A Language for Complex Real-Time Systems

ALEXANDER D. STovyENKO, THOMAS J. MARLOWE AND MOHAMED F. YouNis

Real-Time Computing Laboratory, Department of Computer and Information Science, New Jersey
Institute of Technology, Newark, NJ 07102 USA
Email: alex@rtlabl2.njit.edu

The new generation of real-time systems are characterized by multiple, conflicting non-functional
desiderata on goals. Furthermore, the systems exhibit very large size and complexity—in both
application structures and underlying software and hardware platforms. We argue that current high-level
real-time languages do not meet the challenge of these complex real-time systems and introduce a new
language—CRL—that we claim does. Relevant real-time features of CRL are discussed and a summary
is provided vis-a-vis future features that would address non-functional goals other than timeliness. A
current implementation status and how CRL fits into a rather ambitious environment for the construction
of complex real-time systems (under construction in our Real-Time Computing Lab at NJIT) are briefly

presented.

1. INTRODUCTION

In the past several years, there has been a modest yet
visible trend toward addressing design and development of
computer systems in which construction and execution is
affected by multiple, simultaneous and interacting con-
straints and goals. We refer to these computer systems as
complex—Tlarge applications, typically running on dis-
tributed, heterogeneous networks, driven by a number of
distinct constraints and desiderata on goals such as
performance, real-time behaviour and fault tolerance.
These requirements frequently conflict; further, satisfac-
tion of these design objectives interacts strongly with every
stage of development, system engineering, construction
and operation, including design/selection of hardware,
environment and application software. The sheer difficulty
of engineering of complex computer systems necessitates
definition and creation of a tool suite remarkable for the
number, nature and power of services provided.

In this paper, we would like to present one tool in this
suite, namely, a new high-level programming language,
Language for Complex Real-Time Systems, or CRL.
While it is our intention to incorporate into CRL
mechanisms to address a number of goals (see a brief
discussion in Section 5), we focus here on features that
make CRL suitable for developing large real-time
applications.

The rest of the paper is organized as follows. Section 2
briefly discusses the existing language scene and moti-
vates the creation of CRL. In Section 3 an overview of
CRL is presented. Section 4 discusses key real-time
details of CRL’s design. In Section 5 we briefly
summarize how we intend to provide CRL mechanisms
to support other goals. Section 6 presents the CRL
implementation, and indicates how the language fits into
the tool suite for engineering of complex computer
systems under construction at NJIT’s Real-Time
Computing Lab. In Section 7 we briefly conclude and
outline future work. Finally, Appendices A and B
contain, respectively, CRL examples and significant

CRL BNF elements not fully defined or explained in
the main text.

2. MOTIVATION
2.1. What is a real-time language?

An environment, such as a nuclear reactor, a manufac-
turing floor, or a ship, is real time when its correct
operation includes adherence to timing constraints. For
instance, when two chemical agents are mixed to form a
medicine, the basic laws of chemistry may require that
the agents be mixed for X seconds at a temperature of ¥
to achieve the correct result. Similarly, the rate of an
assembly line, which is determined by the conveyor
operator subject to the limits of the conveyor system,
forces a step in the assembly to be undertaken in Z
seconds or the parts involved will be lost or damaged.
Real-time applications define a paradigm of computing
very different from that of traditional computing. While
in a traditional paradigm (such as interactive processing,
for instance) the correctness of a program is independent
of the timing characteristics of its execution, a real-time
program must be its very nature adhere not only to
functional semantic requirements, but also to the timing
constraints of its application environment.

The motivation for developing real-time programming
languages is to facilitate writing of correct and main-
tainable real-time programs, through more effective use
of abstraction, compilation, and a priori analysis.
Hundreds of languages have been designed to address
not only such main traditional paradigms of computing
as batch or interactive programming, but even specific
areas within these paradigms. Thus, FORTRAN was
designed specifically for scientific computing, COBOL
for business applications and so forth. It is reasonable
that languages should have been designed for real-time
computing. While several languages have been designed
or designated to be used in real-time computing, until
recently they have lacked, to a significant extent or
entirely, the notion of real-time as a first-class entity.

THE COMPUTER JOURNAL,

VoL. 38, No. 4, 1995

$20z I4dy 01 uo 1senb Aq 6816G1/6LE/F/8E/e101ME/|Ulod/Wo0 dno olwepeoe//:sdiy wolj papeojumoq

320 ALEXANDER D. SToYENKO, THOMAS J. MARLOWE AND MOHAMMED F. YOUNIs

Schedulability analysis—a key requirement for a high-
level real-time language—was originally defined by [1-
5]. Schedulability analysis refers to any pre-execution or
symbolic language-level analysis of programs that either
determines whether the programs will meet their critical
timing constraints when executed, or derives the
programs’ timing characteristics. While the concepts
and details of how a real-time program or a set of
extracted real-time tasks is/are analysed for sched-
ulability are beyond the scope of this paper (but can be
found in a number of sources [1, 3-23)), it is important to
realize that schedulability analysis cannot in general be
applied to programs written in a conventional language,
even in a concurrent programming language such as
Ada, since such languages do not provide syntactic/
semantic mechanisms to define real-time processes and
have constructs which take arbitrarily (and unpredict-
ably) long to execute. Thus, conventional languages need
to be either modified or extended with additional higher-
level directives or “pragmas” to facilitate their use in
real-time computing.

The very nature of schedulability analysis requires
predictable system software and hardware behaviour.
Ideally, the time taken for execution of each machine
instruction should be known, and the hardware should
not introduce unpredictable delays into program execu-
tion. In practical programs, however, it is typically the
case that the execution times useful for schedulability
analysis are for blocks of instructions long enough that
small variations in execution times of individual instruc-
tions tend to average out within a block [24]. While we do
not address this subject in this paper, not only can
realistic systems closely fitting these assumptions be
assembled from existing components, but a number of
sources indicate that entire such system software and
hardware systems used in time-critical real-time applica-
tions can be, should, and are being designed in this way
[25-33]. A complete predictable computer architecture
can be found in [28]. Among the features facilitating
predictability are “‘regular” DMA access (implemented
as for memory refresh), managing secondary storage
operations predictably through swapping by unit of
activity or preparing scheduling blocks (which is de facto
state of the art in many existing time-critical applica-
tions, see for instance [34]); and providing hardware
support for exactly timed input and output.

2.2. The real-time language scene

Historically, the real-time language scene has been
anything but consistent. The need for real-time lan-
guages emerged in the earliest days of computing, and
arguably the first high-level programming language,
Plankalkiil, was meant for real-time applications [35].
For those who endured through the Dark Ages of
pseudo-code, assembly, and early computers in the 1940s
and the 1950s, the 1960s and the 1970s brought a
Renaissance with FORTRAN, ALGOL, PL/I, and

others (see for example [36-38]), all incorporating
novel mechanisms—at the language and system level—
suitable for real-time computation. The 1970s were then
perhaps a good time for various standardization and
government bodies to step in, and help. They did,
standardizing and helping in a number of cases: CCITT,
PEARL and others.

Then came Ada—a “‘real-time” language with essen-
tially no notion of time and few constructs suitable for
real-time computation. Given the nature of R&D
funding in the USA and other Western countries, the
sheer size of this government-mandated effort had
significant consequences. Experimental real-time lan-
guage research which depended on such funding had to
be either a spin-off of non-language research, or an
“attachment” to an Ada program. By the mid- to late-
1980s, it was hard to find any trace of any previous or
new non-Ada real-time language work, save in a few
exceptions at universities and research laboratories. The
first language design which forced every program to
express its timing constraints, defined a real-time process
model, and which forbade or restricted all constructs
that might take arbitrarily long to execute was Real-
Time Euclid [1,4]. Real-Time Euclid also included the
first complete schedulability analyser [3, 5], and was the
first language which guaranteed that every program was
schedulability analysable. A single prototype of the
language and its schedulability analyser was implemen-
ted and evaluated. Among other notable examples are
Tomal [39], DICON [40], Flex [41], RTC+ +[42], and
High-Integrity PEARL [43]. Not surprisingly, a large
community continued to work on Ada, or, more
properly, on ways of using Ada in real-time applications
(not an easy task, typically through run-time and pragma
“tricks”) and on ways of extending the Ada 1983
standard 1 (to the Ada ’95 standard 2). Among those
efforts, Baker’s [6,44,45] and Sha and Goodenough’s
[17] notable.

Seemingly, the real-time language scene of the 1990s is
not substantially different from that of the 1980s. There
is not much real-time language design work that we can
identify, though there is actually some solid work on
supporting real-time program development, related to
compilers, debuggers and other tools [12—-15,21-23,46-
60].

2.3. Why another real-time language and why CRL?

In our opinion, there are some major weak points in
proposed real-time languages which affect their usability
and suitability for complex real-time systems. Such
weaknesses come from two sources: isolation from
trends in computer programming languages, and lack
of support for non-functional features of complex real-
time systems.

Current standard languages also do not readily support
real-time programming. in today’s software market place,
the fastest growing language—C + + —has essentially no

THE COMPUTER JOURNAL,

Vor. 38, No.4, 1995

$20z I4dy 01 uo 1senb Aq 6816G1/6LE/F/8E/e101ME/|Ulod/Wo0 dno olwepeoe//:sdiy wolj papeojumoq

A LANGUAGE FOR COMPLEX REAL-TIME SYSTEMS 321

real-time features. Given this fact, as well as the
emergence of the POSIX and its real-time extensions
(i.e. a real-time Unix, as for example in [76]) standard,
there is no doubt that C+ + will also become a widely
used language in the real-time arena. Despite the decline
of military spending, Ada is still a very formidable player.
It is also the only language in existence which is massively
funded by the government (or, more precisely, by
governments). While the '95 version does make signifi-
cant strives towards acceptable real-time functionality
[61], these are hardly sufficient. In fact, arguably, ten
years after Real-Time Euclid, Ada still accepts but a
subset of that language’s constructs, and suffers from a
number of poorly designed original concepts (such as the
semantics of the TASK EXCEPTION). Moreover, the
relegation of many practical real-time features (or
common packages and so forth) to the optional and
“application-domain-specific’’ Real-Time Annex 3 means
that Ada’s famed portability and standardization of
features will suffer. Significant European “players”, such
as PEARL [8, 43, 62] do not appear to be gaining in
today’s market.

On the other hand, while Real-Time Euclid was an
advance for its time, changes in both the development
environment and the nature of applications argue that a
real-time language must now provide a number of
features enabling secure, predictable, concurrent, main-
tainable, etc., real-time operation, and support a number
of development objectives as well. These latter objectives
are summarized as follows:

e Aiming for programming in the large in the modern
world, the language should support a real-time
variant of object orientation and other features.

e The language needs a more robust programming
model than that allowed by restricted real-time
languages. For instance, general loops and recursion
may be allowed and then eliminated or restricted by
the compiler (to ensure no construct executes arbi-
tralily long).

e Timing constraints should be considerably richer than
in older languages, allowing for much finer granular-
ity of expressions.

e User assertions should be supported, both to provide
hints to the schedulability analyser, and to allow more
programs to execute, at the cost of run-time checks
where the assertion cannot be validated by the
compiler, or by the partial evaluator using system or
link-time information.

e The language should compile to portable, standard-
ized form.

o The language should fit into an integrated envi-
ronment—a suite of tools (including non-functional
objective analysis tools, assignment, allocation and
migration tools, debuggers and monitors and so
on).

e A good set of exception handling mechanisms is
needed.

e The design should address not only real-time perfor-
mance, but also other non-functional objectives such
as fault tolerance, security, and quality of service.

e A good set of communication and synchronization
mechanisms is needed.

e Finally, a language definitely needs to capture the
features of existing real-time languages.

