
Exploiting a Graphical Programming Paradigm
to Facilitate Rigorous Verification of Embedded

Software
WOLFGANG A. HALANG, BERND KRAMER AND LESZEK TRYBUS1

Faculty of Electrical Engineering, Fern Universitat, D-58084 Hagen, Germany
' Department of Electrical Engineering, Rzeszow University of Technology, PL-35-959 Rzeszow, Poland

Email: wolfgang.halang@fernuni-hagen.de, bernd.kraemer@fernuni-hagen.de, zaiprz@plumcsll.
umcs.lublin.pl

A computing architecture enabling economical safety licensing of software embedded in safety-critical
technical systems is defined. The architecture relies on mature methods and technology only. In
particular, it includes a highly ergonomic but rigorous validation method, called diverse back translation.
For safety-related program controlled electronic systems, safety licensing of software is extremely
critical, since it is far from being as dependable as hardware. The presented approach deviates from
classical construction and validation techniques by enforcing the re-use of pre-engineered and verified off-
the-shelf application-oriented standard software function modules and by employing a graphical
programming paradigm.

1. INTRODUCTION

In society, there is growing concern for safety and
environmental issues producing an increasing demand
for dependable technical systems preventing loss of
human lives and environmental disasters. To enable the
flexible adaptation of system functions to new needs and
to enhance the productivity of system development
processes, computer based systems are increasingly
being applied for both control and automation functions
under real time constraints. These systems have the
special property that hardware and software are
closely coupled to complex mixed-technology systems
such as manufacturing systems, process or traffic control
systems.

When it comes to dependability evaluation, hardware
turns out to be subject to wear. Faults occur at random
and may be of a transient nature. To a very large extent,
these sources of non-dependability can successfully be
coped with by applying a wide spectrum of redundancy
and fault tolerance methods. Software failures, on the
other hand, are neither caused by wear nor by environ-
mental events such as radiation or electric impulses.
Instead, all errors are requirements analysis, design or
programming errors, i.e. of systematic nature, and their
causes are always (latently) present. Dependability of
software cannot be achieved by reducing the number of
errors it contains close to zero by testing, reviews, or
other heuristic methods, but only by rigorously proving
that it is error free.

Taking the high complexity of software into account,
only in exceptional cases this objective can be reached
with the present state of the art. Whereas in general cases
one has to yield to the complexity problem, in this paper
we shall show a workable way of safety licensing by

exploiting the intrinsic properties of a special, but not
untypical and from the viewpoint of safety engineering
very important case, that was identified in industrial
control problems. Here complexity turns out to be
manageable, because the application domain demands
software of limited variability only. Moreover, this
software may be implemented in a well structured way
by graphically interconnecting carefully designed and
rigorously verified "software ICs".

There are already a number of established methods
and guidelines, such as [1], which have proven their
usefulness for the development of high integrity software
employed for the control of safety-critical technical
processes. Prior to its utilization, such software is further
subjected to appropriate measures for its verification and
validation. However, according to the present state of
the art, these measures cannot guarantee the correctness
of larger programs with mathematical rigour. For, object
code must be considered in the correctness proofs, since
compilers—or even assemblers—are themselves far too
complex software systems, as that their correct operation
could be verified. Therefore, depending on national
legislation and practice, the licensing authorities are still
very reluctant or even refuse to approve safety-related
systems whose behaviour is exclusively program con-
trolled. In general, safety licensing is denied for highly
safety-critical systems relying on software with non-
trivial complexity.

To provide a remedy for this unsatisfactory situation,
the architecture of a customized computer control
system, which supports diverse back translation, was
developed. Diverse back translation is a software
verification method whose utilization in the traditional
context turns out to be extremely tedious and time

THE COMPUTER JOURNAL, VOL. 38, No. 4, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/4/301/459169 by guest on 10 April 2024



302 WOLFGANG A. HALANG, BERND KRAMER AND LESZEK TRYBUS

consuming. Licensing authorities, for example, report up
to 2 person months' inspection effort for just 4 kbytes of
machine code [2]. Based on a graphical programming
paradigm and the reuse of validated standard building
blocks for software, however, diverse back translation
becomes very easy, economical and time efficient. The
presented approach is unique in providing support for
software verification already in the architecture. The
leading idea followed throughout this design was to
combine mature software engineering and verification
methods with architectural support. Thus, the semantic
gap between software requirements and the capabilities
of the execution environment could be closed, thus
relinquishing the need for non-safety-licensable compi-
lers and operating systems.

2. EVALUATION OF SOFTWARE
VERIFICATION METHODS

Testing in all its varieties and peer reviews are by far the
most widely used methods for software verification.
Although being quite effective means of detecting errors,
in general these methods are not capable of certifying
correctness. Often testing is not exhaustive enough,
because of the large or even infinite number of cases to be
covered.

