
BOOK REVIEWS 265

the circuit algorithms (e.g. Ladner-Fischer circuits) is
excellent. There is a detailed discussion on size versus
depth trade off in the circuits as well. Finally, the
appendices contain useful material on semi-groups and
monoids as well as other material relevant to the book.

The book is quite theoretical but is self-contained,
thanks to the appendices. To apply the algorithms to
message passing architectures will need some thought on
the reader's part. While the book has an extensive
coverage of algorithms and their analysis as well as
several examples to explain the algorithms, I feel that
more intuition is needed as to why the algorithms work.
For example, rather than providing the algorithmic
complexity and an example table it would be helpful if
the authors highlighted the fundamental reasons why the
algorithm works. The treatment also needs to be more
cohesive (in particles for circuit models) to show how the
algorithms relate to each other. Otherwise the reader
might get the feeling of reading a disjoint set of
algorithms and not be able to gather the fundamental
commonality or differences among them. Further, any
background material covered in the text should state
upfront where it is going to be applied.

For these reasons I feel that the book is more
appropriate for research purposes or an introductory
graduate level course; it may be difficult to understand at
an undergraduate level. At the research level I think it is a
very good book to have on one's shelf if one needs to
apply parallel prefix computations. The choice of
algorithms as well as their analysis is excellent. For the
research student there are a good number of exercises at
the end of each chapter; the algorithms are also presented
in a form that can be easily implemented. The notation,
too, is very readable.

RAJESH K. MANSHARAMANI

Tata Research Development and Design Centre
Pune, India

GERARD TEL

Introduction to Distributed Algorithms Cambridge
University Press. 1994. ISBN 0 521 47069 2 £29.95.
534pp. hardbound.

Distributed systems form a wide area and to choose what
should go in a book and what should stay out is hard,
especially since no particular 'core' has been denned or
agreed upon. For example, though networking is now
generally accepted as distinct from distributed systems,
there is still some confusion about exactly how much of
networking should be considered as part of distributed
systems. A clearer identification of the boundaries of
distributed systems would be very useful for the
discipline. This book does not help much in this
regard. In fact, a fair portion of the book is devoted to
protocols that are used in networking and covered in
books on networking (though typically with lesser
'formality').

A book on distributed algorithms can focus on
algorithms of a particular type, or select some areas
and cover algorithms in that areas. This book has taken
the latter approach. The book is organized in four parts,
plus an introductory chapter which is basically a
collection of brief overviews of many different topics.
Unfortunately, it does not help the reader much in
identifying the scope of the book.

Part One deals with algorithms that are used in
communication protocols at different levels. The sliding
window protocol and algorithms for routing and packet
switching are described. However, protocols for reliable
or atomic broadcast, which fall more under distributed
systems than networking, have not been discussed.

Part Two is closest to what might be considered the
'core' of distributed algorithms. This part includes
chapters on wave and traversal algorithms, election
algorithms, termination detection, snapshots, etc.
(though algorithms for mutual exclusion, an important
and a classical problem in distributed systems, have not
been discussed). Each chapter describes various
algorithms that have been proposed.

Part Three focuses on fault tolerance. Fault tolerance
in distributed systems is a wide area (there is a book
devoted to just this topic [1]), so clearly cannot be
covered in breadth in a book of this type. This part of the
book, in fact, focuses mostly on Byzantine agreement,
clock synchronization, and self-stabilization, and leaves
out the topics of state restoration, commitment,
atomicity, replication management, etc. Part Four
contains appendices.

Overall the book is a reasonable, though not complete,
reference for various distributed algorithms. There is a
fair amount of formalism (a bit too much for my liking).

[1] P. Jalote, Fault Tolerance in Distributed Systems, Prentice-Hall,
Englewood Cliffs, NJ, 1994.

P. JALOTE

Indian Institute of Technology,
Kanpur

SIEGFRIED TREU

User Interface Design & User Interface Evaluation.
Plenum Press. 1994. ISBN 0 306 44681 2 & 0 306
44746 0. $79.50 & $69.50. 351pp & 282pp. hardbound.

Treu's two-volume set is intended for use as either a text
book, or a reference tool. The first thing that a potential
reader should be aware of is that whatever is implied by
the title, Treu himself states that this is not an
implementation document—if you are looking for
something as a guide on good implementation style
stop right here. There is no advice on screen layout,
aesthetic issues or cognition in these books and as such
they are directed more towards the task of system design
than implementation of the actual interface. This really
contributes to the feeling that they are possibly a little
incomplete on the subject at hand.