While the combination of features in CRL is unique,
many of its features are supported in other language and
compiler efforts, some of which are mentioned above.
Various other approaches allow the use of user asser-
tions, partial evaluation [53], and many of the other
features of CRL. One of the most significant features of
this paper, finer-grained timing constraints, is not a
complete novelty. Several languages, including TCEL
[63] allow specification of timing constraints between
events or sets of events in a process. The work of Dietz
and Chung [64] provides an embedding language in the
CHaRTS compiler whose time-constraint specification
facility is related to our own; their constraint syntax is
also quite clean.

3. CRL OVERVIEW

CRL is sufficiently robust and expressive to capture most
standard functionality, but also sufficiently structured in
both native constructs and annotations to afford static
analysis by reasonable techniques. The language serves
as a vehicle for research and experimentation in both
complex real-time languages and in schedulability
analysis and assignment, and techniques for enabling
efficient analysis and assignment of components of
complex real-time programs.

CRL addresses several perceived problems in most
existing real-time languages: (i) it has a well-defined and
robust semantics for functional, real-time, and other
non-functional behaviour; (ii) CRL allows but does not
require fine-grained constraints relating any two given
statements, with natural interpretations on constraints in
conditionals and loops (however, the syntactic relation-
ship of the two statements has to be constrained to allow
efficient analysis); (iii) CRL allows, via annotations,
static analysis and partial evaluation (as in Maruti [53]),
the use of a full range of structured programming
constructs, including general loops and recursion, while
remaining largely schedulability analysable (and other-
wise guarded by exceptions); (iv) CRL has among its
basic constructs explicit parallelism (via threads) and
object orientation, including natural inclusion of
resources, and an exception mechanism.

CRL includes a language for constraints and asser-
tions, on timing, recursion, iteration, data set size,
constant values, etc. These are in general intended to
support partial evaluation (as above) and static analysis.
It is required that if subsequent code requires the truth of
an assertion for correctness, that the assertion is marked
as “invariant”,

CRL serves as a foundation to our testbed for

THE COMPUTER JOURNAL,

VoL. 38, No.4, 1995

$20z I4dy 01 uo 1senb Aq 6816G1/6LE/F/8E/e101ME/|Ulod/Wo0 dno olwepeoe//:sdiy wolj papeojumoq

322 ALEXANDER D. StoYENKO, THOMAS J. MARLOWE AND MoHAMMED F. YouNIs

transformations and other investigations, as a language
specifically for time-constrained complex computer
systems.

3.1. Classes, concurrency, typing, binding

CRL exhibits a number of features aimed at facilitating
the development of robust and reliable complex real-time
programs. The usage of the class mechanism is restricted
to disallow recursive definitions, and to encourage
successive refinements of generics in place of fully
dynamic binding. Formal parameters (in headers and
class constructors) are declared as types (including
classes) only. To allow call-time (semi-dynamic) binding
of actuals, the language permits late instantiation of
parameters (but their types must of course correspond
exactly to or inherit solely from their corresponding
formal parameters). Incorporating inheritance will be a
future extension.

In CRL, concurrency is provided through threads
within objects. For uniformity and orthogonality,
threads are actually defined as special methods.

3.2. Timing assertions, observably timed statements,
constraints

The set of program statements whose execution time may
occur in timing constraints is specified syntactically. All
critical section accesses, accesses to 1/O, and synchroni-
zations/messages between processes are, by default,
observably timable, as are the beginning and the end of
a process. The fork and join nodes governing one or
more conditionally executable timable nodes are them-
selves observably timable (this is a mild exception to the
syntactic nature of timability). Other statements may be
labelled as timable. In theory, one of the statements
above could be labelled as non-timable; we would not
expect this to be common, except perhaps for code added
to a process for logging, profiling, debugging or similar
purposes.

The execution time of a timable statements can be
distinguished by labels. A timable statement has the form
<timed_statement>: :=[$<label.!]

<untimed_statement>[!<label>$]
where the first label represents the execution initiation
time for untimed_statement, and the second label
represents the execution completion time.

Constraints are either absolute, relating a statement in
a thread or object to the beginning or end of the current
frame, or relative, constraining the time interval between
two observably timable and statically co-executable
statements, each in or called by the same process, or
involved in a single inter-process synchronization. Con-
straints are either max_time or min_time constraints,
according as they place an upper or a lower bound on
absolute or relative times; more complicated constraints
are syntactic sugar for combinations of these types.

CRL uses timing assertions both as a programming
aid, and as a facilitator/focuser for the transformer,

conditional linker, schedulability analyser, assignment
tool, and other tools, as briefly discussed in Section 6. In
the spirit of orthogonality, these assertions are allowed in
association with any statement or pair of statements or
even expressions. (Since, however, a system of absolutely
general constraints can cause problems for analyses—in
fact, can even encode the halting problem—the compiler
will check a global legality property relating the form and
location of associated statements, and the form of the
associated constraints). Meaningful expression forms
include relative and absolute timing expressions, based
on intervals. Eventually, time variables will be allowed.

CRL promotes reuse through object-based compo-
nents. To assist in component storage, selection and
other operations (and thus support libraries of reusable
components), object-level timing properties are asserted
in the same language as regular CRL timing assertions.

3.3. A foundation of “conventional” mechanisms and
features

A complex-system higher-order language, such as CRL,
will naturally include conventional language constructs
and mechanisms, most typically based on an existing
language paradigm, with support as above for functional
and non-functional systems engineering objectives. CRL
uses for its foundation a largely object-oriented para-
digm with an imperative expression syntax for scalar
types (much as C+ +).

However, CRL is not simply an object-oriented
language with support for real-time and other systems
engineering objectives added a posteriori. Rather, the
syntax and semantics for functionality and for systems
engineering objectives have necessarily co-evolved. The
language and the constraint paradigms, and the basics of
their syntax, were specified together; as we investigated
support for non-functional systems objectives, we found
it necessary to disallow or restrict certain standard
mechanisms or features, such as arbitrarily long compu-
tation primitives (because of real-time requirements) or
mechanisms that lead to poor or unsafe execution
semantics (such as the ambiguity in the Ada’s TASK
EXCEPTION). Some of these decisions modified the
existing language; others have guided the direction of
later extensions.

There are several possible strategies in limiting a
troublesome feature in a language’s syntax to support
system objectives: (i) it can be totally disallowed, as in
Real-Time-Euclid; (ii) it can be made safe (for example,
by adding timeouts, or by refining/redefining the
semantics); or (iii) it can be permitted, provided the
compiler, or another pre-run-time tool, can eliminate the
problems. In CRL, we rely principally on the last of
these, but any reasonable approach will probably have to
use a combination of the three approaches.

4. CRL DETAILS

The language of real-time systems consists of a set of

THE CoOMPUTER JOURNAL,

Vor. 38, No.4, 1995

$20z I4dy 01 uo 1senb Aq 6816G1/6LE/F/8E/e101ME/|Ulod/Wo0 dno olwepeoe//:sdiy wolj papeojumoq

A LANGUAGE FOR COMPLEX REAL-TIME SYSTEMS 323

top-level objects (some with threads of control),
possibly running on a distributed network, accessing a
set of resources managed as other objects, and synchro-
nizing via calls and messages (messages are not yet
implemented).

Fundamentally, we need both a high-level general-
purpose language, and a powerful expression mechanism
for timing and other constraints. The language provides
the standard core of a high-level language, including
array and record-type constructors (but not at present
pointers), and function calls with limited recursion. The
start and end of any atomic statement can be used as
temporal reference points, allowing an extremely power-
ful language for temporal constraints; however, the
semantics of the language restricts the pairs of co-
referenced statements, and the meaning of certain
constraints, to permit efficient and precise analysis.

For real-time programs, time-unbounded higher-level
constructs such as while loops will have to be
transformed—either automatically or with the aid of
the programmer—into time-bounded constructs using
the full power of such constructs requires a more
powerful constraint/assertion language, including con-
straints and/or assertions on iteration counts and
recursion depth.

The syntax uses single-line prefixed comments (rather
than delimited comments); the comment character is %.
Any input between a comment character and the next
end of line is ignored by the compiler.

4.1. Programs, declarations, classes, objects, visibility

A program is a collection of type declarations, constant
declarations and variable declarations. Type declara-
tions include classes, and variable declarations include
class objects. Currently, all declarations are static, to
facilitate predictability and schedulability analysis.
Declaration before use is required; scoping is static. A
declaration persists exactly for the lifetime of its
declaring scope; thus, program declarations and declara-
tions in scopes that do not depend on subprograms or
blocks live for the entire program. A declaration in a
scope which does depend on a subprogram or block lives
for the lifetime of the corresponding innermost sub-
program or block encompassing (perhaps transitively)
the scope of the declaration.

Manifest integer expressions are used for initialization
in arrays and ranges. This aids both the compiler and the
programmer by forbidding type constructors in variable
declarations (only scalar and used-defined type name
are allowed there). Upon object creation, only IN
parameters may be passed to constructors of objects.
Object creation is currently allowed only through static
declarations. Likewise, only IN parameters are currently
allowed when calling a thread (this corresponds to
thread activation—see a more detailed discussion
below).

A class consists of an interface, together with internal

and exported methods and threads. Methods and
threads have parameter lists, where each parameter is
identified as IN, OUT, or INOUT. Parameters are passed as
in Ada: IN parameters by value, OUT parameters by
result, and INOUT parameters by value-result. It is
currently illegal for two parameters to be aliased,
unless at least one is an IN parameter; further, by
construction, there are no global variables. Thus, as in
Ada, pass by reference can be used for OUT or INOUT
parameters for local procedure calls, and value-result for
remote procedure calls, without affecting the semantics.
Only types and methods defined and exported
explicitly from one class, and imported explicitly into
another, may be visible in the latter class. Every method
(including threads) declared in the class (or in an object
of the class) implicitly imports all imports of the class
(object). This import rule permits the method to declare
variables and parameters to be of imported types
(classes), and to consequently use these variables and
parameters. Note that this rule permits run-time binding
of actual parameters (to formals), while neither com-
pletely enabling nor forbidding dynamic binding of
parameter types. The same implicit import rule does not
apply to classes declared (directly or indirectly) inside
other classes. Rather, as already stated, all imports into
classes must be explicit; moreover, direct or indirect
recursive imports are forbidden. Blocks in the bodies of
either methods or threads implicitly import everything
imported by their owner methods or threads.
A constructor or a destructor are special methods
which may not be exported orimported, and are invoked
implicitly only, during object declaration elaboration
and de-elaboration respectively. When an object is
declared, its constructor is passed an actual parameter
for every formal parameter in the constructor method
interface. Only IN parameters may be passed to
constructors; no parameters are passed to or from
destructors. Since constructors and destructors are
invoked implicitly, they use no names. We are still
debating the utility of labels and time constraints in
constructors and destructors, but the following is the
current definition:
<constructor>::=[$<label>!] constructor
[<time_constraint>] <in_param_list>
<decls> [<statements>]
endconstructor [!<label>$)]

::=[$<label>!] destructor
[<time_constraint>] <decls>
[<statements>] enddestructor
{1<label>$]

A method is either a conventional (“‘regular’) method
or a thread. Not surprisingly, both possibilities allow for
time constraints and time expressions:
<method> : 1= <regular_method>| <thread>
<regular_method> : :=[$<label>!] method <name>

[<time_constraint>]
<param_list> <decls>
[<statements>] endmethod
['<label>$) <name>

<destructor>

THE COMPUTER JOURNAL,

Vor. 38, No.4, 1995

$20z I4dy 01 uo 1senb Aq 6816G1/6LE/F/8E/e101ME/|Ulod/Wo0 dno olwepeoe//:sdiy wolj papeojumoq

324 ALEXANDER D. STOYENKO, THOMAS J. MARLOWE AND MoHAMMED F. YOUNIS

<thread> ::= [$<label>!] thread <name>
<activ_deactiv_constraint>
<(param_list> <decls>
[<statements>] endthread
[1<label>$] <name>

The balance of BNF pertinent to this section can be

found in Appendix B1.