Formal verification techniques are more and more
accepted as an important approach to achieve reliable
software, particularly in security and safety-critical
application domains. They use mathematical techniques
to verify the correctness of software rigorously. This,
however, is also the reason for their major drawback: the
application of formal verification techniques requires
special expertise, and the usually rather lengthy program
correctness proofs may contain errors, which may
remain undetected by peer review and may survive for
long times.

Diverse back translation is a software verification
method developed in the course of the Halden experi-
mental nuclear power plant project by TUV Rheinland
[3]. Owing to the requirements mentioned in the
introduction, its main idea consists of reading machine
programs out of computer memory and delivering them
to a number of different review teams working without
any mutual contact. By hand, these teams disassemble
and decompile the code, from which they finally try to
regain specifications. A safety licence is granted to a
software if its original specification agrees with all
inversely obtained respecifications. Of course, the
method is generally extremely cumbersome, time con-
suming and expensive. This is due to the semantic gap
between a specification formulated in terms of user
functions and safety requirements and the usual machine
instructions implementing it. On the other hand, diverse
back translation does not require expert knowledge. This
is especially important taking the legal quality of safety
licensing into consideration, because judges and juries
did not need to rely on expert advice, but could draw
their own conclusions in related law suits.

3. SOFTWARE FOR PROGRAMMABLE
CONTROLLERS

Since the early 1970s, when predecessors of today's
programmable controllers appeared on the market, the
graphical programming languages Ladder Diagram
(LD) and Function Block Diagram (FBD), as well as
the textual languages Instruction List (IL) and Struc-
tured Text (ST) have established themselves in a large
number of varieties along with several versions of
Sequential Function Chart (SFC) languages. Ladder
diagrams employ contacts and coils, instantaneous or
time-lagged, as familiar from relay rung circuits.
Function block diagrams look like networks consisting
of blocks, which are software equivalents of conven-
tional control elements and devices. The textual
languages prevail in the area of programming control
computers. Whereas instruction lists resemble assembly
language programs, structured texts are dedicated high
level languages. Sequential function charts are used on
the level of program organisation, i.e. on a higher level
than the other languages, and enable to formulate
sequence oriented programs using steps, transitions, and
actions as expressive elements.

Present day programmable controllers can be divided
into two classes, namely, programmable logic controllers
(PLC) and multifunction controllers (MFC). Due to
their short scan time, say 10 ms, PLCs are used in
automated manufacturing where logic control prevails,
whereas MFCs having much longer scan times, roughly
0.5 s, are employed for process control and continuous
regulation. Both PLCs and MFCs are now used by
people of rather different skills, viz. workers, technicians,
and engineers. Since they are easily understood by all
these groups, the graphical languages, LDs and FBDs,
are most common in practice, with LDs having turned
out typical for PLCs, whereas FBDs prevail in MFCs.
However, more and more PLCs are now also equipped
with FBDs to simplify programming. The FBD language
requires little training and provides real flexibility, by
allowing only slightly modified software to be used in
different applications.

A function block (FB) is a programming unit which,
when executed, yields one or more values. It may have a
memory for some internal or transient data. Instances of
a block may be created to assure reusability. Certain
blocks may be tied to a controller's resources such as
sensors, actuators, communication channels, or a man-
machine interface. They represent I/O blocks in FB
diagrams. The blocks not tied to resources are called
algorithmic. Normally, they constitute the majority in a
diagram. Depending on the complexities of their algo-
rithms these blocks are divided into simple and complex.
The former include arithmetic operations, logic gates,
switches, comparators, flipflops, memory cells and the
like. Among complex blocks one can typically find PID
controllers, servopositioners, ladder rungs, truth tables
and sequencers.

Programming in any FBD language is straightforward.

THE COMPUTER JOURNAL, VOL.38, No. 4, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/4/301/459169 by guest on 10 April 2024



EXPLOITING A GRAPHICAL PROGRAMMING PARADIGM TO FACILITATE RIGOROUS VERIFICATION OF EMBEDDED SOFTWARE 303

One must select appropriate resource blocks, create
instances of algorithmic blocks required by the control
strategy, make connections (a net list), and specify the
execution order. The whole procedure closely resembles
the traditional assembling of control systems from
hardware elements and devices, i.e. wiring analogue
regulators, operational amplifiers, electromagnetic relays,
TTL elements etc. (see e.g. [4] or any other text on
classical control equipment). Here, however, the FBs are
"elements and devices". Programming of typical con-
trollers proceeds in a conversational manner through a
series of questions and answers. Some CAD packages
have recently become available, which create FB
diagrams on a screen and then transfer the resulting net
lists to controller memory.

Owing to the reusability of FBs only the net lists must
be changed if one moves from one application to
another. Already tested blocks diminish the need for
developing new software. The design process becomes
faster and costs are reduced. Of the four groups of
control languages, FBDs favour reusability the most. As
we shall see in the sequel, this feature is crucial to the
software licensing problem.

