
266 BOOK REVIEWS

The first book starts with an extensive background on
the history of HCI and user interface design. It is
questionable whether this is really warranted, especially
at the level of detail at which it is presented. Most readers
will not be too interested with the various name and
acronym changes of the HCI special interest groups in
'the early days'. That the author met Doug Englebart
(best known as inventor of the mouse) and found him a
nice unpretentious bloke is an example of a questionable
inclusion. Another thing that is noticeable at this stage is
Treu's passion for formal definition and acronyms. It
seems that in this book, if there is an acronym for
something then it is defined and used as such, even if
it occurs only once. Additionally, every single
operative word is formally defined—even when the
definition is identical in meaning to that which any
pocket dictionary would give. Opening the book
completely at random as I write gives me a definition
of the word 'context'. I know of no one that does not
understand this word in the sense it is given: is this
padding or does the author really feel a need to make
sure his readers know what this means? Trying to get
into this book is not easy, and this is entirely down to
the fact that it reads like a set of old lecture notes.
Flow and continuity is poor and at some stages you
really feel like putting it down, even in the middle of
the more interesting portions.

If you persevere, however, you will not be entirely
disappointed. The books contain some interesting
subjects. One thing that a reader will notice is that they
are well researched. There are further references every-
where (although at some times this proves to be a further
obstruction to smooth flow) and the bibliography in the
first book alone runs to some 12 pages. The second
volume gives the number of publications selected and
referenced for the two book set as 'over 425', and goes on to
briefly discuss trends in those works. This would
supposedly cover the bulk of significant published material
on the subject in its short history. As such, anyone looking
for a starting point for research or directed reading in this
area could do far worst than look at Treu.

If you survive the early chapters and acquire sufficient
resistance to the style issue, you go on to find that the
books do indeed offer some worthwhile insights into
the field. As I have said, Treu does not concern himself
with issues of layout, but more at the feature level of
interaction. How to analyse what constitutes a necessary
inclusion in an interface design and what will produce a
good interface between software and people is the name
of the game, even if it is in a somewhat formal style. You
might go as far as to describe these, indeed most HCI
texts, as attempts to make order from chaos—taking the
highly subjective issue of interface design and giving it a
more formal, logical, structure. Do they succeed? Well,
this itself is a subjective question, but I think that they
could certainly have done a worse job.

As a reference tool, the books are good, but more as a
guide on where to look than a definitive source of

answers. How does it stand as a textbook? I would say
'on a somewhat less stable footing'. It is not easy to read
Treu, and certainly many of those at the undergraduate
level will struggle to find the willpower to read the books
from cover to cover, or indeed to finish them at all. The
numerous exercises in the book are best avoided as
presented. As something to provoke thought on each
chapter they are fine at the mental level. I pity anyone
called upon to answer them textually though—
potentially a very tedious process, and one that could
not be accomplished without repeated back-references. If
used as such, the only purpose served by the exercises is
to make the reader read the book, only benefiting those
who would otherwise not so do. I would say that the
books could be used for a very specialized course—
'only those very seriously interested need attent'.
Additionally, a complete HCI course would need a
sizeable amount of supplementary material to cover
the absence of aesthetic and cognitive-based
considerations on the more 'human' side of the
subject.

Who will want to read this book? Basically, anyone
looking for a place to start, or interested in all sides of the
subject. Those strictly into implementation and
programming are advised that they may get ideas from
this book, but not direct help, and if you want to know
how to explicitly lay out a screen, try looking elsewhere.
Mr Treu does, after all, advocate going out and asking
the advice of some 'experts' in the relevant field as a vital
step in designing an interface.

COLIN ISAAC
Warwick University

KEE YONG LIM & JOHN LONG

The MUSE Method for Usability Engineering.
Cambridge University Press. 1994. ISBN 0 521 47494 9
£29.95 330pp. hardbound.

MUSE is an acronym for Method for Usability
Engineering and this book is about the design process
in human-computer interaction. Lim and Long argue
very powerfully for a human factor design cycle which is
complementary to existing methods of structured design
for the functional aspects of a computer system. Unlike
some sets of HCI design guidelines the MUSE
methodology attempts to express design in procedural
rather than in declarative terms and this approach lends
itself to the integration with structured software design
methods.

The contribution of human factors to system
development is characterized as 'too little, to late'. The
book focuses on the development of a method for
integrating HCI into the early stages of the system
development life cycle, where errors are the most
expensive to correct. This is in contrast to some other
techniques which tend to raise HCI issues only towards
the end of the life cycle. In other words, MUSE has great

THE COMPUTER JOURNAL, VOL.38, No. 3, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/3/266/359269 by guest on 10 April 2024



BOOK REVIEWS 267

strength in the system specification stage, while other
HCI design techniques tend to focus on the system
evaluation stage of the life cycle. Other approaches to
HCI design are not necessarily excluded, but they are
considered to be seriously incomplete.