THE COMPUTER JOURNAL, VOL.38, No. 3, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/3/265/359246 by guest on 09 April 2024

266 BOOK REVIEWS

The first book starts with an extensive background on
the history of HCI and user interface design. It is
questionable whether this is really warranted, especially
at the level of detail at which it is presented. Most readers
will not be too interested with the various name and
acronym changes of the HCI special interest groups in
'the early days'. That the author met Doug Englebart
(best known as inventor of the mouse) and found him a
nice unpretentious bloke is an example of a questionable
inclusion. Another thing that is noticeable at this stage is
Treu's passion for formal definition and acronyms. It
seems that in this book, if there is an acronym for
something then it is defined and used as such, even if
it occurs only once. Additionally, every single
operative word is formally defined—even when the
definition is identical in meaning to that which any
pocket dictionary would give. Opening the book
completely at random as I write gives me a definition
of the word 'context'. I know of no one that does not
understand this word in the sense it is given: is this
padding or does the author really feel a need to make
sure his readers know what this means? Trying to get
into this book is not easy, and this is entirely down to
the fact that it reads like a set of old lecture notes.
Flow and continuity is poor and at some stages you
really feel like putting it down, even in the middle of
the more interesting portions.

If you persevere, however, you will not be entirely
disappointed. The books contain some interesting
subjects. One thing that a reader will notice is that they
are well researched. There are further references every-
where (although at some times this proves to be a further
obstruction to smooth flow) and the bibliography in the
first book alone runs to some 12 pages. The second
volume gives the number of publications selected and
referenced for the two book set as 'over 425', and goes on to
briefly discuss trends in those works. This would
supposedly cover the bulk of significant published material
on the subject in its short history. As such, anyone looking
for a starting point for research or directed reading in this
area could do far worst than look at Treu.

If you survive the early chapters and acquire sufficient
resistance to the style issue, you go on to find that the
books do indeed offer some worthwhile insights into
the field. As I have said, Treu does not concern himself
with issues of layout, but more at the feature level of
interaction. How to analyse what constitutes a necessary
inclusion in an interface design and what will produce a
good interface between software and people is the name
of the game, even if it is in a somewhat formal style. You
might go as far as to describe these, indeed most HCI
texts, as attempts to make order from chaos—taking the
highly subjective issue of interface design and giving it a
more formal, logical, structure. Do they succeed? Well,
this itself is a subjective question, but I think that they
could certainly have done a worse job.

As a reference tool, the books are good, but more as a
guide on where to look than a definitive source of

answers. How does it stand as a textbook? I would say
'on a somewhat less stable footing'. It is not easy to read
Treu, and certainly many of those at the undergraduate
level will struggle to find the willpower to read the books
from cover to cover, or indeed to finish them at all. The
numerous exercises in the book are best avoided as
presented. As something to provoke thought on each
chapter they are fine at the mental level. I pity anyone
called upon to answer them textually though—
potentially a very tedious process, and one that could
not be accomplished without repeated back-references. If
used as such, the only purpose served by the exercises is
to make the reader read the book, only benefiting those
who would otherwise not so do. I would say that the
books could be used for a very specialized course—
'only those very seriously interested need attent'.
Additionally, a complete HCI course would need a
sizeable amount of supplementary material to cover
the absence of aesthetic and cognitive-based
considerations on the more 'human' side of the
subject.

Who will want to read this book? Basically, anyone
looking for a place to start, or interested in all sides of the
subject. Those strictly into implementation and
programming are advised that they may get ideas from
this book, but not direct help, and if you want to know
how to explicitly lay out a screen, try looking elsewhere.
Mr Treu does, after all, advocate going out and asking
the advice of some 'experts' in the relevant field as a vital
step in designing an interface.

COLIN ISAAC
Warwick University

KEE YONG LIM & JOHN LONG

The MUSE Method for Usability Engineering.
Cambridge University Press. 1994. ISBN 0 521 47494 9
£29.95 330pp. hardbound.

MUSE is an acronym for Method for Usability
Engineering and this book is about the design process
in human-computer interaction. Lim and Long argue
very powerfully for a human factor design cycle which is
complementary to existing methods of structured design
for the functional aspects of a computer system. Unlike
some sets of HCI design guidelines the MUSE
methodology attempts to express design in procedural
rather than in declarative terms and this approach lends
itself to the integration with structured software design
methods.

The contribution of human factors to system
development is characterized as 'too little, to late'. The
book focuses on the development of a method for
integrating HCI into the early stages of the system
development life cycle, where errors are the most
expensive to correct. This is in contrast to some other
techniques which tend to raise HCI issues only towards
the end of the life cycle. In other words, MUSE has great

THE COMPUTER JOURNAL, VOL.38, No. 3, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/3/265/359246 by guest on 09 April 2024