The set of function blocks available in a particular
controller depends on its application area. Automated
manufacturing based on PLCs focuses on logic and
sequence operations, so ladder rungs, truth tables,
sequencers with interlocks, decoders, multiplexes, coun-
ters, etc. are typical FBs. Here integer arithmetic is
sufficient. The blocks provided by MFCs for process
control include PID algorithms, servo-positioners, fil-
ters, set-point drivers, clock programmers, etc. Here
floating point numbers are necessary. The sets of FBs
offered by leading manufacturers are "locally complete"
in the sense that they are capable of solving virtually all
individual problems which occur in a particular applica-
tion area, taking available resources, scan time and
memory (net list) size into account. The "virtually all"
statement is a matter of experience grown over the years
from numerous applications. The FBs available now in
Honeywell's TDC, Siemens's AS, Bailey's INFI or
Foxboro's SA control systems are typical examples.

Within this framework, a large number of manufac-
turer dependent FB sets was developed in the past. An
analysis reveals two opposite extremes which specify the
range of approaches taken, i.e. either a small number of
highly sophisticated FBs, or a large number of quite
simple FBs. The FBs of all Honeywell TDC systems are
examples of the first approach. The recent TDC 3000
Process Manager has only five types of FB (slots): digital
composite, logic slot, process module, regulatory PV and
regulatory control. Each type admits selection of a
specific algorithm with various parameters, whose
number sometimes exceeds 50. Similarly sophisticated
FBs are typical for big systems, including Siemens's AS,
Bailey's INFI, and Foxboro's IA. Not surprisingly,
simple FBs are the domain of low cost automation, i.e.
instruments sized according to DIN standards and small

PLCs. Here the blocks have at most a few inputs, and
none or up to 10 parameters. The FBs of Hartmann and
Braun's Digital P-controllers and of Moore's MYCRO
instruments belong to the most simple. Somewhat more
complex are those of Siemens's SIPART multifunction
unit and SIMATIC S5-90/95U PLCs.

It is obvious that a set of sophisticated FBs requires
extensive training. However, the user's prior background
in control systems can be limited, since sophisticated FBs
take into account all details anyway. The other extreme,
although attractive at first glance, requires a much better
background, since the user him- herself has to develop
reasonable control strategies using very simple compo-
nents (blocks). Such non-compatible solutions to auto-
mation problems, apart from hardware-related
peculiarities, effectively tie the user to a particular
manufacturer. Hitherto, FB sets were not uniform and,
hence, application software was not portable among
different controllers.

A problem which has steadily been gaining importance
is (fast) logic control and (slow) continuous regulation
performed by a single controller, because installations
where manufacturing strongly interacts with technologi-
cal processes have become more and more common.
MFCs are capable of handling both logic and regulation,
however, at the expense of relatively long scan times. On
the other hand, PLCs cannot perform many floating
point calculations, because the scan time would quickly
exceed acceptable limits. Hence, so far the two tasks have
to be handled jointly by PLCs and MFCs communicat-
ing over peer-to-peer channels. The development of such
systems is time consuming and costly, single controllers
would be much more appropriate. It is clear, however,
that the FB sets of such controllers would have to be
"globally complete" to solve the problems in each
application area, which means blocks and arithmetic
functions suitable both for automated manufacturing
and process control.

4. A RE-USE ORIENTED SOFTWARE
ENGINEERING PARADIGM

To solve the problems of software reusability, portability
and global completeness, an international committee was
created, which in 1992 produced the international
standard [5]. The third part of it deals with languages
for programmable controller. As until now, the IEC
1131-3 languages are graphical, Ladder or Function
Block Diagrams, and textual, Instruction List and
Structured Text, with, if necessary, supervisory functions
formulated as a Sequential Function Chart. The IEC
1131-3 deals with modularization and structured pro-
gramming, defines the languages' scope for increased
portability, and provides integration into a globally
complete environment. The benefits of uniform pro-
gramming are particularly important for the users, who
will now need one period of training and familiarization
only, and work more efficiently and economically by not
being tied to particular manufacturers. The software

THE COMPUTER JOURNAL, VOL. 38, No. 4, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/4/301/459169 by guest on 10 April 2024



304 WOLFGANG A. HALANG, BERND KRAMER AND LESZEK TRYBUS

developed will generally be used again. The IEC 1131-3
represents a leap forward in the quality of control
programming languages.

Three leading manufacturers have already been able to
develop controllers with software conforming to IEC
1131-3. These are Eurotherm's PC3000 Production
Process Controller, Moore's Advanced Process Auto-
mation and Control System, and Philips's P8 Automa-
tion System. One can expect that the other companies
will follow soon. It is only a question of time until the
IEC 1131-3 languages will be taught in college and
university courses.

