
264 BOOK REVIEWS

width font would have been preferable). The index is very
short and omits many topics I wished to cross-check.

The full code for the 'assembler' program is printed, but
no disk containing the source is provided, nor is any FTP
site named from which it might be downloaded. There is
far too much material to type in yourself, and so testing—
and experimenting with—that program is not feasible.

Finally—and perhaps most serious—some basic
techniques for 'good programming practice' are
ignored. For instance, mallocO returns a pointer, or
NULL if it fails to allocate the requested memory. The
code fragments exhibited which use mallocO never test
the return value to ensure that it is not NULL.

This book is very competitively priced, and not-
withstanding my comments above—which would not
greatly affect a novice programmer—I consider it a very
good introduction to the C language, and excellent value.

MIKE JOY

Warwick University

Joe SANDERS & EUGENE CURRAN
Software Quality. Addison-Wesley. 1994. ISBN 0 201
63198 9 £19.95. 179pp. hardbound.

The readers of this journal must include many that, like
your reviewer, have devoted most of their working life to
the writing of high quality software. And yet, presented
with any book titled 'software quality' our hearts sink.

This book does not disappoint our expectations. It
comprises a manger's guide to implementing a quality
system, a software engineer's guide to 'best practice' (in
'quality', not best practice in software development), and
six appendices, including overviews of the ISO 9000
standards and the Capability Maturity Model, ISO/IEC
9126 definitions of abstract nouns that mostly end in
'ility' and a summary of no less than 141 essential
practices.

The managers are given the usual motivational stuff,
what we used to call 'the cost of quality' is now called 'the
low cost of quality', although it is the cost of doing things
later classified as 'essentiaF. We are reminded that ISO
9000 certified companies demand similar certification of
their suppliers, so you better get certified and make
similar demands on your suppliers. 'Empowering
employees' is there but only in the non-threatening
sense of delegation of 'authority and decision-making ...
to the appropriate level'. 'Quality must be accepted by
everyone'; but not to worry: this can be achieved by a
'lively and appealing education programme'. Then you can
implement your quality system, get your ISO 9000
certificate and be in on the racket. Quality means points;
and you know what points mean: the Baldridge Award,
the Deming Award, the European Quality Award.

For the software engineers, or rather, their project
managers, there are some really sensible remarks:
software need to be designed for change; support is
needed as well as development; the causes of problems

need to be identified and eliminated. And then we have
three chapters that are, in substance, a process checklist,
each item being boldly labelled essential, important or
useful; the rationale for the classification is opaque. The
checklist is written, largely, as continuous prose. Here is
a specimen: '// is important to identify in the acceptance
test plans the acceptance tests necessary for the provisional
acceptance of the software'. Get the flavour?

'It is clear', say the authors (not descending to
argument), 'that the quality of software is largely
determined by the quality of the process used to develop
... it.' It is indeed clear, because it is trivial, if by 'process'
one means 'policies, procedures, tools and resources,
both human and technological.' But if one means
process—the sort of procedures that have to be
recorded for, say, ISO 9000 certification—then it is not
clear at all. Much quality depends not on process but on
the professional exercise of skill and care: do you choose
your hairdresser, dentist, car mechanic or dentist for
their process quality? And is it, do you suspect, just
possible that—even in these latter days—the most
important thing to do if you want high quality software
is to employ some really clever professional software
writers?

But the authors have anticipated your reviewer: 'It is
common for software developers to resist written standards
and procedures...' Then they reject them out of hand.
That is 'software quality' for you: those that understand
high quality software, and have long been committed to
it, are to be educated in a lively and appealing way, given
a fair hearing, and humoured.

ADRIAN LARNER
De Montfort University

S. LAKSHMIVARAHAN & SUDARSHAN K . DHALL

Parallel Computing Using the Prefix Problem. Oxford
University Press. 1994. ISBN 0 19 508849 2 £45.00.
294pp. hardbound.

This book comprehensively surveys parallel prefix
algorithms for shared memory and circuit models. It is
probably the only book available in the literature for
such a detailed treatment of the subject. The book begins
with the prefix problem and its applications and gives an
overview of the parallel models (shared memory and
circuit model). The subject matter for these topics is very
well written and contains several good examples, many
somewhat theoretical.

The second set of chapters covers algorithms for
shared memory models, more specifically, parallel prefix
algorithms on arrays and on linked lists, which include
Schwarz's algorithm, Cole-Vishkin algorithms as well as
randomized algorithms. Several examples are given for
the reader.

