
A Method for Controlling the Production of
Specifications in Natural Language

BENJAMIN MACIAS AND STEPHEN G. PULMAN*

University of Cambridge Computer Laboratory, New Museums Site, Pembroke St, Cambridge CB2
3QG, UK

Email: sgp@cl.cam.ac.uk

Before a system can be formally defined, it is common to write a specification in a natural language as the
basis for the formal definition. Natural languages are not well suited for this task; documentation written
in a natural language is often ambiguous and imprecise. Inspection of real documentation also reveals
that, without special training, most writers do not produce concise, clear or consistent statements. We
present here an experimental interface to a general-purpose natural-language processing system designed
to control the writing of specification statements in a natural language. The interface is designed to
reduce the degree of imprecision and ambiguity in the natural-language statements, as well as
contributing to the writing of shorter statements, with clear structure and punctuation. We compare our
approach to similar work in this area.

1. I N T R O D U C T I O N

It is generally accepted that the initial phase in the
production of software must be a careful description of
the system to be developed [1]. Any such specification
should ideally be carried out in a formal language, but it
is almost always the case that a previous specification in a
natural language must be written. This is because formal-
specification languages are often intelligible only to a
small group of people, and formal specifications must
thus be translated into a language that both client and
developers can understand [2]. Several techniques have
been advanced to assist non-specialists in the under-
standing of formal specifications, but natural-language
specifications will continue to be used for the foreseeable
future.

The use of natural language in this context is not
without problems. It is well known that natural
languages lack the properties we associate with those
languages used for formal specification tasks, namely
well-defined syntax and semantics. In order to use
natural languages for specification purposes, we must
therefore carefully consider how to do it, in order to
reduce the risk of producing deficient specifications. It
has been noted in the literature that the requirements
specification phase, particularly the production of
natural-language specifications, is one of the weakest
links in the process of formally developing a system (e.g.
[3-5]).

We describe in this paper a system consisting of a
window-based interface to a natural-language processing
system designed to write specifications in a controlled
manner. Our primary goal is to provide a tool that can be
used for this purpose in any setting. We assume that the

typical users will be those with enough technical knowl-
edge of the system to be specified, but not necessarily
conversant with formal specification methods. Before we
describe in more detail our system, we review the most
salient characteristics found in some specification docu-
ments, and the problems they present.1

The fundamental problem of natural-language proces-
sing is the great amount of ambiguity at every linguistic
level: morphological, syntactic, semantic and pragmatic.
As expected, all these forms of ambiguity are to be found
in natural-language specifications. We will not touch on
them here, but will restrict ourselves to some overall
characteristics of the documentation.2

The study of some of the documentation at our disposal
revealed the following facts. First, we found a high
average sentence length in the specifications. For example,
one first case study has an average sentence length of 27.42
words; a sample of another study found an average length
of 31.24 words. Treatment of sentences of such length is,
without further restriction, beyond the state of the art of
current natural-language processing. Sentences of such
length can also be considered stylistically poor, and can
lead to serious problems in comprehension.3

*Also at SRI International Cambridge Computer Science Research
Centre.

'The work reported here has been sponsored by Engineering and
Physical Sciences Research Council and the UK Department of Trade
and Industry under the Department's Safety Critical Systems Advanced
Technology Programme (SCSATP), project no. IED4/1/9001: A
Method for Object Re-use in Safety-critical Environments. The
source documents at our disposal were provided by our partners in
the project: Lloyds Register, Ultra Electronics, Transmitton, West
Middlesex Hospital, and British Aerospace Airbus Ltd.

2The pervasive ambiguity of language is the central problem of
computational linguistics, and a great deal of the literature in the
subject deals with it. [6] and [7] are introductions to computational
linguistics; [8] discuss issues of ambiguity in the context of require-
ments specifications.

3This view is shared by some standards. For example, the AECMA
Controlled English standard restricts writers to sentences of a
maximum of twenty words.

THE COMPUTER JOURNAL, VOL.38, No. 4, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/4/310/459179 by guest on 09 April 2024

A METHOD FOR CONTROLLING THE PRODUCTION OF SPECIFICATIONS IN NATURAL LANGUAGE 311

Second, we found that punctuation is used in an
extremely irregular manner, either because one writer
does not use the same marks consistently, or because
different writers have different intuitions of how to use
them. This result suggests that punctuation marks should
be incorporated into the grammar of the system
sparingly, and writers should be discouraged from
using punctuation marks whenever possible. Free use
of punctuation, together with unlimited sentence length,
also also to encourage writers to type obscure paragraph-
long sentences. A typical example is:4

If selected to automatic at MCC1 for keyboard control at the
supervisory computer, air compressors can be individually
stopped/started manually and the outlet valves, opened/
closed manually from the supervisory computer keyboard,
provided (in the case of the air compressor) the differential
air pressure switch is calling for that compressor to run.