Standardization bodies of the Society for Measure-
ment and Automation Technology and of the chemical
industries in Germany have identified and defined a set of
67 application specific function blocks suitable to
formulate in the graphical FBD language as defined by
the international standard IEC, 1131-3, the large
majority of the automation problems [6] occurring in
chemical engineering. The following list of function
modules1 defined in the guideline VDI/VDE 3696 gives
an impression of typical functionalities:

monadic mathematical functions: absolute value, cosine,
sine, exponential function, natural and base 10
logarithms, square root, limiter, non-linear static
function, linear scaling;

polyadic mathematical functions: addition, subtraction,
multiplication, division, modulo, exponentiation;

comparisons: equal, greater or equal, greater, less or
equal, less, not equal;

monadic Boolean function: negation;
polyadic Boolean functions: conjunction, disjunction,

antivalence;
edge detectors: falling and rising edge detection;
selection functions: maximum and minimum selections,

selection by 1 out of N bits, demultiplexers for
Booleans and numbers, multiplexers for Booleans
and numbers, binary selections of a Boolean or a
number;

counters, monostables, bistables, timers: up/down coun-
ter, flow counter, bistable elements with set/reset
dominance, pulse duration modulator, on/off delays,
non-re-triggerable monostable element;

process input/output: analogue input/output, binary
input/output, digital word input/output, impulse
input;

network communication input/output: communication
input/output for a Boolean or numerical value;

dynamic elements and regulators: universal and Standard
controllers (PID-T1), running time average, dead time,
differentiation with lag (D-Tl), integrator (I), lead lag
(PD-T1), 2nd order;

conditioning for display and operation: limit switch with
alarm or message storing, alarm or message storing,

1 For an in-depth treatment of the function module concept we refer
to [7].

trend registration, manual value entry with switch and
limitation.

Written in the IEC 1131-3 high-level language Structured
Text, these software modules are usually quite short;
their source code does not exceed two pages. Unbounded
iteration and recursion do not occur in these modules.
Therefore, their correctness can be formally proven with
bearable effort, e.g. using predicate calculus, but also
symbolic execution or, in some cases such as Boolean
functions, even complete test.

In order to give another typical example, consider the
programming of emergency shut-down systems. Func-
tional logic diagrams, which describe the corresponding
mappings from Boolean inputs to Boolean outputs as
functions of time, require as few as only four function
modules, viz., the three basic Boolean operators and a
timer, to be combined.

The above mentioned analysis of process automation
suggests the introduction of a new programming
paradigm, viz., composing software out of high-level
user oriented and reusable building blocks instead out of
low-level machine oriented instructions. Whereas a
single machine instruction taken out of a program
context does not reveal its purpose, the occurrence of a
certain function module instance usually gives a clue to
the problem, its solution and the module's role in it.
Therefore, we select basic function modules as elemen-
tary units of application programming. Essentially, for
any application area, there will be specific sets of basic
function modules, although certain functions like analo-
gue and digital input and output have general relevance.

For the formulation of automation applications with
safety properties, basic function modules are only
interconnected with each other to result in diagrams
that look like dataflow diagrams used for functional or
activity modeling. The boxes in the function block
diagram depicted in Figure 1 represent program activ-
ities, while lines model unidirectional flow of typed
information necessary for function blocks to carry out
these activities. Individual function blocks are invoked
according to the partial ordering given by the "wiring"
and, in the course of this, they pass data along their
connecting lines. Lines may branch to represent fan-out,
i.e. multiple identical copies of data can be delivered
coincidently to other function blocks acting as con-
sumers of those data. But lines may not join in the sense
of fan-in or merging of incoming data.

Besides the provision of constants such as bar
provided at external input XUNIT of function block Bl
in Figure 1, the function blocks' instances and the data
flows between them are the only language elements used
on this programming level. Software development is
carried out in graphical form using an appropriate CAD
tool. Once a diagram is satisfactory, a compiler trans-
forms the graphically represented program logic into
object code. Owing to the simple structure, this logic is
only able to assume, the generated programs contain no

THE COMPUTER JOURNAL, VOL.38, No. 4, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/4/301/459169 by guest on 10 April 2024



EXPLOITING A GRAPHICAL PROGRAMMING PARADIGM TO FACILITATE RIGOROUS VERIFICATION OF EMBEDDED SOFTWARE 305

other features than sequences of procedure calls and
some internal data moves.

The fundamental feature of this paradigm, which
facilitates managing the complexity of large systems, is
that diagrams can be "canned" into single function
blocks which, henceforth, may occur in other diagrams
as more abstract and functionally more complex, but on
a higher level application oriented components. Thus,
the interconnection complexity of single diagrams can
always be kept low. Strict rules control the correct
hierarchical (de-) composition of diagrams [8].