4.2. Statements

CRL takes a set of conventional imperative statements
and augments it with a number of features:

<statements> ::={<statements>
[<time_constraint>]}’
<statement> ::=<null> | <timed_statement>

<timed_statement> ::=<untimed_statement>
<untimed_statement> !<label>$
| $<label>! <untimed_statement>
| $<label>! <untimed_statement>
1<label>$
<untimed_statement> ::= <assignment> | <if>|<loop>
| <exit>|<call>|<block>
[<activation>|<read>|write>
<null> ::=null
/* an explicit no-op,
statement */
<assignment>::=<rhs>
<if> ::=if <boolean_expr> then <statements>
{elseif <boolean_expr> then
<statements>}" [else <statements>]
endif
::=loop <iteration_constraint_or_
assertion> <statements> endloop
ri=exit
::=call <object_name> . <method_name>
([<actual_param_list>])
[<recursion_constraint_or_
assertion>]
<actual_param_list> ::=<actual_parameter>
{,<actual_parameter>}’
::=<name> | <expr>

as opposed to an empty

<loop>

<exit>
<call>

<actual_parameter>

<block> ::=block <decls> <statements> endblock

<activation>::=<call>

<read> ::=10read (<file _name> <var_ref>)
[<length_assertion>]

<write> ::=I0write (< file_name_> <var_ref>)

A statement may be associated with a timed con-
straint, a loop with an iteration constraint and a call with
a recursion constraint (as discussed in Sections 4.5 and
4.6). There is no separate thread activation statement;
rather, a call to the thread of an object activates the
thread. Currently, such a call is non-blocking, and only
IN parameters are allowed. If the thread is not eligible to
become active yet (typically because its previous frame
has not expired), then the thread will become active at
the end of the frame. A corollary of this is that calls to
periodic threads have no effect (and should be flagged by
the compiler).

4.3. Types, variables, scalars and names

The language is strictly typed, and type compatibility is

by name. All declarations are explicit, static and unique
within their scopes. Redeclaration is forbidden. Declara-
tion before use is required. Currently, only compile-time
knowable integer intervals are allowed as array ranges.
There are (at this time) two distinct name spaces, one for
labels, and one for all other names.

All language-defined types are implicitly imported and
thus visible everywhere, and may not be redefined. User-
defined types need to be imported in accordance with the
rules presented below.

The pertinent BNF is found in Appendix B2.

4.4. Expressions and assertions

A detailed syntax of CRL expressions is provided in
Appendix B3. Among the more interesting features is the
following:

<expr> HEE I
<length_assertion> ::=assert length <manifest_rhs>
| ?assert length <var_name>

where <length_assertion> can be used to restrict the
length of data entered into a variable providing possibly
larger string or array storage—the value can then be
used to refine out-of-bounds checks, and to prove
bounds on loops and recursion. ?7assert length
requires compile-time or link-time specification of
length. Specification provides a value for <var_name>
as input to the partial evaluator (see below), which must
be a declared and otherwise unused integer variable; it is
a compile-time/link-time error for the value to (be
negative or to) exceed the declared length of the string
or array. The 10 class handles input and output to files
and other devices <file_name> may be mapped to a
device).!

Currently, there are three kinds of assertions: iteration
and recursion assertions, and length assertions on read
data. The first two are always specified in line; the last
has two forms—one in line and one entailing input at
compile or link time. It is legal for no value to be
provided for the latter type of assertion if a default value
(e.g. the declared length of the identifier) can be supplied
for such an assertion.

Other kinds of assertion will be added to the language
as time goes by, principally for use by the analysis/
transformation engine; for example, if the semantics of
0UT and INOUT parameters is generalized, as an assertion
assert noalias <var_list> on a call, may be used to
assert that the parameters in <var_list> will not be
aliased at a call site (or at entry).

4.5. Constraints

As indicated above, constraints are (currently) of four
types: time constraints, iteration constraints, constraints
on activation and deactivation of threads and constraints

! Whether <file_name> is local or a system name will be resolved
when class I0 is defined.

THeE COMPUTER JOURNAL,

Vor. 38, No.4, 1995

$20z I4dy 01 uo 1senb Aq 6816G1/6LE/F/8E/e101ME/|Ulod/Wo0 dno olwepeoe//:sdiy wolj papeojumoq

A LANGUAGE FOR CoMPLEX REAL-TIME SYSTEMS 325

on (direct) recursion. The first three are discussed in this
section; recursion constraints are treated in the following
section. Constraints can either be verified at compile
time, or viewed as run-time checked assertions. The
keyword assert is reserved to distinguish the latter type;
assert will later also be used (possibly with modi-
fication) to label expected link-time input to the partial
evaluator, but this is not currently implemented.
A time constraint is specified as:
<time_constraint>::= timeconstraint
{<absolute_duration>|<relative_duration>
| <absolute_bound> | <relative_bound>}"

endtimeconstraint
<absolute_duration>::= use <abs_time_expr>
<relative_duration>::= userelative <rel_time_expr>
<absolute_bound> : := <nosoonerthan_absolute>

| <nolaterthan_absolute>
| <nosoonerthan_absolute> <nolaterthan_absolute>

<nosoonerthan_absolute>: := nosoonerthan
<abs_time_expr>
<nolaterthan_absolute> ::= nolaterthan

<abs_time_expr>
<relative_bound> ::= <nosoonerthan_relative>
| <nolaterthan_relative>
| <nosoonerthan_relative> <nolaterthan_relative>

<nosoonerthan_relative>::= nosoonerthanrelative
<rel_time_expr>
<nolaterthan_relative> ::= nolaterthanrelative

<rel_time_expr>
Time expressions have the following syntax:
1= (Kkmanifest_integer>)
| (<manifest_intefer>, <label>)
<rel_time_expr> ::= (<label> <manifest_integer>
<flags>) | (<label> <manifest_integer>
<flags>, <label>)

<label>s must of course be declared labels, and the
statements which they label must be appropriately
related to the current statement (see below). In the
second form for each type of time expression, the second
label must be a label of the current statement. <flags>
will be used to distinguish classes of constraints involving
a statement in a loop, or a statement in one procedure
and a label in another.

An iteration constraint is:
<iteration_constraint_or_assertion> ::=

<iteration_constraint>|<iteration_assertion>
<iteration_constraint> ::= <nomorethan_iterations>
<iteration_assertion> ::= assert

<iteration_constraint> | <nofewerthan_iterations>

<nomorethan_iterations>

<abs_time_expr>

<nofewerthan_iterations> ::= nofewerthaniterations
<manifest_integer>
<nomorethan_iterations> ::= nomorethaniterations

<manifest_integer>
An activation/deactivation constraint is

<activ_deactiv_constraint> :@:=
activationdeactivationconstraint
<type_activ_deactiv_constraint>
endactivationdeactivationconstraint

<type_activ_deactiv_constraint> ::= periodic
<absolute_duration> <first_activation>

| atevent frame <absolute_bound>
<first_activation> ::= firstactive <absolute_bound>
| firstactive atevent <event_name>

For now, deactivation is implicit, and deadlines are
defined by the end of the frame or period. Clearly, an
exact time may be defined as bounded between two
identical times. Currently all time constraints are to the
end of the statement. It is likely that this constraint
syntax will later be extended.

Constraints should be statically manageable without
combinatorial explosion; this entails that timing con-
straints between conditionally executed statements be
restricted in form, and that minimum absolute timing
constraints of a conditionally executed statement be
satisfied by non-execution of a given instance of the
statement.

4.6. Recursion

A program is said to have direct recursion only if for
each function (method or thread) f, any invocation of f
occurring during a call to f occurs as a result of a call to f
in the body of /. In a program with direct recursion only,
recursion can be handled by a construct similar to
iteration constraints, i.e.:
<recursion_constraint_or_assertion>::=
<recursion_constraint>
| <recursion_assertion>
<recursion_constraint> ::= <nomorethan_rec_depth>
| <rec_flag> <nolessthan_rec_depth>
<nomorethan_rec_depth>

<recursion_assertion> ::= assert
<recursion_constraint>

<nolessthan_rec_depth> ::= minrecursions
<manifest_integer>

<nomorethan_rec_depth> ::= maxrecursions

<manifest_integer>
€| any | all

<rec_flag> e

For a recursion constraint which is not statically
verifiable (possibly modulo earlier checked assertions,
such as data length), the compiler will add an extra
parameter to the function, and a test on each base case.
Some care will need to be taken both in the definition
(using <rec_flag>) and in checking if the function
makes multiple calls to itself.

As indicated, recursion is currently limited to direct
recursion. Indirect recursion (detectable by reachability
analysis of the call graph) poses a greater difficulty if
recursion constraints cannot be statically verified, since
recursion state will have to be passed between threads,
each possibly with its own recursion constraint. Possible
solutions include keeping track of recursion only at some
locations, using a single artificial thread to manage the
recursion and keeping counters as local state, or
extending the parameter list to include recursion depth
for all functions in the call-graph strong component. Our
proposed solution is to require that indirect recursion
with recursion constraints not verifiable at compile time
be required to have a reducible call graph, and to keep

THE COMPUTER JOURNAL,

VoLr. 38, No. 4, 1995

$20z I4dy 01 uo 1senb Aq 6816G1/6LE/F/8E/e101ME/|Ulod/Wo0 dno olwepeoe//:sdiy wolj papeojumoq

326 ALEXANDER D. STOYENKO, THOMAS J. MARLOWE AND MOHAMMED F. YOUNIs

track of recursion at region head nodes (back-edge
targets); the compiler may be permitted to perform a
limited amount of node splitting to create a reducible
region.

4.7. Static semantics

The language admits of standard Pascal-like static
restrictions on type consistency, function arity, name
conflict and so on. A few similar constraints on the use of
names (such as the second label in time expressions) are
sketched above. The compiler will also insert checks
for array bounds (although some may be removed
by optimization) and other similar enforcement
mechanisms.

There are two additional semantic restrictions. First,
there is a restriction on the reference of the first label on a
time expression, relative to the location of the current
statement (see below); this constraint can be verified by
standard attribute grammar techniques. Second, inher-
ent in the systems engineering nature of the language,
constraints and assertions naturally impose requirements
for compile-time verification or run-time checking.

In general, timing constraints must be verified at
compile time. Thread activation/deactivation constraints
are enforced by the scheduler and the run-time system.
Iteration and recursion constraints must either be
verified at compile time (possibly in the partial evaluator)
or checked at run time; a compiler flag will be used to
require verification or permit run-time checks of various
types of constraints. Assertions are assumed true at
compile (or link) time, and may be used by the partial
evaluator and subsequent analyses and transformations.
It is however required that they be checked at run time,
and it is a fatal error for a run-time check of a constraint
or assertion to fail.

4.8. Other features: exception handling and IPC

We are working on the definition of exception handling
and intertask communication. On the former, we have
defined a preliminary model of synchronous exceptions
and their handling. To enable predictable real-time
performance, we use a static program analysis related
to the program summary graph 9. Currently, expressions
of constants, scalars, and some I/O are allowed [65].

For the latter, we have defined messages, handled by a
class Channel, as one form of expression. We are looking
to extend this model with rendezvous.