An important finding was that writers very often use
only a few different supra-sentential structures to
present the information. We will call.these structures
presentational units. Among the most common in our
documents, we have:

1. if-then(-else) statements: 'if the open signal from
xv 13 or xv 14 is not received the duty pump will be
inhibited from starting.'

2. when statements: 'when the level controller is switched
to local operation, the set point will be [as] manually
set at the controller.'

3. before and after statements: 'before starting the
transfer procedure, the operator answers a menu in
order to define the loading process.'

4. Lists, which are one of the most common presenta-
tional devices (according to our sample, up to 30-
40% of a specification):

'The wash sequence initiation procedure will:
a. Co-ordinate the filter wash requests.
b. Formulate a wash queue if necessary.
c. Start the wash sequence.'

The last example is representative of the issues raised
by the use of these structures. As it stands, it under-
specifies a procedure: we do not know whether the result
of the sequence is one or several of the actions on the list,
or all three actions. We do not know either whether the
procedures will be carried out sequentially (i.e. one after
another), or in any order. Documentation containing a
large proportion of such lists is clearly going to be
inadequate.

To summarize, freely written specifications suffer from
sentences that are too long, use punctuation erratically
and use presentational units that introduce underspeci-
fied statements. These observations led us to the basic

4 [9], p. 84 notes the same phenomenon in the area of aviation
maintenance manuals.

idea behind our system: rather than letting users type
statements without constraints, we built a window-based
interface to a natural-language processing system. By
choosing from a menu of preset structures, users select
the kind of presentational unit they want. The set of
presentational units required are defined by a grammar
which automatically configures the relevant menu
choices. The interface directly connects to a natural-
language system capable of analysing many ordinary
English sentences. With this design, we achieve several
objectives: the system is domain independent, it controls
the use of potentially ambiguous presentational units, it
naturally limits the length of the English sentences, and it
reduces the need for punctuation to a minimum. As we
will try to show below, these features of the system
contribute to a considerable reduction in ambiguity and
underspecification.

2. A WINDOW-BASED INTERFACE

We present now the architecture of the interface. It has
been designed to present an easy to use, controlled
interface to the natural-language processing system at
our disposal, CLARE. CLARE [10] - which includes the
Core Language Engine [11] as a component - is a general
purpose natural-language processing system developed
at SRI International, Cambridge. It has been used to
build database query applications [12], spoken language
dialogue systems [13] and bidirectional machine transla-
tion prototypes [14]. In the configuration used here,
CLARE carries out morphological, syntactic, semantic
and some contextual analysis on an input sentence and
then presents one or more possible logical forms
representing the interpretation(s) of the sentence.

The user begins by selecting the kind of statement to be
written, and recursively selects other statement types, or
simply writes ordinary English sentences. Each sentence
is passed on to CLARE and analysed. If the sentence has
more than one logical analysis, the user is requested to
select the one they intended, disambiguating the input.
The source specification in English is stored together
with its logical analysis, and can be subsequently be
modified, extended or used to generate documentation.
In principle, the logical analysis could be subject to
further forms of processing: for example, it could be
linked to appropriate parts of a formal specification, or
cross-indexed to a diagram.

We introduce the basic operation of the interface
through an example. Let us assume that the user wants to
type in the following specification - based on an actual
example: "Before starting the transfer procedure, the
operator answers a menu to define the loading process
(valves that will be closed or opened, the propane
reservoir and the phases that will be used)."

The system begins by displaying the options available
to the user. After selecting the option to process a
sentence, the system opens a window that displays the
presentational units available, plus the option to type a

THE COMPUTER JOURNAL, VOL.38 , No. 4, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/4/310/459179 by guest on 09 April 2024

312 B. MACIAS AND S. G. PULMAN

sentence directly:

[•] clanefontjiopup

BEFORE Statement
AFTER Statement
WHEN Statement
IF Statement
LET Statement
Simple Statement (CLARE)

Type a sentence;

Process Cancel Options

Let us begin with the first statement in the example:
'before starting the transfer procedure, the operator
answers a menu to define the loading process'. This
sentence type corresponds to one of the presentational
units available, the Before statement. We can directly
select the option from the menu, or type Before and hit
the Return key. Because this is a predetermined
statement, the system will retrieve its definition and
structure. Selecting this option will produce a new
window:

before

{Type a Statement |

\Type a Statement

We choose now Type a Statement to input the first
part of the Before statement. In the current
implementation this will result in a new window where
we can type the first English sentence:

(•] clarefontjjopup

Type a sentence:

LThe transfer procedure starts.
Process |i Cancel | Options |

If this sentence is in turn a complex one, then a new
window is necessary. In this instance, the sentence is a
simple one and the extra window a little redundant. After
typing the sentence, it is processed by CLARE. The
system finds that the sentence is grammatically correct,

and that it has one logical analysis. It is then considered
correct, and stored for future reference. We go back to
the before window, and choose again to type an English
statement with Type a Statement. As before, another
window pops up, and we type:

@ clarefont_popup

Type a sentence:

IThe operator must
Process | j

define the loading

Cancel |

process 1

Options |

The sentence is analysed and validated by the natural-
language system; its logical analysis is saved. With this
we finish. We have obtained a valid specification of the
statement:
BEFORE
the transfer procedure starts,
the operator must define the loading process.