Fortunately, an—apparently still impossible and,
therefore, presently unavailable—safety-licensed compi-
ler, transforming graphical software representation into
object code is not a necessary precondition to employ
this high-level programming paradigm. Application
software may be safety licensed by subjecting its loaded
object code to diverse back translation. Employing the
programming paradigm of basic function modules,
specifications are directly mapped on to sequences of
procedure invocations. The invoked procedures imple-
ment the functionality of individual function modules,
which are drawn from a library and which are verified
only once during their lifetime using both specification
and program verification techniques. Therefore, the
object code derived from a diagrammatic program only
consists of procedure calls and parameter passing code.
It takes only minimum effort to interpret such code
complementing just module interconnections, and to
reconstruct graphical program specifications from it. If
the implementation details of the function modules used
are part of the firmware, they remain invisible from the
application programming point of view and do not
require safety licensing in this context.

Using diverse back translation for software verifica-
tion is further facilitated by the problem-oriented

architecture introduced in the next section. Owing to
the employment of basic function modules with applica-
tion-specific semantics as the smallest units of software
development, the effort for the method's utilization is by
orders of magnitude less than in the cases reported by [9].
Furthermore, the employed principle of reuse-oriented
software engineering reduces the number of possibilities
to solve a given problem in different ways. Therefore, it
becomes considerably easy to check the equivalence of
reversely documented software with an original pro-
gram. Finally, tools for the graphical back translation of
memory-resident programs are already part of the
standard support software of distributed process control
systems, thus facilitating the application of diverse back
translation for verification purposes.

5. A SAFETY-ORIENTED ARCHITECTURE

As architecture for a safety-oriented computer control
system we select a standard microcomputer endowed
with a firmware interpreter implementing a set of basic
function blocks. For the envisioned purpose of executing
software represented in form of function block diagrams
the interpreter is required to perform just two instruc-
tions on the user programming level:

• GET < operand-address > and
• PUT < operand-address > .

A function block invocation gives rise to an object
program consisting of a number of parameter fetches
from RAM or ROM locations carried out with GET
instructions and a number of result storage operations
with the help of PUT instructions. First, the interpreter
fetches the identification of a function block to be
invoked. From this the appropriate number of input
parameters and, if need be, also of the block's internal
state variables is derived, which are then fetched.

unax >

nadr >

Tu >

ts >

Bl B2

XM1N X
XMAX
XUNiT
HWADR

TMPX

IN_A

1

2.0 -
0 -

X Y
KP
TN
TV

C

B4

0 -
X OS
LOW
S

SAM

B5

1 -
X OS
LOW
S

SAM

TMP-Y

1

TMP-H

1

1
TMP-L

B3

Y

HWADR

OUT.A

B6

Q

12

OR

B7
TMP-OR

1 -
Al —
14 —

1
AON
AMODE
APRK)

AM

FIGURE 1. A graphically formulated FBD-program for pressure control and supervision.

T H E COMPUTER JOURNAL, V O L . 3 8 , N o . 4, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/4/301/459169 by guest on 10 April 2024



306 WOLFGANG A. HALANG, BERND KRAMER AND LESZEK TRYBUS

Subsequently, the object program implementing the
function block is executed. In the course of this, the
interpreter performs all necessary data manipulations
and communications with the environment. The ela-
boration of the function block ends with storing the
results and new internal states generated into RAM.

In order to prevent any modification by a malfunction,
in this safety-oriented architecture all programs must be
provided in read only memories. For practical reasons,
there will generally be two types of memory. On the other
hand, there is no program RAM at all. The code of the
basic function modules resides in mask-programmed
firmware ROMs, which are produced under supervision
of and released by the licensing authorities, after the
latter have rigorously established the correctness of the
modules and the correctness of the translation from
Structured Text into object code. On the other hand, the
sequences of module invocations together with the
corresponding parameter passing, representing applica-
tion programs at the architectural level, are written into
(E)PROMs by the user. This part of the software is
subject to project specific verification again to be
performed by the licensing authorities which, finally,
still need to install and seal the (E)PROMs in the target
process control computers. This program memory
configuration is chosen to physically separate two
software parts from one another: one with general
scope which only needs to be verified once, and the
other one being application specific.

6. SOFTWARE SAFETY LICENSING

All elements of an employed function block set contained
in a library are first verified with appropriate formal
methods. Note that this rather costly safety licensing
needs to be carried out only once, after a certain function
block set has been identified and standardized for a given
application area. The licensing costs can thus be spread
over many implementations leading to relatively low
costs for each single automation project. Hence, for any
new application program, only the proper implementa-
tion of a particular interconnection pattern of invoked
function block instances needs to be verified. For this
purpose we subject the object code processed by the
interpreter to diverse back translation, because CAD
tools used for graphical programming contain high
complexity utility and compiler-like programs, whose
correctness cannot be established rigorously. Although it
may be considered as a rather non-elegant brute force
method, diverse back translation is especially well suited
for the verification of the correct implementation of
graphically specified programs on the architecture
introduced above. This is due to the following reasons:

• The method is essentially informal, easily conceivable,
and immediately applicable without any training.
Thus, it is extremely well suited to be used on the
application programming level by people with the
most heterogeneous educational backgrounds. The

ease of understanding and use inherently fosters error
free application of the method.

