with a certain crossover rate (Pc), which is the ratio of the
number of offspring produced by crossover in each
generation to the population size. It controls the amount
of crossover being applied.

In nature, mutation refers to spontaneous and random
changes in genes. In a GA-based approach, mutation
introduces new features into the current population by
altering a randomly picked gene value. Mutation was
implemented by selecting a gene at random with a
mutation rate Pm and perturbing its value. The mutation
rate (Pm) is the percentage of the total number of genes in
the population which are mutated in each generation.
The default values for the crossover rate and the
mutation rate were selected based on simple GAs
studies, i.e. Pc = 0.6 and Pm = 0.001. In Figure 5,
chromosomes selected for crossover, the crossover site
for the priority is shown to form a new population. We
do not show the mutation operator in Figure 5 for the
sake of simplicity.

2.8. Parameter tuning

We experimented with various population sizes Np,
number of generations Ng, crossover rates Pc and
mutation rates Pm to determine parameter values
which give good results at a reasonable computation
cost. A population size between 150 and 200, number of
generations between 80 and 100, Pc — 0.6 and
Pm = 0.001 are sufficient to arrive at good solutions for
the GPP.

Cut(n)=23

W(ID=0

(a)

Cut(TI)=30

t l

(c)

FIGURE 6. Partitioning of the graph into (a) three subsets, (b) two
subsets with minimum cut-size and (c) with minimum imbalance.
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(100)

(259.13; (259.13)

(190.13)

1.59

(190.13)

(69.10)

FIGURE 7. A 14 node FFT graph.

The solution for the graph of Figure 1 for m = 3 is
shown in Figure 6(a). The solution in Figure 6(b) shows
the minimum cut-size, while Figure 6(c) shows minimum
imbalance for m = 2. One can generate different solutions
by controlling the values of weight parameters wj, LJ2.

3. EXPERIMENTAL RESULTS

The described PSGA for the GPP has been implemented
in C on a SUN SPARCstation 10 and has been tested on
many test examples. We report results for previously
published examples (Lee et al., 1989; Tao and Zhao,
1993; Sarje and Sagar, 1991) and on random graphs
(Johnson et al., 1989; Tao and Zhao, 1993). The first
example is a 14 node FFT graph adopted from Sarje and
Sagar (1991) as shown in Figure 7. Sarje and Sagar's
(1991) objective is to partition this graph to minimize the
weighted cut-size with minimum load imbalance among
partitions. Comparison of result with Sarje and Sagar is
shown in Table 2 for m = 2, 3 and 4, respectively. The
proposed technique produces better results both in terms
of the weighted cut-size and the imbalance among
partitions. The CPU time is less than 1 s on the
SPARCstation 10.

Our second example is a 16 node graph adopted from

(Lee et al., 1989; Tao and Zhao, 1993) as shown in
Figure 8. We are comparing results for this example with
Tao and Zhao (1993) as shown in Table 3. The value of
the weighted cut-size reported Lee et al. (1989) is 72 for
m = 3, which is an inferior solution to that already
reported in Tao and Zhao (1993). The proposed
technique produced the same best possible results
reported in Tao and Zhao (1993) for m = 3. We also
show different results for m = 3, which will result in
smaller cut-size with a small imbalance. The CPU time is
less than 1 s on the SPARCstation 10.

We also present results from randomly generated
graphs (Johnson et al., 1989) with unity weights on nodes
and edges. A standard random graph can be denoted by
RN,D> where N is the number of nodes and D is the
expected degree for each node. Given the values of N and
D, the parameter P = D/{N - 1) specifies the probabil-
ity that any given pair of nodes in the graph constitutes
an edge. We have implemented the KL algorithm for
comparison purposes. For all the test examples, the
population size is 200 and the number of generations is
100. The comparison of results for different randomly
generated graphs with the KL algorithm for m — 2
(bipartitioning) is shown in Table 4. The average cut-size

TABLE 2. Comparison of results for the FFT example

m

2

3

4

Proposed Technique

nodes partitioning W(T\,

{1,2,3,4,7,10,11},
{5,6,8,9,12,13,14}

{1,2,3,4,11},
{6,9,10,13,14},

{5,7,8,12}

{1,2,4,7}, {5,8,12},
{3,10,11,14}, {6,9,13}

)

33.56

312.76

589.98

Cut (XI)

46.97

72.17

94.71

T H E C O M P U T E R J O U R N A L , V O L . 38,

Sarje and Sagar (1991)

nodes partitioning

N/A

{1,2,3,4,10},
{5,6,7,8},

{9,11,12,13,14}

N/A

No. 3, 1995

W(n)

N/A

658.28

N/A

Cut(U)

N/A

78.47

N/A
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(3)
(3)

(i)

FIGURE 8. Sixteen node graph [adopted from (Lee et a/., 1989; Tao
and Zhao, 1993)].

were given as an input to our algorithm and the results
for cut-size and imbalance for a variety of partitions were
obtained. In order to provide a comparative study of the
results for weighted graphs obtained by our technique,
we have implemented simulated annealing (SA) with the
same values of parameters as reported in Johnson (1989).
Comparison of results with SA are reported in Table 5
for different values of m. The proposed technique
gives better or at least comparable results with less
CPU time.