3. LISTS

Lists (conjunctions, disjunctions or sequences) are
treated by an extension of the mechanism shown
above. Assume now that the user wants to draft the
second part of the specification, and that the list of
actions in parentheses ('valves that will be ...') is to be
interpreted as a sequential coordination. The process of
specification is carried out through the same mechanisms
as before: select a when statement from the menu,
capture an English sentence, and then type in the
conjunction. To do this, the use can either choose an
option from the menu, or simply type:

The operator has defined which valves to open or
close and then

The sequence and then acts as a keyword to tell the
interface that we have started a sequential conjunction;
the system will loop until an input statement lacks a
trailing and. We continue with the following sentences in
the same fashion, until we obtain, instead of the plain
English description, the controlled specification:

The opera tor has def ined the load ing p rocess
WHEN

the operator has defined which valves t o
open or close
AND THEN
the operator has defined the t a r g e t
propane rese rvo i r
AND THEN
the operator has defined the phases

that will be used.

To conclude, the process of choosing high-level
presentational units from the menu, and typing English
sentences for the natural-language system, has taken us
from the freely written version: "Before starting the

THE COMPUTER JOURNAL, VOL. 38, No. 4, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/4/310/459179 by guest on 09 April 2024

A METHOD FOR CONTROLLING THE PRODUCTION OF SPECIFICATIONS IN NATURAL LANGUAGE 313

transfer procedure, the operator answers a menu to
define the loading process (valves that will be closed or
opened, the propane reservoir and the phases that will be
used)" to a controlled one:

BEFORE

The transfer procedure starts,

the operator must define the loading process.

The operator has defined the loading process
WHEN

the operator has defined which valves

to open or close

AND THEN
the operator has defined the target

propane reservoir

AND THEN
the operator has defined the phases

that will be used.

This specific rendering of the free version is only one
among many that we could have typed. Our purpose here
is not to suggest this specific style of drafting, but merely
to illustrate how it can be done using the interface. Other
writers, with different styles, will produce alternative
specifications. A range of variant forms is permitted by
the system, within the limits imposed by grammatical
coverage. As we hope this example suggests, the
approach chosen allows for better specifications in a
relatively unconstrained manner. We will return to the
trade off between clarity and expressiveness in Section 9.
We will only note here that in order to decide whether to
constrain the style of specifications, the overall con-
sideration will not be the complexity of the system being
described (very complex systems can be described by
simple specifications), but how best to combine clarity of
expression with simplicity of description. If needed, the
system can be tailored for specific applications.

4. DEFINING LOCAL IDENTIFIERS

Texts often use pronouns and definite noun phrases
("the ...") to refer to entities in the discourse. Unfortu-
nately, they can also create uncertainties in the under-
standing of a text. For example, definite noun phrases
can denote a specific object or objects in the discourse,
can refer to some unspecified (and possibly non-existent)
object fulfilling a description, or can be used generically
to talk about the properties of a set of entities. Consider
the following fragment:

An operator executes the starting procedure when
he opens the input valve, and then
he activates the pump attached to the input valve.

An operator executes the closing procedure when
he turns the pump attached to the input valve off,
and then he closes it.

Both sentences contain references to 'an operator' and
'the input valve'. In the absence of other information, it
is not clear whether they refer to same entities or not. A

similar situation applies to pronouns. The pronouns 'he'
and 'it' need also to be resolved to obtain a complete
interpretation of the specification.

To ameliorate this problem, we have introduced a
LET facility. This feature makes it possible for the user
to introduce global names, and associate them to entities
that will be repeatedly used in the specification. In the
example above, the same sentences captured using the
system and the LET facility will look like:

LET V be the input valve.

LET P be the pump attached to V.

LET OP be the operator.
OP executes the starting procedure WHEN

OP opens V

AND THEN
OP activates P.

OP executes the closing procedure WHEN

OP turns P off

AND THEN

OP closes V.

There is an alternative - and more natural - way of
achieving the same effect. This can be done by using a
construct like this:

An opera tor , OP, executes the s t a r t i n g procedure WHEN
OP opens the input valve, V,
AND THEN
OP a c t i v a t e s the pump, P.

OP executes the c los ing procedure WHEN
OP tu rns P off
AND THEN
OP c loses V.

The first mention of an entity also introduces an
identifier parenthetically, which can be used later on to
establish reference to that entity. This is an extension of a
mechanism already available in English. The result may
read more naturally while still eliminating the possibility
of this type of ambiguity.

Although the first technique works, it is not a
particularly natural construct, linguistically speaking,
and the resulting specifications look a little like expres-
sions of a programming language. The tension between
these two alternative ways of introducing identifiers
points to the conflict that arises when simultaneously
trying to achieve precision, conciseness, and intellig-
ibility. Further work is required before we find how far
we can stray from pure natural languages. Still, we
believe that a certain amount of artificiality is justified by
the mileage we get in terms of better specifications.