• Since graphical programming based on application
oriented function blocks has the quality of specification
level problem description, and because by design there
is no semantic gap in our architecture between the
levels interfacing to humans and to the machine
(provided by the interpreter), diverse back translation
leads back in one easy step from machine code to
problem specification.

• For our architecture, the effort required for the
utilization of diverse back translation is by several
orders of magnitude smaller than for the regular von
Neumann architecture not enhanced with an inter-
preter for application specific firmware.

As already its name implies, diverse back translation is
a verification method to be carried out with diverse
redundancy. Originally, this called for different teams of
human inspectors. Since, in the case considered here,
there is only one rather simple reverse translation step,
we are optimistic that the licensing authorities will
eventually accept the following procedure. Verification
by back translation is carried out by a number of
different programs, which should be proven in practice,
but do not need to be formally verified. Such programs
are to yield graphical outputs. An official—human—
licenser performs the back translation as well, compares
his or her results with those of the verification programs
on one hand, and with the original graphical application
program under inspection on the other, and, upon
coincidence, issues a safety licence. Such a procedure is in
line with the dependability requirements for diversely
redundant programs demanded by the licensing autho-
rities and necessitates only the minimum of highly
expensive human involvement, viz., one licenser, who is
always indispensable to take the legal responsibility for
issuing a safety licence.

7. A WORKED EXAMPLE

We want to illustrate the application of back translation
by working out a relatively simple, but realistic example.
The different representation levels of a program, viz.,
Function Block Diagram, net list and object code for the
interpreter in our architecture, are shown in full detail. It
will become evident that it is straightforward and very
easy to draw a function block diagram from a given
object program establishing the feasibility of back
translation as a software verification method.

Figure 1 shows a typical industrial automation
program in graphical form. It performs supervision
and regulation of a pressure. The program is expressed in
terms of standard function blocks as defined in the
guideline [6]. An analogue measuring value, the con-
trolled variable, is acquired by a function block of type
IN_A from the input channel with address INADR and
scaled within the range from XMIN to XMAX to a physical
quantity with unit XUNIT. The controlled variable is fed

THE COMPUTER JOURNAL, V O L . 3 8 , No. 4, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/4/301/459169 by guest on 10 April 2024



EXPLOITING A GRAPHICAL PROGRAMMING PARADIGM TO FACILITATE RIGOROUS VERIFICATION OF EMBEDDED SOFTWARE 307

into a function block of type C performing proportional-
integral-differential (PID) regulation subject to the
control parameters KP, TN, and TV. The resulting
regulating variable is converted to an analogue value
by a type 0UT_A output function block and switched on
to the. channel addressed by OUTADR. In addition, the
controlled variable is also supervised, with the help of
two instances of the SAM limit switch standard function
block type, to be within the limits given by the
parameters LS and HS. If the controlled variable is
outside of this range, one of the QS outputs of the two
SAM instances becomes logically true and, hence, the
output of the type OR function block as well. This, in
turn, causes the type AM alarm and message storing
function block to create a timed alarm record. The
inputs of the standard function blocks comprised by the
program which are neither fed by externally visible inputs
of the program itself nor internally by outputs of other
standard function blocks are given constant values.

<<< Component L i s t >>>

IN_A
C
0UT_A
SAM
SAM
OR
AM

Bl
B2
B3
B4
B5
B6
B7

<« Wire List >»

NODE REFERENCE

[00001] N00001
Bl
B2
B4
B5

[00002] N00002
B2
B3

[00003] N00003
B4
B6

[00004] N00004
B6
B7

[00005] N00005
B5
B6

[00006] XMIH
Bl

[00007] XMAX
Bl

[00008] 'BAB1

Bl

[00009] ' 2 '
B2

PIS #

5
1
1
1

5
1

4

1

3

1

4

2

1

2

3

3

PIN NAME

X

X

X

X

Y

Y

QS
11

q
i

qs
12

XHIN

XMAX

XUSIT

TH

PIN TYPE

Output
Input
Input
Input

Output
Input

Output
Input

Output
Input

Output
Input

Input

Input

Input

Input

PART TYP

IN.A

C

SAM

SAM

C
OUT.A

SAM

OR

OR

AM

SAM

OR

IH.A

IN.A

IH.A

C

The net list representation of the above example
program as generated by a utility program of the
OrCAD schematic capture tool is shown in Figure 2.
Net lists constitute textual representations which are
fully equivalent—but for geometrical aspects—to the
original drawings.

The object code for the interpreter finally obtained by
automatic translation of the example program's net list
representation is listed in Figure 3. It shows a (readable)
assembly language version. Of the different function
block types instantiated in the example, C, SAM, and AM
have internal state variables, viz., C has 3 and the other
two types have 1 each.