4. CONCLUSIONS

Graph partitioning has useful applications in many
disciplines. In this paper, we have proposed a novel
scheme based on the PSGA for the w-way GPP to reduce
the weighted cut-size by proper balancing of the size

m nodes partitioning

TABLE 3.

Proposed Technique

W(U)

Comparison of results

Cut(U)

tor the 16 node example

Tao

nodes partitioning

and Zhao

\

(1993)

V(H) Cut(U)

{1,2,3,4,5,6,7,8,14}
{9,10,11,12,13,15,16} 3.0

{1,2,4,8,14},
{3,5,6,7,9,16}, 0.0
{10,11,12,13,15}

-{1,2,9}
{3,4,5,6,7,8,14}, 6.0

{10,11,12,13,15,16}
{1,2,3,4,5,6,7,8},

{9,11,14}, 16.0
{10,12,13,15,16}

{1,2}, {4,8,14,16}
{3,5,6,7}, 25.0

{9,10,11,12,13,15}
{1,2,14}

{3,4,5,6,7,8}, 9.0
{9,10,11},

{12,13,15,16}

23.0

54.0

49.0

47.0

58.0

66.0

N/A

{1,2,4,8,14},
{3,5,6,7,9,16},
{10,11,12,13,15}

N/A

N/A

N/A

N/A

N/A

0.0

N/A

N/A

N/A

N/A

N/A

54.0

N/A

N/A

N/A

N/A

is reported for the KL and the proposed technique for 10
test runs of each graph. The proposed technique
produces better or at least the same average cut-size as
obtained by using the KL algorithm. The proposed
scheme takes a longer time as compared with the KL
algorithm. The proposed technique is not intended for
graph with unity weight on nodes and edges.

The KL algorithm can neither handle the graphs with
weight on nodes and edges nor can it be used to partition
a graph into an odd number of subsets (partitions),
whereas the proposed technique can be used to partition
a weighted graph into any number of partitions. We have
generated random weighted graphs with different
degrees and number of nodes. The weights of the nodes
and the edges are selected randomly between an integer
range of 1-10 for 50 node graphs and between an integer
range of 1-20 for 100 and 150 node graphs. These graphs

TABLE 4. Comparison of results for bipartitioning of random graphs

Nodes
(N)

20

40

60

Degree
(D)

4
6
8

4
8

12

4
8

Edges
(E)

42
61
78

78
170
237

115
232

Proposed technique
Cut(U)

10
19
27

16
55
81

26
71

KL
Cut(U)

10
20.1
28.2

18.6
55.1
81.2

26
71.9
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Nodes
(N)

50

50

50

100

100
100

150

150

150

Degree
(D)

4

8

12

8

12
16

8

12

16

Edges
(E)

96

199

312

398

596
820

596

893

1196

TABLE 5.

m

4
6
8
6
8

10
4
8

12
10
15
10
15
15
10
15
10
15
10
15

I. AHMAD AND M. K. DHODHI

Comparison of results for m-way partitioning of random graphs

W(U)

13
47
15
13
51
95
18
43
99

107
478
113
584
502
70

444
108
394
110
462

Proposed

Cut (XI)

231
290
337
696
736
771
976

1243
1408
3225
3334
4961
5163
7280
4861
4904
7560
7821

10077
10703

CPU lime (s)

2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
3.0
4.0
5.0
4.0
5.0
5.0
7.0
8.0
7.0
8.0
8.0
9.0

W(W)

15
49
29
25
19
45

6
15
35
95

192
49

458
260

66
172
76

146
24

132

SA

Cut (II)

240
311
362
699
761
780
954

1292
1456
3238
3784
5145
5181
7173
4877
5275
7684
7824

10233
11268

CPU time (s)

5.0
5.0
6.0
5.0
6.0
8.0
7.0
8.0

10.0
16.0
18.0
17.0
20.0
24.0
27.0
35.0
28.0
38.0
36.0
40.0

of each subset. The PSGA-based scheme combines
the power of GAs, a global search method, with a
known fast heuristic to search a large solution space
in an intelligent way in order to find a best possible
solution within acceptable CPU times. It has been
demonstrated through experimental results that the
proposed algorithm is better in terms of both the
CPU times and the quality of solution over previous
work. Our algorithm can easily be adapted for
hypergraph partitioning. The parallel implementation
of the algorithm and for mapping to special architectures
for multichip designs can be extended very easily.
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