5. AN OPEN-ENDED SUITE OF
CONFLICTING OBJECTIVES

“Conventional” programming languages have neglected
standard system engineering objectives, and concen-
trated primarily on compilability and on computational
paradigms (imperative, functional, declarative, object-
oriented, data-flow ...). In the field of real-time
computing, specialized languages have been developed

(compare [66]) which accommodate the real-time objec-
tive to varying extents, through libraries, or, more
properly, through language-level mechanisms. In specific
application domains, specialized languages have also
emerged, including features specific to those domains
(such as the grip primitive for a manufacturing robotics
language).

What is clearly missing is a suite of non-functional
objectives, together with a means of associating objec-
tives to application entities, provided, as part of language
design and implementation, in a domain-independent
fashion. Hundreds of such objectives have been identi-
fied (see, for instance, [67]). In what follows, we focus on
some of the important systems objectives we have
addressed or intend to address in CRL.

5.1. “Quality of service”

“Quality of service” is a measure of the quality of
observable results computed by processes. This is
perhaps the only functional criterion on the list of
system objectives of immediate concern. Given unlimited
resources, including time, and a fault-free environment,
every function can be implemented and subsequently
executed to produce correct and maximally precise
results. This, a function could return an arbitrarily
precise value for m, trace the complete effects of one
atom’s vibration on another (either classically or
quantum-mechanically), determine the age of the visible
universe predicted by a given model, or do something
more mundane, such as automatically and perfectly
adjusting control surfaces on a landing aircraft. Unfor-
tunately, the world is not fault-free, computer resources
are not unlimited, and time is of essence in many
applications; thus, we frequently have to accept some
degradation in the timeless, precision or availability of
results.

Thus, there is an obvious trade-off between quality of
service (also a recent term) and other objectives. In
computer systems, this trade-off has been addressed
through truncation/approximation error, ever since the
advent of numerical analysis (thus, well before there were
computers); through exception handling in languages;
and more recently through an attempt to extent
uniprocessor scheduling theories under the names of
“imprecise computation” and “multiversioning”.?

To accommodate quality of service at the program-
ming language level, we propose to use extensions in the
spirit similar to those found in High-Integrity PEARL
(HI-PEARL) [43] or Flex [41]. Specifically, HI-PEARL
allows providing multiple versions of task bodies, ranked
by quality. (Typically, a lower ranked version will
employ a less time-consuming or less potentially-faulty

2 There is also a relationship to strategies for distributed computa-
tion, particularly in heterogeneous multiprocessor systems, including
cloning, migration and dynamic allocation of resources. While we
expect also to provide language support for these decisions, we do not
here consider this aspect further.

THE COMPUTER JOURNAL,

VoL. 38, No. 4, 1995

$202 14dy 01 uo 1senb Aq 6816G1/6LE/#/8E/e101Me/|ulod/Wo dno olwepeoe//:sdiy woij papeojumoq

A LANGUAGE FOR CoMPLEX REAL-TIME SYSTEMS 327

algorithm that delivers somewhat less exact results.)
Since what constitutes a unit of algorithmic computation
depends on the language (as well as the language’s
paradigm), we believe it to be reasonable to aim for
expressibility of quality of service per first-class entity.
Thus, the definition of any function in a functional
language, any object in an object-oriented one, and so
forth, could be augmented with a quality of service
description (as a specification, an attribute, a compiler or
run-time pragma ...).

In some cases, we may also wish to provide quality of
service annotations for some subordinate entities, such
as methods of an object, computation of an intermediate
result, etc. This imposes, however, a requirement of a
semantic policy for “inheritance” of service quality, such
as “If an entity 4 whose quality of service is required to
be x calls another entity B, B must statically be able to
provide, and must dynamically provide, service of
quality at least x.” Other policies, and mechanisms
such as explicit relaxation through pragmas/assertions,
can be formulated.

This leaves the question of what exactly constitutes
quality, and how one can evaluate or rank it. These are
not trivial issues. For one, the measure of quality may
well be (conceptually) continuous, where for instance the
accuracy of an iterative algorithm may improve the more
iterations the loop has time to perform.

Even with multiversioning, there may well be interest-
ing nuances. For example, a procedure that seeks
argument values that result in zero, for a parameter
specifying an arbitrary real-valued differential function,
can be implemented by the more time-consuming per
iteration but more quickly converging Newton—~Raphson
method or by the less time-consuming per iteration but
more slowly converging bisection method. However, there
are anomalous situations which destabilize Newton’s
method (nearly horizontal tangent lines) or which slow
the rate of convergence (multiple roots), for which the
standard speed-of-convergence guarantees for Newton’s
method fail. Should such a situation be encountered, it
may be that bisection actually produces an acceptably
accurate result with less cost than for Newton’s method.
Thus, maintaining an expected quality of service may
require dynamic decisions, and may not be implemented
simply as a fixed choice among a fixed number of
independent implementations.

In addition, as the previous example suggests, where
there are two or more dimensions, either in terms of
quality of service, via resource constraints (e.g. on
computation), or a combination, such as iteration cost
and number of expected iterations to achieve a given
tolerance, it may be reasonable to have a two- or higher-
dimensional space of alternatives, indexed by the
resources available and service provided in each applic-
able dimension. Selection will then be guided by
maximization of some combination of objectives, subject
to maximum constraints provided by available resources,
and minimum constraints on some desiderata on quality.

5.2. Real-time performance

In complex computer systems, the issue of real-time
performance is of immense significance and difficulty.’
Moreover, while strict (“hard”) deadlines associated
with program units are still of major significance, other
measures of a ‘“softer” or more aggregate nature—
proportion of deadlines made, allowable sequence of
failures, and so on—are as important in complex
applications such as multimedia. Moreover, while
systematic, automated schedulability analysis [3-5] has
aided in developing modern real-time systems, modern
complex system engineering tools also need to accom-
modate assignment and allocation [68-70], design
structuring and other decision processes. Again, for
these other steps, measures (and predictors!) of real-
time performance beyond hard deadlines will be needed
[71).

While we recognize that complexity and computability
impose limitations on all formalisms, including timing
constraint languages and their interpretations, never-
theless we are tempted to propose that as rich a set as
possible of real-time performance expression primitives
be devised. Later, interpreters, compilers, schedulability
analysers, assignment and allocation tools can indicate
which expressions can and which cannot be analyzed,
resolved, unified, transformed ... or otherwise pro-
cessed. Some sort of heuristics, in the spirit of Prolog’s
cuts, can probably be included. Every applicable unit of
computation (variable access, expression evaluation,
call, statement, method evaluation, task activation and
execution ...) or combination of units of computation
should therefore and “in principle” be allowed to be
augmented with some expressions of timing require-
ments. Particular measures may include deadlines,
intervals, laxities, bounded elapsed and response times,
in the hard sense and in the soft sense (i.e. general time-
value functions), per unit of computation and in an
aggregate fashion. Research will be needed to determine
what temporal relationships between units will allow a
reasonably accurate pre-run-time analysis of feasibility.
To a significant extent, we have already discussed in this
paper how real-time performance is addressed in CRL.

5.3. Fault tolerance

Fault tolerance for traditional programming languages

3 Note this is not equivalent to the scheduling-theoretic model of
more-or-less independent pure computation tasks executing on a simple
network, with simple temporal constraints. These latter situations,
addressed in the OR community in the 1940-50s, were readdressed with
some extensions by the real-time community in the past twenty years. In
those efforts, the focus has been on provably correct scheduling
predictions and schedule construction—which however only makes
sense for well-understood and very simple cases (essentially a
uniprocessor with a set of independent pure computation tasks).
While these results applied to the standard computing model of the
1940-50s, and also to job-shop and other non-computer applications,
they can in general be used only as first approximations (by no means
provably either feasible or optimal) for the systems of 1970-80s, and
even less for the complex computer systems of the 1990s and the future.

THE COMPUTER JOURNAL,

Vor. 38, No.4, 1995

$20z I4dy 01 uo 1senb Aq 6816G1/6LE/F/8E/e101ME/|Ulod/Wo0 dno olwepeoe//:sdiy wolj papeojumoq

328 ALEXANDER D. SToYENKO, THOMAS J. MARLOWE AND MOHAMMED F. YOUNIS

is addressed by a number of techniques, including
exceptions, rollback and replication, but these are
unlikely in and of themselves to be sufficient for complex
systems. Some limited language support is available for
replication and rollback; however, both of these have
global implications, and must be used with care in a
complex composable system. We suggest adopting
current and proposed pragmas supporting replication
and optimistic/speculative execution, while where pos-
sible deferring decisions based on those pragmas until
we have a better picture of both global and local system
resources and requirements.

Exception-based mechanisms are promising, but
current language support is arguably insufficient. First,
there is a tendency to address exception propagation
only at certain sites, such as an object-method interface,
and most user exceptions are handled as returns from
calls. Second, while some languages provide mechanisms
for intercepting some system exceptions, most do not,
and existing interception mechanisms (as in C/UNIX)
are system dependent and often not comprehensible.
Third, most languages support synchronous exceptions
only. Fourth, except in a few cases (such as Real-Time
Euclid), most languages consider timing exceptions
“primitive’’ events that occur in hardware.

We propose that the basic timed-computation lan-
guage model be augmented with an exception detection,
propagation and handling model. Every unit of compu-
tation in the new model may trigger an exception,
detectable through some form of asserts, axiomatic or
other specifications. Exception handling will depend on
the availability of suitable handlers within the appro-
priate scope. The actual handling would be done by user-
defined code, employing both conventional and extended
mechanisms (such as rolling a value back to a previous
value and so forth). System exceptions will be inter-
ceptible within the model. Propagation will proceed with
control and data flow (such as through return parameters
or static variables)—this aspect of the model should in
fact be kept as synchronous as possible. Rules will be
provided to augment existing visibility and encapsula-
tion rules, while both providing for adequate propaga-
tion and preserving the philosophy of normal execution
flow as much as possible. An approach to augmenting
the basic timed-computation language model with an
exception detection, propagation and handling model is
described in [65].

5.4. Security

We have begun considering how security objectives can
be expressed in an integrated manner via annotations.
While security violations can be extremely subtle, at least
some forms of security can be expressed and handled
within a constraint mechanism; in particular, we
consider access to secure data/code on untrusted plat-
forms, and transmission of secure messages across
untrusted links. We propose that a constraint mechanism

can be used to identify secure data, code and messages
(conceptually at the same level of granularity as our
other annotations, although in practice probably largeiy
at a higher level), to guide assignment of these units to
secure devices. We can then check at compile time for
this type of security violation, and focus security
safeguards during implementation, translation, and
execution, for units requiring the most security, or for
the most vulnerable communications.

6. IMPLEMENTATION STATUS

As stated above, it is our intention to make the language
as widely distributed and used as possible. For this
reason, we target CRL to a C+ +-based platform.

The front end of our CRL compiler transiates CRL
code into a subset of C+ + plus a number of auxiliary
tables. The C+ + code is generated in two forms with
labels and comments: a compact, more-or-less statement-
by-statement form for user access, and to reflect
high-level structure, and a three-operand-like form for
low level timing analysis and transformation. Auxiliary
information includes a line-level correspondence among
the three forms, and databases of constraints and
assertions (on timing, iteration, recursion, activation,
etc.). Constraints and assertions are tied to the C+ +
code via line numbers and labels. In general, constraints
will require validation at compile or link time, and a
program in which there is an unproven constraint will
not be allowed to run; assertions will typically translate
into run-time checks, much like checks on array bounds,
although some assertions may be provable or redundant
(implied by the success of previous assertions), in which
case the corresponding run-time tests may be elided.