The object code listed in Figure 3 illustrates that all
function block instance invocations occurring in a
program are directly mapped onto procedure calls.
Each of them commences with a GET instruction which
transfers the identification (e.g. ID-C) of the correspond-
ing block out of an appropriate ROM location to the
interpreter. Then, the input parameters are supplied by
reading appropriate ROM (for constants) or RAM (for
program parameters and intermediate values) cells.
Finally, if there are any, the values of the procedure's
internal state variables are read from appropriate RAM
locations. There is a set of correspondingly labelled (e.g.
RAM-loc-B2-isv/) locations for each instance of a
function block with internal states. When the interpreter
has received all this information, it executes the
procedure and returns, if there are any, values of
output parameters and/or internal state variables,
which are then stored into corresponding RAM loca-
tions. A connection between an output of one function
block and an input of another one is implemented by a
PUT and a GET instruction: the former storing the output
value in a RAM location for a temporary value (e.g.
TMP-X), and the latter loading it from there. In other
words, each node in a net list gives rise to exactly one
transfer from the interpreter to a RAM cell, and to one
or more transfers from there to the interpreter. The
implementation details of the various procedures are
part of the architecture's firmware and, thus, remain
invisible.

According to the above described structure of the

GET

GET
GET
GET
GET
PUT

GET
GET
GET
GET
GET
GET
GET
GET
PUT

PUT
PUT
PUT

ROM-loc-ID-IN.A
RAM-loc-XMIH
RAM-loc-XMAX
ROM-loc-BAR
RAH-loc-IHADR
RAH-loc-TMP-X

ROM-loc-ID-C
RAH-loc-TMP-X
RAM-loc-KP
ROM-loc-2.0
ROM-loc-0.0
RAM-loc-B2-isvl
RAM-loc-B2-isv2
RAM-loc-B2-isv3
RAM-loc-TMP-Y
RAM-loc-B2-isvl
RAH-loc-B2-isv2
RAH-loc-B2-isv3

GET

GET
GET

GET
GET
GET
GET
GET
PUT
PUT

GET
GET
GET
GET
GET
PUT
PUT

ROM-loc-ID-OUT.A
RAM-loc-TMP-Y
RAM-loc-OUTADR

ROM-loc-ID-SAM
RAM-loc-TMP-X
ROM-loc-0
RAM-loc-HS
RAM-loc-B4-isv
RAM-loc-TMP-H
RAM-loc-B4-isv

RQM-loc-ID-SAH
RAH-loc-TMP-X
ROM-loc-1
RAH-loc-LS
RAM-loc-BS-isv
RAM-loc-THP-L
RAH-loc-BS-isv

GET
GET
GET
PUT

GET
GET
GET
GET
GET
GET
PUT

RDM-loc-ID-OR
RAH-lo<
RAH-lo(
RAM-lo(

RON-loc
RAM-lo<
ROH-lo
ROM-lo
ROM-lo
RAH-lo
RAM-lo

-TMP-H
:-THP-L
:-TMP-0R

:-ID-AH
:-TMP-0R
: - l

:-Al
:-14
:-B7-isv
:-B7-isv

FIGURE 2. Net list representation of the example program. FIGURE 3. Object code representation of the example program.

T H E COMPUTER J O U R N A L , V O L . 3 8 , N o . 4, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/4/301/459169 by guest on 10 April 2024



308 WOLFGANG A. HALANG, BERND KRAMER AND LESZEK TRYBUS

interpreter's object programs, the process of back
translation—disassemble and decompile object code—
turns out to be very easy. To perform back translation,
the first GET instruction is interpreted. It identifies a
function block to be drawn into the function block
diagram to be set up. By comparing the subsequent GETs
with the function block's description contained in the
library used, the correct parameter passing can be easily
verified. Moreover, for each such GET which corresponds
to a proper parameter (and not to an internal state
variable) a link is drawn into the diagram. There are two
kinds of links. The first one are connections from
program inputs or constants to inputs of function
blocks or from function block outputs to program
outputs. The second kind are, so to speak, half
connections, namely, from function block outputs to
named connection points in the diagram, i.e. net list
nodes, or from such points to function block inputs.
When the diagram is completely drawn, the names of
these points can be removed. With respect to the internal
state variables it needs to be verified that the corre-
sponding RAM locations are correctly initialized and
that the new values resulting from a function block
execution are written to exactly the same locations from
where the internal states were read in the course of the
block's invocation. The process of function block
identification, parameter passing verification, and draw-
ing of the block's symbol and of the corresponding
connections is repeated until the end of the object code is
reached.

8. EXPERIENCES AND RESULTS

We have built a prototype of a computerized controller
according to the architecture outlined above and
implemented a function block interpreter performing
Boolean negation, conjunction and disjunction as well as
time delays. Whereas the first three of these functions are
trivial, the delay timer required a formal correctness
proof, which was carried out employing HOL and which
turned out to be rather laborious and lengthy [10]. The
controller's utilization in practice showed that imple-
menting the functionality of a hard-wired emergency
shut-down system with a programmable electronic
system is feasible, and that the programming paradigm
based on formally verified function modules and on
application programs verified by diverse back translation
can render error free software. The latter, together with a
fault-tolerant hardware platform, allows programmable
safeguarding systems sharing the fail safe feature with
well established hard wired solutions to be implemented.