The rest of the book focuses on parallel prefix
algorithms for circuit models and discussion of fan-in
and fan-out restrictions for the circuits. The analysis of

THE COMPUTER JOURNAL, VOL. 38, No. 3, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/3/264-a/359238 by guest on 09 April 2024

BOOK REVIEWS 265

the circuit algorithms (e.g. Ladner-Fischer circuits) is
excellent. There is a detailed discussion on size versus
depth trade off in the circuits as well. Finally, the
appendices contain useful material on semi-groups and
monoids as well as other material relevant to the book.

The book is quite theoretical but is self-contained,
thanks to the appendices. To apply the algorithms to
message passing architectures will need some thought on
the reader's part. While the book has an extensive
coverage of algorithms and their analysis as well as
several examples to explain the algorithms, I feel that
more intuition is needed as to why the algorithms work.
For example, rather than providing the algorithmic
complexity and an example table it would be helpful if
the authors highlighted the fundamental reasons why the
algorithm works. The treatment also needs to be more
cohesive (in particles for circuit models) to show how the
algorithms relate to each other. Otherwise the reader
might get the feeling of reading a disjoint set of
algorithms and not be able to gather the fundamental
commonality or differences among them. Further, any
background material covered in the text should state
upfront where it is going to be applied.

For these reasons I feel that the book is more
appropriate for research purposes or an introductory
graduate level course; it may be difficult to understand at
an undergraduate level. At the research level I think it is a
very good book to have on one's shelf if one needs to
apply parallel prefix computations. The choice of
algorithms as well as their analysis is excellent. For the
research student there are a good number of exercises at
the end of each chapter; the algorithms are also presented
in a form that can be easily implemented. The notation,
too, is very readable.

RAJESH K. MANSHARAMANI

Tata Research Development and Design Centre
Pune, India

GERARD TEL

Introduction to Distributed Algorithms Cambridge
University Press. 1994. ISBN 0 521 47069 2 £29.95.
534pp. hardbound.

Distributed systems form a wide area and to choose what
should go in a book and what should stay out is hard,
especially since no particular 'core' has been denned or
agreed upon. For example, though networking is now
generally accepted as distinct from distributed systems,
there is still some confusion about exactly how much of
networking should be considered as part of distributed
systems. A clearer identification of the boundaries of
distributed systems would be very useful for the
discipline. This book does not help much in this
regard. In fact, a fair portion of the book is devoted to
protocols that are used in networking and covered in
books on networking (though typically with lesser
'formality').

A book on distributed algorithms can focus on
algorithms of a particular type, or select some areas
and cover algorithms in that areas. This book has taken
the latter approach. The book is organized in four parts,
plus an introductory chapter which is basically a
collection of brief overviews of many different topics.
Unfortunately, it does not help the reader much in
identifying the scope of the book.

Part One deals with algorithms that are used in
communication protocols at different levels. The sliding
window protocol and algorithms for routing and packet
switching are described. However, protocols for reliable
or atomic broadcast, which fall more under distributed
systems than networking, have not been discussed.

Part Two is closest to what might be considered the
'core' of distributed algorithms. This part includes
chapters on wave and traversal algorithms, election
algorithms, termination detection, snapshots, etc.
(though algorithms for mutual exclusion, an important
and a classical problem in distributed systems, have not
been discussed). Each chapter describes various
algorithms that have been proposed.

Part Three focuses on fault tolerance. Fault tolerance
in distributed systems is a wide area (there is a book
devoted to just this topic [1]), so clearly cannot be
covered in breadth in a book of this type. This part of the
book, in fact, focuses mostly on Byzantine agreement,
clock synchronization, and self-stabilization, and leaves
out the topics of state restoration, commitment,
atomicity, replication management, etc. Part Four
contains appendices.

Overall the book is a reasonable, though not complete,
reference for various distributed algorithms. There is a
fair amount of formalism (a bit too much for my liking).

[1] P. Jalote, Fault Tolerance in Distributed Systems, Prentice-Hall,
Englewood Cliffs, NJ, 1994.

P. JALOTE

Indian Institute of Technology,
Kanpur

SIEGFRIED TREU

User Interface Design & User Interface Evaluation.
Plenum Press. 1994. ISBN 0 306 44681 2 & 0 306
44746 0. $79.50 & $69.50. 351pp & 282pp. hardbound.

Treu's two-volume set is intended for use as either a text
book, or a reference tool. The first thing that a potential
reader should be aware of is that whatever is implied by
the title, Treu himself states that this is not an
implementation document—if you are looking for
something as a guide on good implementation style
stop right here. There is no advice on screen layout,
aesthetic issues or cognition in these books and as such
they are directed more towards the task of system design
than implementation of the actual interface. This really
contributes to the feeling that they are possibly a little
incomplete on the subject at hand.

THE COMPUTER JOURNAL, VOL.38, No. 3, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/3/264-a/359238 by guest on 09 April 2024