The two C+ + forms are used to derive timing
information, and to construct a number of auxiliary
representations, inciuding the control flow graph of each
procedure. Standard CRL types (boolean, integer,
array, ...) are provided as C+ + classes. Since CRL is
translated into a restricted subset of C+ + (plus
assertions) it should be possible to use or modify some
C+ + classes and routines, and for a developer to write
certain types of functions in C+ + modules which can
then interact with the CRL code.

The run-time system for CRL takes care of architec-
tural dependences, assignment, scheduling, activation,
and message-passing. The design is robust, and allows
various disciplines to be used in each case.

Our intention is to ultimately provide a flexible and
extensible platform where different topologies, network
properties, node architectures, kernel and OS-disciplines
and architectures can be used, in a “pluggable’” manner.
As a minimum, we are currently looking to provide both
basic well-known features as well as those developed
within the Real-Time Computing Laboratory (such as
for instance both EDF and RMF, and the Least-Space-
Time-First (developed in our Lab [72]) scheduling
disciplines.

THE COMPUTER JOURNAL,

VoL. 38, No. 4, 1995

$20z I4dy 01 uo 1senb Aq 6816G1/6LE/F/8E/e101ME/|Ulod/Wo0 dno olwepeoe//:sdiy wolj papeojumoq

A LANGUAGE FOR COMPLEX REAL-TIME SYSTEMS 329

6.1. Progress to date

The language is still to some extent in transition, and
exceptions have not yet been added. A scanner and
parser exist for the full language syntax (based on LEX
and YACC), and attribute-grammar-based semantic
analysis routines for type inference, constant recogni-
tion, and timing analysis exist for a core of the language.
There is a basic distributed runtime language kernel, with
network support, and with hooks for time measures,
rudimentary logging and monitoring, and of course,
language support. A window-based user interface is
being developed. For the purpose of debugging and
monitoring, we have augmented the language with a
non-timed statement dump <actual_param_list> that
dumps the variables and expressions—including char-
acter strings as in
‘‘Hi there‘ "*&~%$& etc etc ...”’

—to standard output.

6.2. Integrating the language into the suite of tools for
engineering of complex computer systems

The language (and its implementation) is but one tool in
the suite of tools. The tools associated with the language
(compiler, runtime kernel and monitor, schedulability
analyser and so on), and their subtools, are also part of
this suite. A common user interface should be used, and
the tools should be mutually and complementary
invocable. Thus for instance, it should be possible to
run the assignment tool for a while, then, perhaps change
the program, recompile it, do some reanalysis, and rerun
the assignment tool.

Let us now consider in general terms how application
development might proceed in this environment. The
developer begins with a high-level requirements or
specification document, translating into a graphical
formalism such as CaRT-Spec [77], or a textual
formalism, or a combination. As code is developed in
CRL (or perhaps partly in C+ +), we can, under user
control, extract timing information, check on con-
straints/assertions, preprocess for schedulability,
attempt local transformations, extract interface des-
criptions, and perhaps translate boundary-crossing
constraints into demands on the interface.

Once a program core has been developed, sample data,
platforms, and missing modules (or modules which
cannot be executed because of the nature of their side-
effects) can be provided using the workload generator
(and profiling or related tools for object-code system
routines). The developer can then consider various
assignment algorithms, perform more thorough analysis
and transformation, check for schedulability, and
combine simulation and execution in varying measures
for debugging, testing, profiling, etc. The results of the
analyses, transformations and simulation can be dis-
played to the developer, who can use them to identify
problems or bottlenecks and modify code.

Throughout the development process, the user will be

able to estimate whether the program will satisfy its
constraints, and how well the program is meeting its
objectives. In the later stages, these evaluations will rely
on both analysis and simulation/execution/profiling. In
simulation or symbolic execution, we will need to rely on
assignment construction, and scheduler simulation, as
well as simulation of the code itself.

While each of the facets we describe above is an
interesting research topic in itself, in which success will
significantly extend the state of the art, the interaction
and synthesis between them can be expected to provide
further benefits to a software development environment
and continuous research and technology advancements
in the field.

6.3. Interaction with scheduling

Evaluation of costs for assignment selection in a system
with complex non-functional constraints, including real-
time constraints, may not be possible at compile time
without some prediction of the schedule to be used.
Program transformation may also be difficult without
some knowledge of the scheduler. However, an approx-
imate schedule can be used. Gerber and Hong assume,
for work on transformations [73], that a scheduler such
as rate-monotonic scheduling is used. We currently make
use of a CPM/PERT-like scheduler for evaluating
assignments; we also expect to use the LSTF scheduler
[72]).

Figure 1 depicts the integrated environment, which
consists of interacting tools, as well as other auxiliary
tools, “virtual files”” and so forth. To appreciate why the

G

e come -

Network State

Program fuctional e’
and non-functional
description

CRL Executable @ CRL Program
o] Covem>
CaRT-Specto-CRL
CRL Stub Program f*—
Transisor

FIGURE 1. The integrated environment.

THE COMPUTER JOURNAL,

Vor. 38, No.4, 1995

$20z I4dy 01 uo 1senb Aq 6816G1/6LE/F/8E/e101ME/|Ulod/Wo0 dno olwepeoe//:sdiy wolj papeojumoq

330 ALEXANDER D. STOYENKO, THOMAS J. MARLOWE AND MoHAMMED F. YouNis

environment is constructed in this particular way, it is
important to understand the inherent interactions
among individual tools. Some interactions are in the
rather conventional producer-consumer form. Thus, for
instance, it is natural to expect the CRL compiler to take
the output of the CRL editor or the CRL editor and
CaRT-Spec-to-CRL translator, and in turn provide
output to the CRL run-time kernel.* Other interactions,
however, are more interesting. Thus, for instance, the
transformations and concomitant performance predic-
tions undertaken by the CRL transformer-optimizer-
analyser are dependent on the assignment of CRL’s
modules to the processing elements in the network. Not
surprisingly, the inverse dependency exists as well. Conse-
quently, the assigner-migrator and the transformer-
optimizer-analyser must coordinate their actions. In the
integrated environment, all such coordination is imple-
mented through the coordinator tool.

The low-level implementation details of operation and
coordination in the integrated environment (distributed
operation vs. lock-step or co-routines vs. multi pass ...)
are to be decided upon later and are not presented in this
paper. Referring to the Figure 1, we now briefly explain
the role of each depicted item. Among the items, network
simulator and CRL kernel can be used during run-time
only. The rest of the tools can be used both before and
during run time.>

The CaRT-Spec editor is used to develop, modify and
manage CaRT-Spec specification programs. These pro-
grams are in turn processed by the CaRT-Spec-To-CRL
Translator, which outputs stub CRL programs. The
latter consist of CRL object, thread and method
definitions and stub bodies. In those bodies, there are
calls to methods and threads, but non-call code is
substituted with cycle burners and dummy parameters
are used in calls. The burners and dummy parameters are
already largely sufficient to project various performance
and other properties of the eventual program or to
possibly test a new assignment, analysis or transforma-
tion algorithms. Should the detailed program be devel-
oped, naturally the burners and dummy parameters will
be changed to their functional code counterparts.

Output from either the CRL programmer user, the
CaRT-Spec-to-CRL translator or the workload genera-
tor (see below) is processed by the CRL editor, which is
used to develop, modify and manage CRL programs.
This editor may in fact simply pass a stub program on to
the next step, which is naturally the CRL compiler.

The compiler outputs “executable” CRL code and a
program description consisting of functional (such as

4 CaRT-Spec [76] is our specification language. This language is
resource-algebraic and should support constraints and annotations
which are at least as rich as CRL’s. The details of CaRT-Spec are
be;{ond the scope of this paper.

This includes all seemingly “compilation”-time tools, such as the
CRL, compiler, the CaRT-Spec Editor ...

U Really C+ +—architecturally, this is irrelevant, though there are

some interesting engineering issues in the implementation.

flow graphs) and non-functional (such as desired
performance objectives, timing annotations ...) parts.
The compiler thus combines the functions of the actual
compiler and the extractor of non-functional informa-
tion (including the traditional timing extractor, which is
of course the front-end schedulability analyser). The
compiler interacts (through the coordinator tool) with
other tools. Essentially, complete or partial (incremental)
recompilation may trigger more transformations, opti-
mization, analysis, assignment, and migration. On the
other hand, code transformations, or migrations® may
trigger recompilation. Moreover, network monitoring
debugging and performance evaluation may necessitate
migrations, transformations and recompilation.

The CRL transformer-optimizer-analyser is driven by
primarily the functional and non-functional program
description, as output by the compiler. Naturally, to
enable any transformations, this description is linked
(through symbol tables and so forth) to the CRL code.’
As has been discussed already, the transformer-optimizer-
analyser performs transformations in the sense of
(i) reduction of the problem space that needs to be
considered during analysis (ii) real-time conforming
versions of traditional speed-up optimizations, (iii)
optimistic code specializations such as speculative,
shadow, partial evaluation, and others. As transforma-
tions are done, the CRL code is changed accordingly.
Such changes trigger recompilations, as well as possibly
reassignments (migrations). Indirectly, such changes also
lead to changes in run-time execution, as monitored,
debugged and evaluated elsewhere in the system (the
latter changes may necessitate additional transforma-
tions). The transformer-optimizer-analyser also performs
the traditional back-end schedulability analysis as well as
other non-functional analyses (geared at safety, security
and so forth). As each analysis is done, the transformer-
optimizer-analyser augments appropriately the non-
functional program description. Again these changes
may trigger changes requested by other tools in the
system (e.g. performance predictions may now differ
more from observed performance or a deadline may now
be missed). Also, an analysis may indicate that an
objective will not be met, forcing a CRL program to be
possibly re-written.

As was already mentioned, the workload generator
outputs CRL programs (naturally, in stub form,
similarly to that of the CaRT-Spec-to-CRL translator).
The generator also outputs a program description
(such as the one output by the compiler) and a
network description (topology, speeds, capacities ...).

® A migration may trigger stub regeneration for distributed calls or
even create new calls or eliminate existing calls. These actions would
consequently require recompilation.

7 In the figure it indicates that we transform the source CRL code.
Whether it is so, or not (the alternative is of course to transform the
executable code) is currently considered an implementation issue.
Conceptually, we feel that the choice matters rather little.

THE COMPUTER JOURNAL,

VoL. 38, No.4, 1995

$20z I4dy 01 uo 1senb Aq 6816G1/6LE/F/8E/e101ME/|Ulod/Wo0 dno olwepeoe//:sdiy wolj papeojumoq

A LANGUAGE FOR CoMPLEX REAL-TIME SYSTEMS 331

The network description is used by the network
simulator and the assigner-migrator.

The assigner-migrator derives and triggers, at compile
and run time, an allocation of program objects (as
presented in the program description and physically
found in the executable CRL code) to processing
elements in the network (as presented in the network
description). The allocation is driven by the functional
and non-functional objectives as requested in the
program description, subject to network constraints
and on the basis of functional and non-functional
properties found in the program description. The
assigner-migrator may realize that an allocation accord-
ing to a particular objective may not be possible. In this
case, the tool will recommend program changes (through
the coordinator), triggering action by other tools or even
the programmer. On the other hand, actions by other
tools may of course also trigger at reallocation.

The CRL kernel executes CRL code, subject to its
functional and non-functional objectives. There is a
virtual replica of the kernel at every processing element
in the network. The kernel coordinates directly with the
network simulator on issues of remote calil preparation
and execution, and associated scheduling decisions
(remote cails may prove to be natural preemption
points, for instance). The kernel maintains a program
state at every processing element.

The network simulator essentially supports network
messaging, as required by CRL calls, and CRL object
migration, as required by the assigner-migrator. When
the integrated environment stabilizes and becomes ready
for transfer, the simulator may be replaced by a real
network manager. The network simulator uses the
network description and maintains a global network
state (in the sense of messages rather than execution
CRL objects, where the latter are of course tracked
through the program state maintained by the CRL
kernel). As already stated, the simulator coordinates
with the CRL kernel, to support remote calls.