The MUSE methodology is concerned primarily with
the development of large systems, typically those
involving multidisciplinary design teams. In the context
of small projects with a single designer the use of MUSE
might be regarded as overkill, but even here the well
documented design solution which MUSE facilitates
may still be appropriate.

The book is aimed at software designers with some
understanding of existing HCI principles and techniques.
It is essential reading for any HCI specialist who is
interested in the formal integration of human factors into
the system development life cycle. It is also highly
recommended for software engineers who use structured
methods. The well-established methodology which the
authors have selected to illustrate MUSE is JSD. The
authors are attempting to assimilate human factors
considerations into JSD, rather than to extend JSD to
encompass human factors. Thus the desirable
characteristics of JSD and the well-established JSD
techniques are not affected by the authors' enhance-
ments. This work is not the first to attempt this synthesis
of methodologies, but is does seem to be the most
complete so far.

Does the method work? The reviewer has not
implemented any large systems during the review
period, so the method has not been put to any practical
test. However, there is a great deal of good sense in the
MUSE approach. It attempts to find a sensible balance
along the general-particular scale, i.e. avoiding both
under- and overdesign. It attempts also to give a
complete coverage of HCI issues in the design of
systems. The authors succeed to quite a large degree in
their aims of capitalizing on well-established techniques,
and promoting communication between HCI designers
and more traditional software designers.

The book includes a useful case study of the
application of the MUSE method for network security
management at University College London Computer
Centre, and this provides a good illustration of the power
of the methodology.

Both HCI academics and HCI practitioners will find
this book thought provoking and genuinely useful. Most
will not agree with everything written here: that is the
price paid for evincing a distinctive point of view and
attempting something of genuine practical value. Some
may be dismayed that their favourite HCI sub-topic is
not mentioned here, but the book is not intended as a
general HCI text. However, all should enjoy the lucidity
of the text, the well structured development and the
explicit expression of the key ideas. The attention to
detail is thorough. The diagrammatic notations are
generally clear enough for use by non-HCI specialists
and sophisticated users. Anybody already familiar with

JSD will find this book doubly useful, but readers who
do not use JSD need not be deterred.

J. ROSBOTTOM

University of Portsmouth
Department of Information Science

DERMOT BROWNE
STUDIO—Structured User-interface Design for Inter-
action Optimisation. Prentice-Hall. 1994. ISBN 0 13
014721 4 £22.95. 291pp. softbound.

The book addresses a neglected area, that of user
interface (UI) design. The content affords the user
interface the respect it deserves, given that so much
resource is spent on coding and maintaining it. Browne
quite rightly points out that the UI is often of as an
afterthought or something that is tacked on after the
other parts of the system have been designed. The idea of
treating UI developments as a separate activity from
systems development is a good one, particularly for
client-server applications.

The introduction provides a good 'route map' for
navigating through both the book and the STUDIO
method. Relevant anecdotes and a continuous case study
of financial dealing software are used to good effect
throughout the book to communicate the importance of
a systematic but user-centred approach to design.

The book challenges the complacency of those IT
professionals who assert that to achieve a quality user
interface requires only that 'style guidelines are followed
unerringly'. Browne uses anecdotal evidence to show that
if rules are followed slavishly without understanding,
they are likely to be applied inappropriately. His
systematic treatment of user requirements analysis as a
crucial precursor to the generation of user interface
designs reveals the true complexity of user needs and
behaviour. The case for thorough documentation and
understanding not provided by conventional systems
analysis is well made.

By example, rather than exhortation, STUDIO sets
about showing readers (it is hoped, software developers),
the procedures and benefits of a user-centred approach
to UI design. This is a most valuable contribution. The
reader, after exposure to the processes involved in
thorough exploration of user requirements, is shown
how to the generate user interface options, to use
prototyping and impact analysis to reject inappropriate
options and finally how to firm up and develop the
relevant ones. The handover from user-interface
designers to other developers also receives due
attention, one more filling a significant gap in available
guidance.

While STUDIO has a great deal to offer it also has
some unfortunate limitations. For instance, the
introductory example based on the HOLMES system
for the Home Office is perhaps not as convincing as it

THE COMPUTER JOURNAL, VOL. 38, No. 3, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/3/266/359269 by guest on 10 April 2024




