
262 BOOK REVIEWS

detailed annotated bibliography in the appendix that
provides pointers to reference material for a detailed study
of many of the basic concepts introduced in the book.

The book is well-written and intentionally pitched at a
very low level, making it suitable for undergraduates and
practising programmers. It can serve as useful material
for a first level course in formal methods and may
provide enough confidence to enable the reader to
undertake an advanced and more detailed study of the
intricacies of formal methods.

S. RAMESH

Indian Institute of Technology, Bombay

DAVID A. SCHMIDT

The Structure of Typed Programming Languages. The
MIT Press, 1994. ISBN 0 262 19349 3 £33.75 367pp.
softbound.

David Schmidt's new book brings together a large body
of recent research material on programming language
semantics and type theory. He presents this material in a
carefully integrated fashion, and the result is a book that
I expect to consult frequently for many years to come.

Chapter 1 introduces the syntax, typing rules, and
semantics of a core programming language, with
expressions and commands but not (yet) declarations.
Chapters 2-4 successively add declarations, parameters
and blocks, extending the original core language to a
substantial imperative language with relatively advanced
features such as parameterized modules. In these three
chapters Schmidt studies the abstraction, parameteriza-
tion, correspondence, and qualification principles in
detail. These semantic principles, originally due to
Landin and Tennent, suggest ways in which a program-
ming language can be systematically extended. By
studying the semantics of languages extended in these
ways, Schmidt demonstrates clearly that the principles
lead to languages that are exceptionally elegant and
powerful.

The next two chapters represent an abrupt change of
direction, which I personally found a bit disorienting.
Chapter 5 demonstrates that the essential features of a
programming language may be understood as a core
language extended by record and lambda-abstraction
constructions. Chapter 6 presents well-known results
about the lambda calculus itself, the simplest conceivable
programming language.

Chapter 7 then builds a functional programming
language, starting with an applicative core language,
and then extending it systematically in a similar manner
to Chapters 2-4. This development serves as a second
example of the recommended approach to language design,
and also gives an opportunity to explore polymorphism
and ML-style type inference. The latter entails unification
of type terms, which Schmidt rather cutely links into a short
study of a Prolog-like logic language, whose semantics
entails unification of value terms.

Chapter 8 summarizes recent research into the
implications of types-as-values, through the medium of
higher-order lambda calculi. Chapters 9-10 conclude the
book by exploring intuitionistic type theory, which is
based on a striking analogy: the types of a programming
language can be viewed as propositions, and the
programs themselves can be viewed as proofs.

Schmidt's presentation of denotational semantics is
unusual in that he defines the semantics, not of plain
phrases, but of phrases attributed by their types. For
example, his semantic equation for the core language's
while-command is:

[while E do C od : commj — w(s)
where w(s) = J / ([E : boolexpj(s),
w{{C: commas)),s)

Here E: boolexpr stands for a well-typed expression E of
type bool, and C: comm stands for a well-typed command
C. This notation enables us to state explicitly that the
meaning of an expression E: rexpr is a function in
domain Store —> [r] (where [r] is the function of values
of type r). The conventional notation of denotational
semantics enables us to state, less precisely, that the
meaning of an expression of any type is a function in
domain Store —> Value. The extra precision is essential to
what follows. For example, an important check on the
semantics of a typed programming language is whether
evaluation of an expression of type rexpr is guaranteed to
yield a value of type r (the subject reduction property),
and with no possibility of run-time type errors (the strong
typing property). Schmidt shows how to prove these and
other properties.

Notational overload, however, soon becomes a
signifiant problem for the reader. As soon as the core
language is extended by declarations, phrases such as
expressions must be attributed by 'type assignments' r as
well as types. The semantic equation for a while-
command becomes rather indigestible:

[while E do C od : comm\ — w(s)
where w(s) = //"([TT h E : boolexp\(s),
W([TT I- C : comm\{s)),s)

The reader will also have difficulty in making sense of the
diagrams of abstract syntax trees and proof trees.
Unaccountably, Schmidt has 'drawn' the tree
branches using '\', T, and '/' characters, which are
often hopelessly misaligned. The diagrams are there-
fore quite unintelligible. The publisher should address
this defect as a matter of priority.

My other criticism is a lack of clarity about the book's
intended readership. The back cover claims that the
book is 'designedfor use in a first or second level course on
principles of programming languages'. The preface is
silent on the intended readership, but claims that
instructors who prefer to discuss semantics informally
could just skip the sections with 'semantics' in their titles.