For ergonomic reasons, complex software should be
hierarchically structured in such a way, that the
formulations of its modules in form of function block
diagrams always fit on one page or a terminal screen. As
outlined before, these modules occur on the next higher
level of a hierarchical software structure themselves as
function blocks, whose interna are abstracted away and

which are executed by the interpreter described. Hence,
the complexity of a function block diagram will never be
greater than approximately ten times the one of the
example as given in the preceding section, which results
in a verification effort of at most a few hours' work (for
any particular function block diagram).

9. CONCLUSION

Economical considerations impose stringent boundary
conditions on the development and utilization of
technical systems. This holds for safety related systems
as well. Since manpower is becoming increasingly
expensive, safety-related systems need to be highly
flexible, in order to be able to adjust them to changing
requirements at low costs. In other words, safety-related
systems must be program controlled. Thus, we expect
that the use of hard-wired safety systems will diminish in
favour of computer-based systems.

In our society there is a growing concern for safety
(which comes hand in hand with the increasing aware-
ness for the environment). This has important con-
sequences for the assessment of computer controlled
systems. One has begun to realize the inherent safety
problems associated with software. Since it appears
unrealistic to abandon the use of computers for safety
relevant control purposes—on the contrary, for the
reasons mentioned above, there is no doubt that their
utilization in such applications is going to increase
considerably—the problem of software dependability
will multiply severely.

In the situation as outlined above, this paper addresses
a pressing problem. It does not present a solution to all
open questions in software safety licensing, but a
beginning is made which is practically feasible and
applicable to a wide class of common control problems.
Hence, we hope that the concept presented here will
ultimately lead to the replacement of discrete or relay
logic by programmable electronic systems executing
safety-licensed high integrity software in charge of
safety-critical functions in industrial processes. Meeting
the need of society for more dependable computing
systems under the prevailing economical restrictions, we
expect that the concept will give rise to workable
industrial implementations.

Our approach particularly observes ergonomic criteria
in the design of suitable software technology and an
adequate separation of human and computer functions.
The construction and validation methods, for instance,
rely on a graphical programming paradigm featuring
design by reuse of prefabricated and certified compo-
nents, thus serving simplification and unification without
restricting design scopes. Related support tools are
interactive, provide graphical user interfaces, and include
specification based prototyping capabilities (e.g, the
prototype presented in [8]). Once the graphical paradigm
stressed here is accepted by system developers and
licensing authorities, only minimum organizational

THE COMPUTER JOURNAL, VOL. 38, No. 4, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/4/301/459169 by guest on 10 April 2024



EXPLOITING A GRAPHICAL PROGRAMMING PARADIGM TO FACILITATE RIGOROUS VERIFICATION OF EMBEDDED SOFTWARE 309

measures should be required to introduce our method, as
it relies on traditional technology, such as diverse back
translation, but reduces the complexity of its use.

REFERENCES

[1] 1EC International Standard 880 (1986) Software for
Computers in the Safety Systems of Nuclear Power
Stations, International Electrotechnical Commission,
Geneva.

[2] Pofahl, E. (1994) TUV Rheinland, Private communica-
tion.

[3] Krebs, H. and Haspel, U. (1984) Ein Verfahren zur
Software-Verifikation, Regelungstechnische Praxis rtp, 26,
73-78.

[4] Hunter, R. P. (1978) Automated Process Control Systems:
Concepts and Hardware, Prentice Hall, Englewood Cliffs,
NJ.

[5] IEC International Standard 1131-3 (1992) Programmable

Controllers, Part 3: Programming Languages, Interna-
tional Electrotechnical Commission, Geneva.

[6] VDI/VDE Draft Guideline 3696 (1992) Vendor Independent
Configuration of Distributed Process Control Systems,
Beuth-Verlag, Berlin.

[7] Zoller, H. (1991) Wiederverwendbare Software-Bausteine
in der Automatisierung, VDI-Verlag, Dusseldorf.

[8] Halang, W. A. and Kramer, B. (1992) Achieving high
integrity of process control software by graphical design
and formal verification IEEjBCS Software Engineering
Journal, 7, 53-64.

[9] Dahll, G., Mainka, U. and Martz, J. (1988) Tools for the
standardised software safety assessment (The SOSAT
Project), in Safety of Computer Control Systems, edited by
W. D. Ehrenberger, Pergamon, Oxford, (1988).

[10] Halang, W. A., Kramer, B. J. and Volker, N. (1995)
'Formally verified building blocks in functional logic
diagrams for emergency shutdown system design', to
appear in High Integrity Systems.

THE COMPUTER JOURNAL, VOL. 38, No. 4, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/4/301/459169 by guest on 10 April 2024