5. STORING, MODIFYING AND REUSING A
SPECIFICATION

The process of capturing a specification statement is
backed by a separate window that displays a text of the
input at each moment of the process. The first use of this
text window is to help users orientate themselves through
the implicit tree created by selecting options on the main

THE COMPUTER JOURNAL, VOL. 38, No. 4, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/4/310/459179 by guest on 09 April 2024

314 B. MACIAS AND S. G. PULMAN

input window. The text window for one such specifica-
tion is:

This output is produced from an internal representa-
tion, which contains a detailed description of each
statement, as well as its corresponding logical analysis.
It can be used to produce various kinds of paraphrases
according to the user's needs, or kept as an independent
file for other kinds of processing. An example of an
internal representation is:

spec(l,
1,
before(

clare([id(op), executes,
the, loading, procedure]),

andthen([clare([id(op), must,
specify, id(l)]),

clare([id(l), plus, id(s),
must, be, less,
than, id(max)])]))).

which corresponds to the specification:

BEFORE OP executes the loading procedure,
OP must specify L
AND THEN
L plus S must be l e s s than MAX

The second purpose of the text window is to copy,
update or modify specific parts of a statement without
having to rewrite it from scratch. This is done by first
selecting from the text window a statement or substate-
ment with the mouse:

*\ test

auxiliary buffer for further manipulation. When a text is
copied to the buffer, it can be added to the specification
at any valid site. One such case occurs when a text has
been deleted, creating a "hole" in the specification.
Another possible insertion site is in a sequence of
conjunctive statements. When there is such a site, and
the buffer is not empty, the user can position the cursor
there, and select insert. The program will insert there
whatever is found in the buffer.

Both the text window and the auxiliary buffer are
generated anew every time the specification is modified
or added to. It would be possible for edits of this kind to
introduce ambiguities into previously checked specifica-
tions, of course, and so reprocessing is necessary to
confirm the final result.

6. AMBIGUOUS STATEMENTS AND
PARAPHRASING

We have indicated above how to control for ambiguity at
the level of presentational units. But to ensure that a
complete statement is unambiguous, we must also check
that each English sentence is unambiguous. We do this by
adding a feature to the system that accepts a natural state-
ment together with a specific interpretation. When CLARE
processes a sentence and more than one logical analysis is
found, the user is asked to choose among the various logical
forms. The system then stores the original statement and its
disambiguated logical form. This can be used for future
reference, or to generate various paraphrases.

test

BEFORE <0P executes the loading procedure >,
(<0P must specify L >
AND THEN
(L plus S must be less than MAX >>

(OP executes the loading procedure)
UHEN
((OP executes the starting procedure >
AND THEN
(OP loads C >
AND THEN
(OP executes the closing procedure >>

(OP executes the starting procedure >
WHEN
((OP opens V)
AND THEN I
(OP starts P)>

BEFORE (OP executes the loading procedure >,
((OP must specify L)
AND THEN
(L.plus S must be less than MAX >)

(OP executes the loading procedure >
UHEN

AND THEN
(OP loads C)
AND THEN
(OP executes the closing procedure >)

(OP executes the starting procedure)
UHEN
((OP opens V >
AND THEN
(OP starts P)>

| Copy to Buffer j [Copy to Buffer

[insert Buffer [insert Buffer

Delete |Pelete

[Print Buffer J [Print Buffer

Once a text has been selected, it can be deleted or
copied to a special buffer. If it is deleted, this action
creates a copy of the statement which is put into an

Interactive disambiguation of this type is a large
research topic in its own right. Linguistically naive users
may not always notice that a sentence is ambiguous,

THE COMPUTER JOURNAL, VOL.38, No. 4, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/4/310/459179 by guest on 09 April 2024

A METHOD FOR CONTROLLING THE PRODUCTION OF SPECIFICATIONS IN NATURAL LANGUAGE 315

since contextual knowledge usually eliminates all but one
linguistically possible interpretation, the others being
unconsciously rejected as implausible. Furthermore, one
cannot assume that the language used to represent the
meanings of sentences (in our case, first-order logic
enriched with a few higher-order constructs) will be
familiar to the user.

We have chosen a simple temporary solution to this
problem, presenting users with a "logicians' English"
paraphrase of the logical forms representing the mean-
ings of a sentence. For example, if the user types in the
sentence:
The operator has stopped the process on the menu

the system will generate the following two (slightly
simplified) analyses:

exists(A,operator(A) ft
exists(B,process(B) ft
exists(C,menu(C) & on(B,C) ft
exists(D, event(D) ft
exists(E, current_time(E) ft

precedes_in_time(D,E) ft
stop(D,A,B))))))

exists(A.operator(A) ft
exists(B,process(B) &
exists(C,menu(C) ft
exists(D, event(D) ft
exists(E,

current_time(E) ft precedes_in_time(D,E) ft
stop(D,A,B) ft on(E.C))))))

These analyses correspond to the interpretations in
which the phrase "on the menu" modifies "process" or
"stop" respectively (compare "the operator has read the
message on the menu" and "the operator has positioned
the mouse on the menu"). The system generates
paraphrases of each, and asks the user to choose between
them:

1. There is some operator OP, some process PRO (such
that there is a menu ME, and PRO is on ME), and a
past event E, such that E is an event of OP stopping
PRO.