As its name implies, the execution monitor-debugger-
evaluator is used to monitor, debug and evaluate runtime
execution of CRL programs. Naturally, this tool makes
use of program and network state information, as
provided by the CRL kernel and the network simulator.
The monitor-debugger-evaluator may be requested to
perform a particular function (such as reporting which
conditional branch is executed), as a result of a
compilation, a transformation, or an assignment of a
CRL object. On the other hand, the tool may trigger a
recompilation, a reassignment, or more transformations,
on the basis of its observations. As expected, all such
coordination with other tools is done through the
coordinator.

A number of auxiliary or detail items are omitted from
but are implicit in the Figure 1. User interfaces are
naturally provided for the tools. The CRL compiler
outputs C+ + code which is post-processed in prepara-
tion for consequent compilation and linkage with CRL

type and other libraries, and linkage with the CRL
kernel. A rudimentary database of non-functional
constraints will be provided. We may also decide to
support transformations and detailed analysis of CaRT-
Spec specifications (some already defined). We may
choose to support a mode where the workload generator
outputs CRL program descriptions, and not actual code.
Consequently, these descriptions would be symbolically
executed in a symbolic mode by the kernel, and
evaluated/monitored accordingly. Other detailed items
are likely to include platform OS and GUI interface and
so forth.

7. ALAST WORD

We have presented a new high-level language—CRL-—
aimed at the new generation of complex real-time
systems. Arguably, while no existing set of tools,
including real-time languages, is entirely adequate for
construction of such systems—an undoubtedly tall
order—CRL we feel rather strongly is a definite step in
the right direction. It is our ambition to strengthen and
build CRL. While timing specifications are already
provided, and fault-tolerance and quality of service
mechanisms too are being incorporated, we would like to
also extend the list of supported objectives with security,
human factors and others. Once in a reasonable form,
the language will be tested and widely distributed. It is
our intention to engage in significant experimentation
with this language and its concomitant tools. The
experimentation should include constructing at least
one realistic computer system, such as a VR/multimedia
application [74].

8. ACKNOWLEDGEMENT

We are indebted to generous support partially provided
for this work under the US ONR Grants N00014-92-J-
1367 and N00014-93-1-1047, the US NSWC Grants
N60921-93-M-1912, N60921-93-M-3095, N60921-94-M-
1250 and N60921-94-M-1426, by Siemens Corporate
Research collaborative grants, and by the AT&T UEDP
Grant 91-134. In addition to the authors, significant
contributions to the implementation of CRL have also
been made by M.-H. Aksu, Y. Cheng, C. Kline and B.
Liang. This work has benefited from a productive
collaboration the team members of the NSWC project
DESTINATION led by C. Nguyen, as well as Real-Time
Computing Lab’s participation in research and technol-
ogy projects at Siemens Corporate Research, IBM T.J.
Watson Research and Honeywell Systems Development
Center. The authors are very grateful for the many
constructive comments made by the four anonymous
referecs as well as by the following Real-Time Comput-
ing Lab members: C. Amaro, B.-C. Cheng, A. Ganesh,
M. Harelick, P. Laplante, A. Silberman and P. Sinha.

REFERENCES
{1} Kligerman, E. and Stoyenko, A. D. (1986) Real-Time

THE COMPUTER JOURNAL,

VoL. 38, No.4, 1995

$20z I4dy 01 uo 1senb Aq 6816G1/6LE/F/8E/e101ME/|Ulod/Wo0 dno olwepeoe//:sdiy wolj papeojumoq

332

ALEXANDER D. SToOYENKO, THOMAS J. MARLOWE AND MOHAMMED F. YOUNIs

(2]

(3]

(4]

(3]

(6]

(7]

(8]

9]

(10]

(1]

[12]

(13]

[14]

(15]

(16]

(17

(18]

(19]

[20]

(21]

Euclid: a language for reliable real-time systems,” I[EEE
Transactions on Software Engineering, SE-12 (9) 940-949.
Stoyenko, Alexander D. (1984) Turing goes Real-Time . ..
Internal programming Languages Report, Department of
Computer Science, University of Toronto.

Stoyenko, A. D. (1987) A schedulability analyzer for
Real-Time Euclid, Proceedings of the IEEE 1987 Real-
Time Systems Symposium, December.

Stoyenko, A. D. (1987) A Real-Time Language with A
Schedulability Analyzer, PhD Thesis, Department of
Computer Science, University of Toronto.

Stoyenko, A. D., Hamacher, V. C. and Holt, R. C. (1991)
Analyzing hard-real-time programs for guaranteed sche-
dulability, IEEE Transactions on Software Engineering,
SE-17 (8) 737-750.

Baker, T. P. and Shaw, A. (1989) The cyclic executive
model and Ada, The Real-Time Systems Journal, 1 (1), 7-
26.

Haase, V. H. (1981) Real-time behavior of programs,
IEEE Transactions on Software Engineering, SE-5 (7):
494-501.

Halang, W. A. (1984) A proposal for extensions of
PEARL to facilitate formulation of hard real-time
applications, Informatik-Fachberichte 86, Springer-
Verlag, 573-582.

Leinbaugh, D. W. (1980) Guaranteed response times in a
hard-real-time environment,”” JEEE Transactions on Soft-
ware Engineering, SE-6 (1) 85-91.

Leinbaugh, D. W. and Yamini, M.-R. (1982) Guaranteed
response times in a distributed hard-real-time environ-
ment Proceedings of the IEEE 1982 Real-Time Systems
Symposium, December.

Leinbaugh, D. W. and Yamini, M.-R. (1986) Guaranteed
response times in a distributed hard-real-time environ-
ment, /[EEE Transactions on Software Engineering, SE-12
(12) 1139-1144,

Mok, A. K., Amerasinghe, P., Chen, M. and Tantisirivat,
K. (1989) Evaluating tight execution time bounds of
programs by annotations, IEEE Workshop on Real-Time
Operating Systems and Software, Pittsburgh, PA, 74-80.
Niehaus, D. (1991) Program representation and transla-
tion for predictable real-time systems, /JEEE Real-Time
Systems Symposium, San Antonio, TX, December.

Park, C. and Shaw, A. C. (1990) Experiments with a
program timing tool based on a source-level timing
schema, IEEFE Real-Time Systems Symposium, Orlando,
FL, December.

Puschner, P. and Koza, C. (1989) Calculating the
maximum execution time of real-time programs, Journal
of Real-Time Systems, 1 (2), 159—176.

Rate Monotonic Analysis for Real-Time Systems Project
(1992) Handbook of Real-Time Systems Analysis
(DRAFT), Software Engineering Institute, Carnegie-
Mellon University.

Sha, L. and Goodenough, J. B. (1990) Real-time
scheduling theory and Ada, Computer 23 (4), 53-62.
Shaw, M. (1979) A Formal System for Specifying,
Verifying Program Performance, Carnegie-Mellon
University, Computer Science Department, Technical
Report CMU-CS-79-129.

Shaw, A. C. (1989) Reasoning about time in higher-level
language software, [EEE Transactions on Software
Engineering, SE-15 (7), 875-889.

Shaw, A. C. (1990) Deterministic Timing Schemata for
Parallel Programs, University of Washington, Depart-
ment of Computer Science and Engineering, Technical
Report 89-05-06.

Stoyenko, A. D. and Marlowe, T. J. (1991) Schedulability,
program transformations and real-time programming,

[22)

23]

(24]

[25]

[26]

[27])

(28]

(29]
(30)
[31]

(33]

(34]

(35]

(36]

(371

8]

(39]

(40]

[41]

IEEE[IFAC Real-Time Operating Systems Workshop,
May, Atlanta, GA.

Stoyenko, A. D. and Marlowe, T. J. (1992) Polynomial-
time transformations and schedulability analysis of
parallel real-time programs with restricted resource
contention, Journal of Real-Time Systems, 4 (4).
Stoyenko, A. D., Marlowe, T. J., Halang, W. A. and
Younis, M. (1993) Enabling efficient schedulability
analysis through conditional linking and program trans-
formations, Control Engineering Practice, 1 (1).

Harmon, M., Baker, T. and Whalley, D. (1992) A
retargetable technique for predicting execution time,
Proceedings of the IEEE Real-Time Systems Symposium,
IEEE, December.

Chroust, G. (1980) Orthogonal extensions in micropro-
grammed multiprocessor systems: a change for increased
firmware usage, EUROMICRO Journal, 6 (2), 104—110.
Halang, Wolfgang A. (1986) On methods for direct
memory access without cycle stealing, Microprocessing
and Microprogramming, 17 (5).

Halang, Wolfgang A. (1986) Implications on suitable
multiprocessor structures and virtual storage manage-
ment when applying a feasible scheduling algorithm, Hard
Real-Time Environments, Software— Practice and
Experience, 16 (8), 761-769.

Halang, Wolfgang A. and Stoyenko, Alexander D. (1991)
Constructing Predictable Real-Time Systems, Kluwer
Academic Publishers, Dordrecht-Hingham (1991).
KE-Handbuch (1981), Periphere Computer Systeme
GmbH, Munich.

Schleisiek-Kern, K. (1990) Private Communication,
DELTAt, Hamburg.

Schrott, G. (1986) Ein Zuteilungsmodell fuer Multiprozes-
sor-Echizeitsysteme, PhD Thesis, Technical University,
Munich.

Tempelmeier, T. (1979) A supplementary processor for
operating system functions, /979 IFAC/IFIP Workshop
on Real-Time Programming, Smolenice, June.
Tempelmeier, T. (1984) Operating system processors in
real-time systems-performance analysis and measure-
ment, Computer performance, § (2), 121-127.

Baker, T. P. and Scallon, G. L. An architecture for real-
time software systems, /EEE Software, May 1986, 50-59;
reprinted in tutorial Hard Real-Time Systems, IEEE Press
(1988).

Zuse Konrad, Foreword to Halang, Wolfgang A.,
Stoyenko, Alexander, D. Constructing Predictable Real-
Time Systems, Kluwer Academic Publishers, Dordrecht-
Hingham (1991).

BCS Specialist Group (1967) On-line computers and their
languages—a language for real-time systems, Computer
Bulletin, No. 3, 202-212.

Mensh, M. and Diehl, W. (1968) Extended FORTRAN
for process control, IEEE Transactions on Industrial
Electronics and Control Instrumentation, IECI-15, 75-79.
Pickett, M. S. (1979) ILIAD Reference Manual, Computer
Science Department, General Motors Research
Laboratories, Warren, Michigan, Research publication
GMR-2015B.

Kieburtz, R. B. and Hennessy, J. L. (1976) TOMAL—a
high-level programming language for microprocessor
process control applications, ACM SIGPLAN Notices,
11 (4), 127-134.

Lee, I. and Gehlot, V. (1985) Language constructs for
distributed real-time programming, Proceedings of the
IEEFE 1985 Real-Time Systems Symposium, December.
Lin, K.-J. and Natarajan, S. (1988) Expressing and
maintaining timing constraints in FLEX, Proceedings of
the IEEE 1988 Real-Time Systems Symposium, December.

THE COMPUTER JOURNAL,

Vot.

38, No.4, 1995

$20z I4dy 01 uo 1senb Aq 6816G1/6LE/F/8E/e101ME/|Ulod/Wo0 dno olwepeoe//:sdiy wolj papeojumoq

A LANGUAGE FOR COMPLEX REAL-TIME SYSTEMS

333

(42]

(43]

(44]

{45]

(46]

[47)

(48]

[49]

(50]

(51]

(52)

(53]

[54)

(53]

[56]

[57]

(58]

(59]

(60]

Ishikawa, Y., Tokuda, H. and Mercer, C. W.- (1990)
Object-Oriented Real-Time Language Design: Constructs
for Timing Constraints, Department of Computer Science,
Carnegie Mellon University, Technical Report CMU-CS-
90-111.