THE COMPUTER JOURNAL, VOL. 38, No. 3, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/3/262/359208 by guest on 11 April 2024

BOOK REVIEWS 263

I do not believe either of these claims! At best, the book
could be used as a postgraduate course text, provided
that the students have a very good grounding in
programming language concepts, syntax, and seman-
tics. The book is more likely to be read by academics and
research students.

That said, I would make this book required reading
for anyone who proposes to design a programming
language: there are too many amateur designers around!

DAVID A. WATT

University of Glasgow

NELL DALE, CHIP WEEMS & JOHN MCCORMICK
Programming and Problem Solving with Ada. D. C.
Heath. 1994. ISBN 0 669 29360 £24.95. 202pp.
softbound.

The book is intended as a first course in Ada
programming, for students with no previous program-
ming experience. At first sight, its 975 pages would seem
to substantiate the views of those who regard Ada as an
excessively large language, further confirmation being
provided by the discovery that the book falls far short of
covering the whole of the language. Closer inspection,
however, shows that its size has very little to do with the
size of Ada; indeed, much of the book is concerned solely
with the Pascal subset of Ada. Although the use of
predefined packages is introduced in the second chapter,
user-defined packages are not introduced until page 523.
User-defined generic units first appear on page 764. The
facilities for real time programming are not covered at all
nor are access types (pointers). Recursion is not
introduced until page 855.

This leisurely approach seems, in part at least, to be
the result of the authors' determination to write a
complete and up-to-date introduction to programming.
The result is a book that can stand by itself, with no need
for support from a teacher—provided the reader can
keep going for nearly a thousand pages.

The major weakness of the book is its prolixity but
there is a second problem. In their preface, the authors
make much of their introduction of advanced topics into
a beginners text. In some cases, for example the use of
extended BNF to specify the syntax of the language, this
is carried out effectively throughout the book. Many
other topics, however, are simply introduced and used
once, and are then forgotten; loop invariants, for
example, are introduced and clearly described in the
Chapter 8, but the many subsequent opportunities for
using them are then ignored. The O notation is
introduced in half a page, with an imprecise and
inaccurate definition. It is used once subsequently, for
a simple—and misleading—discussion of the time
complexity of sorting and searching algorithms. Finite
state machines are described very briefly as an
introduction to one simple program; they are not used
thereafter. If 0.1 devoted to finite state machines, the

reader may form the false impression that this reflects
their importance. It would have been better either to
have omitted these topics or to have treated them at
reasonable length.

Despite these criticisms, there are many good things in
this book. It reads well. There is plenty of good sense and
good advice on topics ranging from the naming of loops
to the ramifications of limited precision floating point
computation. There are many substantial examples and
case studies. There are a lot of exercises and sample
examination questions. Nevertheless, these features are
more likely to appeal to lectures than to students. When
buying a book about a programming language, students
usually want a text that can be used for reference; they
will therefore look for a more concise book with a fuller
coverage of the language.

M. F. BOTT

University of Wales, Aberystwyth

ALEX SIDAY

Programming with C: An Introduction. Edward Arnold.
1995. ISBN 0 340 60035 7 £12.99. 268pp. softbound.

Alex Siday takes a very traditional approach to teaching
a computer language in this book. Commencing with a
discussion of a simple computer, and an explanation of
how a it works (hardware, machine code, addresses, etc.),
he explains how to build algorithms which work on such
an architecture. These are gradually refined into valid C
programs, and the higher-level C constructs, such as
functions, procedures and structures, are introduced later
on. The ANSI standard for C is followed throughout.

In the first chapter the basic computer terminology is
introduced, and in Chapter 2 some simple programs are
discussed. For example, 'Find the quotient and remainder
of two numbers', which can be described in terms of
'storage locations'. Here, the concept of an algorithm is
clarified, and pre- and post-conditions are introduced as a
valuable concept when writing an imperative program.

In Chapter 3 the pseudo-code of the previous chapter
is refined into C, and in Chapter 4 the desirability of
modularizing large programs is introduced without
including extra C syntax. The next two chapters contain
the majority of C syntax, and are neatly followed in the
final two chapters by two detailed worked examples
(a 'telephones directory', using linked lists, and
an assembler). An informal definition of the C
language serves as an appendix, and the full code for
Chapter 8 (the assembler) is included as the second
appendix.

I liked the style of this book very much. I found it very
well written, and very easy to read. However, I have
several reservations.

There are far too many typographical errors (such as a
whole page of code with the comment delimiters being
\ * .. . * \) . The typeface used for code fragments is
simply bold face, and not always easy to follow (a fixed-

THE COMPUTER JOURNAL, VOL.38, No. 3, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/3/262/359208 by guest on 11 April 2024