2. There is some menu ME, some operator OP, some
process PRO, and some past event E, such that E is an
event of OP stopping PRO, and E is on ME.

From these paraphrases, the user chooses the one that
corresponds to the intended interpretation. The system
then stores the desired interpretation with the input
sentence, which can later be used to annotate the English
source, or substitute it directly.

The CLARE system is bidirectional, and can generate
sentences from a logical form. It would thus be possible
to generate full English sentences from the logical form
back to the user. However, we would need careful
checking to ensure that we did not simply regenerate the
original sentence, and we would also need to ensure that
the paraphrase did not itself introduce some other
unintended ambiguity.

7. EVALUATION OF THE SYSTEM

In order to evaluate the basic design, we asked a few
subjects to try a pencil-and-paper version of the system.
Although the current system contains some variants
compared to the one used in the example, it is basically
the same. The experiment thus allowed us to gauge
the user's reaction to the system, and increase its
functionality.

To evaluate the system, we asked the users to carry out
the specification of some operations on a simple system.
We gave them examples of the style of English that the
system is intended to handle, but encouraged users to go
beyond this if they felt hindered by it.

The example specification involved a container of
some sort, with one input and one output. The input to
the container was through a pump, and the container
had a sensor to measure how full the container was. We
attached three valves to the container as well, one for the
input, one for the output, and one emergency valve. The
users were asked to specify some simple operations, such
as loading the container, based on the following informal
model intended to be representative of a simple and
already quite clear specification:

The loading operation will be done as follows:
1. The operator will specify the amount of material to be loaded
into the container.
2. The operator will open the input valve VI.
3. The operator will then start the pump attached to the input
valve.
After the process is over, the operator will turn the pump off, and
he will close the input valve V1. The amount to be loaded will
not exceed the capacity of the container. If this happens, the
loading operation will stop, and the emergency
signal will be activated.

The results of the experiment were the following. First,
we asked the users whether the overall design made the
specification easy to follow. Most thought that the
resulting style was indeed easy to follow, although it was
noted that it was perhaps too close to a programming
language, and far from English. We also queried the
users about the extent to which the system contributed to
achieve the goals that we had set. Their response was that
it had achieved those goals, but it was again noted that
the resulting text was more difficult to follow than
ordinary English.5 It was the opinion of the users,
especially those with specification experience, that it
could be used in a realistic setting.

One comment that we took into account concerns the
rigidity of the system. The version tried in the experiment
did not include a facility to edit or change an ongoing
specification. Several users pointed to the need of
features to cut-and-paste, delete or modify a draft as
one went along. As a result, we added the facility
described above to correct this problem.

5This might of course reflect the shortcomings of an example we
wrote, and not the system in general. As several users commented, some
of our own drafts could have been done in a simpler and clearer way.

T H E COMPUTER J O U R N A L , V O L . 3 8 , N o . 4, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/4/310/459179 by guest on 09 April 2024

316 B. MACIAS AND S. G. PULMAN

It was noted by the participants in the evaluation that
the system needed to be supplemented by some kind of
indication of the meaning as well as the form of the
presentational units. For example, it was pointed out
that the semantics of individual sentences such as 'OP
executes the X procedure' is influenced by the presenta-
tional unit in which it occurs. If we have 'OP executes the
X procedure WHEN...' then this statement usually
defines what procedure X is, whereas 'OP executes the
X procedure' in 'BEFORE OP executes the X pro-
cedure...' functions quite differently. In practice, the
system should therefore be used in conjunction with a set
of stylistic conventions (and presumably some explicit
training) to give guidance to the writers on the intended
meaning for each construct.

8. FURTHER WORK

The current prototype has been developed with as
little customization of the NLP system as possible.
We wanted to see how far we could go on the basis
of already existing tools. Customization is restricted
to the addition of necessary vocabulary items. While
the system accurately processes all the examples used
in this paper, its coverage is still not adequate for
real applications. However, the CLARE system
provides a wealth of tools for this kind of customi-
zation, given an adequate corpus of examples, and
this extension of coverage is not a problem in
principle.

Part of the process of customization requires the
addition of domain knowledge in a form suitable for
inference, for the purposes of disambiguation. The
addition of such knowledge makes it possible to use
the logical forms which are the output of the natural-
language system for further types of processing.