Stoyenko, A. D. and Halang, W. A. (1993) High-integrity
PEARL: a language for industrial real-time applications,
IEEE Software, July.

Baker, T. P. (1991) Stack-based scheduling of real-time
processes, The Real-Time Systems Journal, 3 (1), 67-100.
Giering, E. W. III and Baker, T. P. (1989) Toward the
deterministic scheduling of Ada tasks, Proceedings of the
IEEE Real-Time Systems Symposium, December, 31-40.
Chapman, R., Wellings, A. and Burns, A. (1994)
Integrated program proof and worst-case timing analysis
of SPARK Ada, Proceedings of the Workshop on
Language, Compiler, and Tool Support for Real-Time
Systems, June.

Gopinath, P. and Gupta, R. (1994) Correlation analysis
techniques for refining execution time estimates of real-
time application, IEEE Workshop on Real-Time Operating
Systems and Software.

Gupta, R. and Spezialetti, M. (1994) Busy-Idle Profiles
and Compact Task Graphs: Compile-Time Support for
Interleaved and Overlapped Scheduling of Real-Time
Tasks, University of Pittsburgh Technical Report TR-
94-24,

Marlowe, T. J. and Masticola, S. P. (1992) Safe
optimization for hard real-time programming, Proceed-
ings of IEEE Second Int'l Conf. on Systems Integration,
May.

Mueller, F. and Whalley, D. B. (1994) On debugging real-
time applications, Proceedings of the Workshop on
Language, Compiler, and Tool Support for Real-Time
Systems, June.

Mueller, F., Whalley, D. B. and Harmon, M. (1994)
Predicting instruction cache behaviour, Proceedings of the
Workshop on Language, Compiler, and Tool Support for
Real-Time Systems, June.

Nirkhe, V. and Pugh, W. (1992) Partial evaluation of
high-level imperative languages, with applications in hard
real-time systems, Proceedings of the ACM SIGPLAN 92
Conference on Programming Language Design and Imple-
mentation, January.

Nirkhe, V. and Pugh, W. (1993) A partial evaluator for
the Maruti hard real-time system, Real-Time Systems, 5
(1), 13-30.

Park, C. Y. (1993) Predicting program execution times by
analyzing static and dynamic program paths, Real-Time
Systems, 5 (1), 31-62.

Spezialetti, M. and Gupta, R. (1994) Timed perturbation
analysis: a static analysis approach for the non-intrusive
monitoring of real-time computations, Proceedings of the
Workshop on Language, Compiler and Tool Support for
Real-Time Systems, June.

Tsai, J. J. P., Fang, K.-Y. and Chen, H.-Y. (1990) A
noninvasive architecture to monitor real-time operating
system, JEEE Computer, March.,

Vrchoticky, A. (1994) Compilation support for fine-
grained execution-time analysis, Proceedings of the Work-
shop on Language, Compiler, and Tool Support for Real-
Time Systems, June.

Wedde, H. F., Korel, B. and Huizinga, D. M. (1994)
Formal timing analysis for distributed real-time pro-
grams, Real-Time Systems, 7 (1), 57-90.

Wolfe, V. F., Davidson, S. and Lee, L. (1993) RTC:
language support for real-time concurrency, Real-Time
Systems, 5 (1), 63-87.

Younis, M., Marlowe, T. and Stoyenko, A. (1994)

[61]

(62]
(63]

[64]

(65]

(66]

[67]

(68]

(70}

(71]

(72)

(73]

(74]

{751

(76]

7

Compiler Transformations for Speculative Execution in
a Real-Time System, Proceedings of the 15th Real-Time
Systems Symposium, San Juan, Puerto Rico.

Stoyenko, A. D. and Baker, T. (1994) Real-time
schedulability-analyzable mechanisms in AdaSX, Pro-
ceedings of the IEEE, 95-107, January.

DIN 44300: Informationsverarbeitung, No. 161 (1972)
Realzeitbetrieb.

Gerber, R. and Hong, S. (1994) Compiling real-time
programs with timing constraints refinement and struc-
tural code motion, CS-TR-3323, UMIACS-TR-94-90,
Department of Computer Science, University of Mary-
land.

Chung, T. M. and Dietz, H. G. (1995) Language
constructs and transformation for hard real-time systems,
Proceedings of the Workshop on Language, Compiler, and
Tool Support for Real-Time Systems, June.

Marlowe, T. J., Stoyenko, A. D., Masticola, S. P. and
Welch, L. R. (1994) Schedulability-analyzable exception-
handling for fault-tolerant real-time languages, Real-Time
Systems, 7 (2), 183-212.

Stoyenko, A. D. (1992) Evolution and state-of-the-art of
real-time languages, Journal of Systems and Software, 18,
61-84.

Nguyen, C. M. and Howell, S. L. (1992) Systems Design
Factors: The Essential Ingredients of Systems Design,
Informal Report, Version 0.3, Naval Surface Warfare
Center.

Amaro, C. C., Harelick, M,, Sinha, P., Stoyenko, A. D,,
Laplante, P. A., Marlowe, T. J., Cheng, B.-C., Jones, N.
and Tugcu, T. (1994) Economics of resource allocation,
1994 Complex Systems Engineering and Assessment
Technology Workshop, Beltsville, MD.

Marlowe, T. 1., Stoyenko, A. D., Laplante, P. Daita, R.
S., Amaro, C. C., Nguyen, C. M. and Howell, S. L. (1994)
Multiple-goal objective functions for optimization of task
assignment in complex computer systems, /9th IFAC/
IFIP Workshop on Real Time Programming, Isle of
Reichenau, Lake Constance, Germany.

Stoyenko, A. D., Welch, L. R. and Cheng, B.-C. (1994)
Response time prediction in object-based, parallel
embedded systems, Microprogramming and Micropro-
cessing, 40 (2&3), 135-150.

Stoyenko, A. D. and Georgiadis, L. (1992) On optimal
lateness and tardiness scheduling in real-time systems,
Computing, 47, 215-234,

Cheng, B.-C., Stoyenko, A. D. and Marlowe, T. J. (1994)
Least-space-time-first scheduling algorithm: a policy for
complex real-time tasks in multiple processor systems,
Proceedings of the 19th IFAC/IFIP Workshop on Real
Time Programming, June.

Hong, S. and Gerber, R. (1993) Compiling real-time-
programs into schedulable code, Proceedings of the ACM
SIGPLAN 93 Conference on Programming Language
Design and Implementation, June.

Laplante, P., Stoyenko, A. D. and Marlowe, T. J. (1994)
A language framework for real-time image processing,
19th [FAC|IFIP Workshop on Real Time programming,
Isle of Reichenau, Lake Constance, Germany, June.
Davidson, S., Lee, 1. and Wolfe, V. (1991) Time atomic
commitment, /[EEE Transactions on Computers, 40 (5),
573-583.

Furht, B. et al. (1991) Real-time UNIX Systems Design
and Applications Guide, Kluwer Academic Publishers,
Boston.

Stoyenko, A. D., Marlowe, T. J. and Laplante, P. A.
(1995) A Description Language for Engineering of
Complex Real-Time Systems, Journal of Real-Time
Systems, 7 (in press).

THE COMPUTER JOURNAL,

VoL.

38, No.4, 1995

$20z I4dy 01 uo 1senb Aq 6816G1/6LE/F/8E/e101ME/|Ulod/Wo0 dno olwepeoe//:sdiy wolj papeojumoq

334 ALEXANDER D. SToYENKO, THOMAS J. MARLOWE AND MoHaAMMED F. YOuNIs

APPENDIX A : CRL EXAMPLES

To present the syntax as well as the power of CRL in
expressing timing constraints, we show two examples
written in CRL. The first one, taken from [75], describes
the removal of defective containers out the assemble line
in a chemical plant. On detection of a defective
container, that container should be removed and
discarded, delaying the production process. A robot
with two arms is used to pick the defective container out
the assembly line. The quality of the containers is
monitored by a quality control system which coordinates
with the robot to lift the defective container. To allow the
container to be reachable by the robot arms, removal
should start after at least 5 seconds of detection. The
container should be lifted within 10 seconds of being
detected; otherwise, the line should stop. The quality
control system will set an alarm in case of failure in lifting
the container.

To pick up the container, the arms should first move
towards the container and then grab it. The arms should
not take more than 1 second to move or to grab. The
arms should not be moved before 100 ms of grabbing the
container to ensure stability.

types

% class for handling alarms
classdefinition Alarm
% Class interface specification
export Alarm
methodinterface set
endmethodinterface set
endclassdefinition Alarm,

% Class for controlling an arm of the robot
classimplementation Arm_Controller
% Class interface specification

export Arm_Controller
methodinterface Prepare_Lift
endmethodinterface Prepare_Lift
methodinterface Perform_Lift
endmethodinterface Perform_Lift
% Constants declaration action
consts
100 target_x,
100 target_y,
0 origin_x,
0 origin_y,
1 time_allowed
endconsts

% Move robot arms to a new position
method Prepare_Lift
% The method timing constraints

integer
endvars
I0read(ROBOT current_x)
if current_x)> target_x

direction_y

then
direction_x := -1
else
direction_x := 1
endif

I0read (ROBOT current_y)
if current_y> target_y

then
direction_y := -1
else
direction_y := 1
endif

call self.Move_Arm(target_x,direction_x,
target_y,direction_t)
% move the arms towards the container
endmethod Prepare_Lift

% Make robot arms grab the defective container
method Perform Lift
% The method timing constraints
timeconstraint
nolaterthan (1)
endtimeconstraint
% remove the defective container
call self.Grab_Arm() !grab$
call self.Move_Arm(origin_x,—1,origin_y,—1
timeconstraint
nosoonerthanrelative (grab 1 local)
endtimeconstraint
% arm motion should not start before
% 100ms to ensure stability
endmethod Perform_Lift

% Interact with the robot to actually move arms
method Move_Arm
% Method interface specification
in rational x,
integer dir_x,
rational y,
integer dir_y
% the method body
endmethod Move_Arm

% Interact with the robot to actually grab arms
method Grab_Arm

% the method body
endmethod Grab_Arm

endclassimplementation Arm_Controller,

classimplementation Quality_Monitor
% Class interface specification
export threadinterface Monitor_Container

timeconstraint endthreadinterface Monitor_Container
nolaterthan (1) import Arm_Controller Alarm
endtimeconstraint % defined types
% Variables declaration section types
vars array 1..2 of Arm_Controller endarray Arms
rational current_x, endtypes
rational current_y, % Constants declaration section
integer direction_x, consts
THE COMPUTER JOURNAL, VoL. 38, No.4, 1995

$20z I4dy 01 uo 1senb Aq 6816G1/6 L E/F/8E/e101ME/|Ulod/Wo0 dno olwepeoe//:sdiy woij papeojumog

A LANGUAGE FOR CoOMPLEX REAL-TIME SYSTEMS 335

5 START,
10 END,
20 PERIQD,
0.001 TOLERANCE
endconsts
% Variables declaration section
vars
Arms arm,
Alarm alarm
endvars

Control the robot arms to remove the defective

)/

% container without disturbing the production line

method Remove_Container
% Method interface specification
in integer start_time,
integer deadline
out boolean indicator
vars
boolean robot_status,
integer lindex
endvars
block
I10read (ROBOT robot_status)
if not robot_status

then
indicator := 1 % failure
else
lindex := 1
loop nomorethaniterations 2
call arm(lindex).Prepare_Lift()
lindex := lindex + 1
endloop
lindex := 1

loop nomorethaniterations 2
call arm(lindex).Perform_Lift()
lindex := lindex + 1
endloop
endif
indicator := 0
endblock
% The method timing constraints
timeconstraint
nosoonerthan (start_time)
nolaterthan (deadline)
endtimeconstraint
endmethod Remove_Container

% Success

% Periodic container monitor to remove defective

% containers without blocking the production line

thread Monitor_Container
% Period and any activation constraints
activationdeactivationconstraint
periodic use (PERIOD)
firstactive nosoonerthan (START)
endactivationdeactivationconstraint
vars
ratiopnal status,
integer now,
boolean failure
endvars
% Get the status of the current container
I0read (SENSOR status)

% if the container is defective - -> remove it

if status < TOLERANCE
then
10read(TIME now)
callself.Remove_Container
(now+5,now+10,failure)
if failure
then
call alarm.set()
endif
endif
endthread Monitor_Container

endclassimplementation Quality_Monitor
endtypes

The second example treats an aircraft navigation
control system, similar to that discussed in {63].