Among those, the work reported here is part of larger
effort to link natural-language statements and their
corresponding formal specifications. In [15] we explored
the idea of treating a formal specification of a system as a
database, and used CLARE to pose queries in English
about the - explicit and some implicit - properties of the
specification. The system answers a query by producing a
paraphrase in English of the formal contents of the
database. Two prototypes were built: an interface to the
Z specification [16] of the UNIX filestore by Morgan and
Sufrin [17], and a safety-oriented RSL specification [18]
of valves. For example, the first prototype answers
questions such as how do I read a file? or what are the
conditions for reading a file? by giving English-like
paraphrases of the formal-specification statements that
answer the questions.

We do this by axiomatizing in Prolog the properties of
the domain entities and the specification language itself,
linking logical analyses produced by the natural-
language system and the underlying specification. The
method requires a relatively small number of axioms
(dozens rather than hundreds), and seems well-suited to

domains that contain only a small number of entities.
The techniques used here are similar to those used to
build natural language interfaces to databases (see [19]
for a review).

A more ambitious approach would be to attempt full-
blown translation from natural-language statements to
formal specifications. This is a considerably more
difficult problem than merely obtaining a logical form
of English statements. Although having a formal
language (like Z) as target might simplify somewhat
the problem, it probably resembles in complexity the
problem of translating between two natural languages.
Research in machine translation will have to advance
significantly before realistic use can be made of a system
built along these lines, specially where safety considera-
tions are involved.

Natural-language paraphrases have been identified [2]
as one of the ways in which users can improve their
understanding of formal specifications, as well as the use
of animation techniques (e.g. [20, 21]). The aim of the
work we have just summarized can be seen as a bridge
between them. By using natural-language techniques to
enhance user comprehension of formal specifications, it
can help in the adoption of formal methods in non-
academic environments, and contribute to the industrial
acceptance of formal methods [22].

9. RELATED WORK

The idea of building natural-language interfaces through
menus was introduced by [23]. However, in the system
described there the composition of basic sentences also
had to be achieved by menu selection, one word at a time.
It may be useful to adopt this technique, or some variant
of it, if it is impossible to guarantee that the NL system
will accurately analyse the basic sentences in any other
way.

The use of natural-language techniques to help the
process of specification writing has been explored by a
few authors. [24] sketch a system that, among other
capabilities, is able to build formal descriptions through
natural-language dialogues. [25] describe a system to
derive formal descriptions from natural-language speci-
fications. [26] contains a description of a knowledge-
based system that maintains a database of a software
development project. This system uses a natural-
language system interface. [27] have built a system for
the specification of automatic teller machines. These
systems all have the common characteristic that they are
application specific, with the natural-language proces-
sing being hard-wired to the application in question. Our
work has concentrated on using general purpose systems,
on the assumption that customizing will eventually be
less effort than starting over again for each new
application.

Closer to our work is a system built by [28]. They
describe a system designed to enforce the writing of
specification statements in English according to the
AECMA Simplified English (SE) standard. In particular,

THE COMPUTER JOURNAL, VOL. 38, No. 4, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/4/310/459179 by guest on 09 April 2024

A METHOD FOR CONTROLLING THE PRODUCTION OF SPECIFICATIONS IN NATURAL LANGUAGE 317

this system controls various lexical (i.e use of authorized
words), stylistic (e.g. maximum sentence length), and
syntactic (it allows only one parse per sentence) criteria,
according to the standard. However, no semantic
processing is carried out. As such, the system operates
as a sophisticated grammar checker.

Although the use of such predefined controlled
languages can be of help in the process of writing
specifications, it is not without shortcomings. First,
statements written in a controlled language might be less
clear than freely written ones. There is a trade off
between striving for clarity and conciseness, while trying
simultaneously to use a limited number of words.
Without experimental evidence, it is not obvious whether
controlled techniques deliver better documentation.
Also, there is always the risk that controlled languages
might be incomplete. In other words, how do we know
that everything that needs to be said can be said in a
controlled language? Excessive limitations can force the
writer into producing statements that, although valid
from the definition point of view, might not mean what
the user wanted to write in the first place. We give an
example based on the AECMA standard (taken from
[27]. A writer might want to type the statement "do not
touch any cable". Due to the limitations of the standard,
they might end up by writing instead "do not touch the
cable" or "do not touch all the cables". These are valid
SE alternatives, but have different semantics from the
original.

It may be that our own system can be criticized on
similar grounds. However, our belief is that by using a
general purpose NL system, we are in a good position to
give specification writers as much freedom as is
consistent with clarity. We would envisage that, in a
situation where there was a continuing need for
specifications around a particular subject area, a period
of interaction with users would enable us to converge on
a subset of general English that struck the right balance
between clarity, freedom of expression and computa-
tional processability. With the system then customized
to this subdomain, we would have all the advantages of
the SE processors, along with the extra benefits arising
from the fact that full semantic processing is being
carried out.

Finally, we briefly mention the work done in
computational linguistics in areas specifically related
to documentation. A number of papers have been
devoted specifically to the linguistic issues that manuals
and other instructional texts present. [29] carried out a
pioneering study of discourse phenomena in the context
of task-oriented dialogues. The collection of papers by
[30] contains studies of the linguistic features of
languages used in specific domains. [31-34] have
studied the use of rhetorical relations in manuals, with
the goal of generating natural-sounding paraphrases.
[35] have studied some semantic issues of linguistic
expressions used in manuals. Some other authors such
as [36-41] have looked at the question of how to

generate natural-language expressions to paraphrase
quantitative data, although without concern about the
dangers of generating ambiguous expressions. An
exception is [42], which contains other references to
this line of work.

10. CONCLUSION

We have presented a system designed to help in the
process of writing specifications in natural language. The
system controls the writing of statements in English,
reducing the length and syntactic complexity of sen-
tences, and introducing some structure in the specifica-
tion. The system also controls that the final statements
are disambiguated, by forcing the user to choose between
alternative analyses of a sentence. The supra-sentential
presentational units that drive the system have Been
obtained from real-life specifications. They seem to be
very general, but if it is desired, the system can be easily
tailored to other domains.

As mentioned in the introduction, one of the weakest
links in the process of formally developing a system is the
requirement specification phase, and in particular the
problems associated to natural-language specifications.
The use of formal techniques will hopefully become more
common, specially for complex computer systems. The
application of formal techniques will demand a better
understanding of source specifications, both to improve
the initial production of a system, as well as to support its
maintainability and use.

REFERENCES

[1] Sommerville, I. (1989) Software Engineering, Addison-
Wesley, Wokingham.

[2] Hall, A. (1990) Seven myths of formal methods, IEEE
Soft., 7(5), 11-19.

[3] Barroca, L.M. and McDermid, J.A. (1992) Formal
methods: use and relevance for the development of safety-
critical systems, Comp. J., 35(6), 579-592.

[4] Bloomfield, R.E. and Froome, P.K.D. (1986) Application
of formal methods to the assessment of high integrity
software, IEEE Trans. Soft. Eng., SE-12(9), 988-993.

[5] Fraser, M. D., Kumar, K. and Vaishnavi, V.K. (1994)
Strategies for incorporating formal specifications in soft-
ware development, Comm. ACM, 37(10), 74-86.

[6] Gazdar, G. and Mellish, C. (1989) Natural Language
Processing in Prolog: An Introduction to Computational
Linguistics, Addison-Wesley, Wokingham.

[7] Allen, J. (1987) Natural Language Understanding,
Benjamin/Cummings, Menlo Park.

[8] Macias, B. and Pulman, S.G. (1993) Natural language
processing for requirements specifications, in Redmill, F.
and Anderson, T. (eds), Safety-Critical Systems, Chap-
man & Hall, London.

[9] Lehrberger, J. (1982) Automatic translation and the
concept of sublanguage, in IGttredge, R. and Lehrberger,
J. (eds), Sublanguage: Studies of Language in Restricted
Semantic Domains, W. de Gruyter, Berlin.

[10] Alshawi, H., Carter, D., Crouch, R, Pulman, S. Rayner,
M. and Smith, A. (1992) CLARE, a Contextual Reasoning
and Cooperative Response Framework for the Core

THE COMPUTER JOURNAL, VOL.38 , No. 4, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/4/310/459179 by guest on 09 April 2024

318 B. MACIAS AND S. G. PULMAN

Language Engine, Final Report, SRI International,
December.

[11] Alshawi, H. (ed) (1992) The Core Language Engine, MIT
Press, Cambridge, MA.

[12] Rayner, M. and Alshawi, H. (1992) Deriving database
queries from logical forms by abductive definition
expansion, in Proc. 3rdConf. App. Nat. Lang. Proc, 1-8.

[13] Lewin, I., Russell, M., Carter, D., Browning, S., Ponting,
K. and Pulman, S. (1993) A speech-based route enquiry
system built from general purpose components, Proc. 3rd
European Conf. on Speech Communication and Technology
(EUROSPEECH 93), 2047-2050.

[14] Rayner M., Alshawi, H., Bretan, I. et al. (1993) A speech
to speech translation system built from standard
components, in Human Language Technology, Proc.
ARPA Workshop 217-222.

[15] Macias, B. (1994) Use ofCLE/CLARE in Semi-automatic
Translation of English and English-like Specifications,
MORSE Technical Report, Doc Id: MORSE/CU/BM/
6/V2, June.

[16] Spivey, J. M. (1989) The Z Notation: A Reference
Manual, Prentice Hall, New York.

[17] Morgan, C. and Sufrin, B. (1993) Specification of the
Unix filing system, in Hayes, I. (ed.), Specification Case
Studies, 2nd edn, Prentice Hall, New York.

[18] RAISE Language Group (1992) The RAISE Specification
Language, Prentice Hall, New York.

[19] Copestake, A. and Sparck Jones, K. (1990) Natural
language interfaces to databases. Know. Eng. Rev., 5,
225-249.

[20] West, M.M. and Eaglestone, B.M. (1992) Software
development: two approaches to animation of Z specifica-
tions using Prolog, Soft. Eng. J., July, 264-276.

[21] O'Neill, G. (1992) Automatic translation of VDM
specifications into standard ML programs, Comp. J.,
35(6), 623-624.

[22] Bowen, J. and Stavridou, V. (1993) The industrial take-up
of formal methods in safety-critical and other areas: a
perspective, in Woodcock, J.C.P. and Larsen, P.G. (eds),
FME'93: Industrial-Strength Formal Methods, Springer,
Berlin, pp 183-195.

[23] Tennant, H.R., Ross, K.M. Saenz, R.M., Thompson,
C.W. and Miller, J.R. (1983) Menu-based natural
language understanding Proc Assoc. Comp. Ling., 151 —
158.

[24] Bergland, G.D., Krader, G.H., Smith, D.P. and Zislis,
P.M. (1990) Improving the front end of the software-
development process for large-scale systems, AT&T Tech.
J., March-April, 7-21.

[25] Miriyala, K. and Harandi, M.T. (1991) Automatic
derivation of formal software specifications from informal
descriptions, IEEE Trans. Soft. Eng., 17(10), 1126-1142.

[26] Devanbu, P., Brachman, R. J., Selfridge, P. G. and
Ballard, B.W. (1991) LaSSIE: a knowledge-based soft-
ware information system, Comm. ACM, 34(5), 35-49.

[27] Fuchs, N.E., Hofmann, H. and Schwitter, R. (1994)
Specifying Logic Programs in Controlled Natural

Language, University of Zurich, Dept. Comp. Sci. Tech.
Rep. 94.17.

[28] Hoard, J.E., Wojcik, R. and Holzhauser, K. (1992) An
automated grammar and style checker for writers of
simplified English, in O'Brian Holt, P. and Williams, N.
(eds), Computers and Writing: State of the Art, Oxford,
Intellect, pp 278-296.

[29] Grosz, B. (1978) Discourse knowledge, in Walker, D.E.
(ed), Understanding Spoken Language, Elsevier North-
Holland, New York, pp 229-344.

[30] Kittredge, R. and Lehrberger, J. (eds) (1982) Sublan-
guage: Studies of Language in Restricted Semantic
Domains, W. de Gruyter, Berlin.

[31] Vander Linden, K. (1993) Generating effective
instructions, Proc. Ann. Conf. Cog. Sci. Soc, 1023-1028.

[32] Vander Linden, K. (1994) Generating precondition
expressions in instructional text, Proc. Assoc. Comp.
Ling., 42-49.

[33] Rosner, D. and Stede, M. (1992) Customizing RST for the
automatic production of technical manuals, in Dale R.,
Hovy, E., Rosner, D. and Stock, O. (eds), Aspects of
Automated Natural Language Generation, Springer,
Berlin, pp. 199-214.

[34] Peter, G. and Rosner, D. (1994) User-model-driven
generation of instructions, User Modeling and User-
Adapted Interaction, 3, 289-319.

[35] Di Eugenio, B. and White, M. (1992) On the interpreta-
tion of natural language instructions, Proc. Int. Conf.
Comp. Ling. (COLING), 1147-1151.

[36] Kukich, K. (1983) The design of a knowledge-based text
generator, Proc. Assoc. Comp. Ling., 145-150.

[37] Rosner, D. (1987) SEMTEX: a text generator for
German, in Kampen, G. (ed), Natural Language
Generation: New Results in Artificial Intelligence, Psychol-
ogy and Linguistics, Martinus Nijhoff, Dordrecht, pp.
133-148.

[38] Iordanskaja, L., Kittredge, R. and Polguere, A. (1991)
Lexical selection and paraphrase in a meaning text
generation model, in Paris C, Swartout, W. and Mann,
W. C. (eds), Natural Language Generation in Artificial
Intelligence and Computational Linguistics, Kluwer, Dor-
drecht, pp. 293-312.

[39] Iordanskaja, L., Kim, M., Kittredge, R., Lavoie, B. and
Polguere, A. (1992) Generation of extended bilingual
statistical reports, Proc. Int. Conf. Comp. Ling.
(COLING), 1019-1023.

[40] Bourbeau, L., Carcagno, D, Goldberg, E. Kittredge, R.
and Polguere, A. (1990) Bilingual generation of weather
forcasts in an operations environments, Proc. Int. Conf.
Comp. Ling. (COLING6), 90-92.

[41] Robin, J. (1993) A revision-based generation architecture
for reporting facts in their historical context, in Horacek,
H. and Zock, M. (eds), New Concepts in Natural
Language Generation, Frances Pinter, London.

[42] McKeown, K., Kukich, K. and Shaw, J. (1994) Practical
issues in automatic documentation generation, Proc
Assoc. Comp. Ling., 7-14.

THE COMPUTER JOURNAL, V O L . 3 8 , No. 4, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/4/310/459179 by guest on 09 April 2024