The route of the aircraft will represented by a set of
goal coordinates (stored in the GOAL array). We assume
that that set of coordinates will be provided by another
module and passed as a parameter to the navigation
control thread. The algorithm can be summarized in
three steps. In the first, the process samples the aircraft’s
current coordinates, direction (heading), roll, and its
ground speed. Second, it consults the GOAL array for
the next coordinate to target and calculate the relative
attitude and the new direction angle. Finally, it adjusts
throttle and roll to move to a new coordinate point. For
simplicity, we consider a two-dimensional abstraction of
navigation control problem. Assume the following
timing constraints imposed by the problem:

(i) Control update should be done every 20 ms.

(ii) All measurements updates should be done within the
first Sms in each period.

(iii) All throttle and flap changes must be made within
3 ms of the actual ground speed reading.

The CRL code is shown below. One important
observation is the use of labels to express timing
constraints relative to some other point, as with label
read_stat, referenced when writing the timing con-
straints imposed on the execution of the block in the
thread control. Another observation is the flexibility of
expressing timing constraints on an statement or a group
of statements (block) in addition to on methods or
threads.

types

record
vars
rational x,
rational vy,
boolean passed
endvars

endrecord POINT,
array 1 . . 100 of POINT endarray GOAL,

% Definition of the velocity class
classdefinition velocity

THE COMPUTER JOURNAL,

Vor. 38, No.4, 1995

$20z I4dy 01 uo 1senb Aq 6816G1/6LE/F/8E/e101ME/|Ulod/Wo0 dno olwepeoe//:sdiy wolj papeojumoq

336 ALEXANDER D. SToYENKO, THOMAS J. MARLOWE AND MOHAMMED F. YOUNIs

export velocity
methodinterface get
endmethodinterface get
endclassdefinition velocity,

classimplementation navigation
% Class interface specification
export threadinterface control
in GOAL goal
endthreadinterface control
import velocity
% Constants declaration section

consts
100 NCOORD,
400 VHIGH,
0.001 EPS
" endconsts
% Variables declaration section
vars

Current x-coordinate
Current y-coordinate

rational x,
rational y,

>N

rational theta, % direction angle

rational speed, % Current velocity

rational roll, % Current roll

rational throttle, % The aircraft throttle

velocity vel % Velocity monitor
endvars

% Update the current status by reading sensors
method update_status
% The method has a deadline of § timeconstraint
nolaterthan (5)

endtimeconstraint

I0read (GPS x) % Read coordinates
I0read(GPS y)

I0read (NAV theta) % Read the current angle
call vel.get(speed) % Read the current speed

endmethod update_status

% Calculate the relative attitude and
% the new angle adjustment
method compRelAtt
% Method interface specitcation
in rational theta,
rational x,
rational y,
rational gx,
rational gy
out rational rtheta
% The body should be here
endmethod compRelAtt

% Calculate delta theta (angle deviation)
% if the aircraft velocity reaches maximum
method safeDtheta

% Method interface specification

in rational rtheta,

rational roll,

out rational dtheta

% The body should be here
endmethod safeDtheta

% Compute the new flap of the aircraft based on
% roll, velocity and required angle deviation
method compFlapw

% Method interface specitcation
in rational roll
rational speed,
rational dtheta
out rational wflap
% The body should be here
endmethodcomp Flapw

% Compute the new throttle of the aircraft based
% on roll, velocity and required angle deviation
method compThrottle
% Method interface specification
in rational roll,
rational speed,
rational dtheta
out rational throttle
% The body should be here
endmethod compThrottle

% The periodic navigation control
thread control
% Period and any activation constraints
activationdeactivationconstraint
periodic use (2)
firstactive nosoonerthan (5)
endactivationdeactivationconstraint
% Interface specification
in GOAL goal
inout integer index
% Declaration section
vars
rational gx,
rational gy,
rational rtheta,
rational abs_rtheta,
rational wflap
endvars
% read the current measurements
call self-update_status() !read_stat$
block
% Get the next target coordinates
if goal(index).passed

then
gx := goal(index).x
gy := goal(index).y

index := index+1-((index+1)/NCOORD)*NCOORD
endif
% Using relative attitude w.r.t target to
% compute angular adjustment
call self.compRelAtt(theta,x,y,gx,gy,rtheta)
call rtheta.abs(abs_rtheta)
if abs_rtheta < EPS

then
dtheta := 0
elseif speed < VHIGH
then
dtheta := rtheta
else

call self-safeDtheta(rtheta,roll,dtheta)
endif
% Adjust flap and throttle for heading
call self.compFlap2(roll,speed,dtheta,wflap)
call self.compcompThrottle
(roll,speed,dtheta,throttle)

THE COMPUTER JOURNAL,

VoLr. 38, No. 4, 1995

$20z I4dy 01 uo 1senb Aq 6816G1/6LE/F/8E/e101ME/|Ulod/Wo0 dno olwepeoe//:sdiy wolj papeojumoq

A LANGUAGE FOR CoMPLEX REAL-TIME SYSTEMS 337

I0write (THROT throttle)
I0write(FLAP wflap)
endblock
timeconstraint
nolaterthanrelative (read_stat 3 local)
% to generate the output fast enough
endtimeconstraint
endthread control

endclassimplementation navigation
endtypes

The above examples demonstrate some of the distinct
features of CRL. In addition to providing the ability of
associating timing constraints to processes (thread),
every simple or compound statement in CRL can have
associated absolute or relative timing constraints. In the
assemble line example, the Perform_lift method has
absolute timing constraints, but also a relative constraint
with label grab. In the navigation control example,
relative timing constraints are imposed on the execution
of the block in the thread control relative to an earlier
execution point by reference to the label read_stat.
Such flexibility is lacking in most current real-time
languages and constraint tools. While only for loops are
supported by Real-Time Euclid, while loops with
variable iterations are permitted in CRL; however,
there must be a compile-time provable or user-asserted
upper bound on iteration to assure that it can be
analyzed. In the assembly line example, maximumm
iterations of the while loop is 2.

APPENDIX B: ADDITIONAL CRL BNF

In this appendix, we list partial BNF for many of the
CRL elements, which were either omitted for brevity or
presented without their BNF descriptions.

B1. Programs, declarations, classes, objects, visibility

<program> ::=<decls>

<decls> := [<type_decls>] [<const_decls>]
[<var_decls>]

<type_decl> ::= types <type_decl> {.<type_decl>}"
endtypes

<type_decl> ::=<type><type_name>

<type> : 1= <gcalar_type>|<range_type>
|<array_type>|<record_type>
| <class_type>|<type_name>

<scalar_type>::= integer|rational|boolean|character

<array_type> : := array <range_type> of <type> endarray

<range_type> ::= <manifest_integer>..
<manifest_integer>

<record_type> ::= record<var_decls>endrecord

<const_decls> : :=consts<const_decl> {,<const_decl>}"*
endconsts

<const_decl> ::= <scalar><const_name>
| <type_name><manifest_rhs>
<const_name)

<var_decls> ::= vars<var_decl> {,<var_decl>}"endvars

<var_decl> ::= <scalar_type>[<manifest_rhs>]

<var_name> | <type_name>

[<manifest_rhs>]<var_name>
| <object_decl>
<object_decl> ::= <class_type_name><object_name>
<constructor_param list>
<constructor_param_list> ::= [in <parameters>]

<class_type> ::= <class_definition>
| <class_implementation>
<class_definition> ::= classdefinition <name>

<class_interface>
endclassdefinition <name>
<class_implementation>::=classimplementation <name>
[<class_interface>]<decls>[<constructor>]
[<destructor>] {<method>}"
endclassimplementation <name>
Naturally, class definitions and implementations must
correspond (through <name>) to each other, as in other
class-based languages.
<class_interface> ::= [export<export_list>] [import
{<class_or_type_name> |
<class_name>.<method_or_type_name>}+]
<export_list> ::= <type_list>{<method_interface>}"
[{<method_interface>}+
<method_interface> ::= <regular_method_interface>
|<thread_interface>
<type_list> HE <type_name>{,<type_name>}'
<regular_method_interface>::= methodinterface<name>
[<time_constraint>]<param_list>
endmethodinterface <name>
<param_list> ::= [in <parameters>] [out<parameters>]
[inout<parameters>}
<thread_interface> ::= threadinterface <name>
<in_param_list>endthreadinterface<name>
<in_param_list> ::= [in <parameters>]
<parameters>: :=<parameter_decl>{,<parameter_decl>}’
<parameter_decl> ::= <type><parameter_name>

B2. Types, variables, scalars and names

A manifest integer is:

<manifest_integer> ::= <integer>|<const_name>
where the latter possibility is restricted to integer
constants naturally.

Various names as used throughout have the same
form:
<object_name>,<event_name>,<method_or_type_name>,
<variable>,<type_name>,<parameter_name>,
<const_name>, <label> ::= <name>
<name>: := <alphabetic_char>{<alphanumeric_char>}"

There are (at this time) two distinct name spaces, one
for labels, and one for all other names.

Miscellaneous definitions are as follows:

<scalar> ::= <integer>|<rational>
| <boolean> | <character>
<manifest_rhs> ::= <rhs>

/*a static semantic error if <rhs> is not a compile-
time constant’/

<rhs> ::= <expr>

<var_ref> ::= <var_name>{.<var_name>}’

<var_name> ::= <name>[{(<index_into_array>)}’]
<index_into_array> ::= <manifest_rhs>

/*static semantic analysis must show it is an

integer constant’/

THE COMPUTER JOURNAL,

VoL. 38, No.4, 1995

$20z I4dy 01 uo 1senb Aq 6816G1/6LE/F/8E/e101ME/|Ulod/Wo0 dno olwepeoe//:sdiy wolj papeojumoq

338 ALEXANDER D. SToYENKO, THOMAS J. MARLOWE AND MOHAMMED F. YOUNIS

<integer> ::= [+|-}<non_zero_digit>{<digit>}"
<non_zero_digit> ::= 1]|2|3|4|5|6|7|8]|9

<digit> ::= O|<non_zero_digit>
<rational> ::= [+|-]O[{<digit>}'el+|-]1{<digit>}*]
<boolean> ::= true|false

<alphabetic_char> ::= A|B|C|D|E|F|G|H|I|J|K|L|M
[N|O|P|QIR|S|T|V|W|X|Y|Z
lajblcld|eif|g|h|i]jlk|1l|m

|nlelplalris|t|ulv]v|x]|y|z

<alphanumeric_char> ::= <alphabetic_char>|<digit>
<character> ::= <alphanumeric_char>
LI 1r1el# $% &)™ [CDI=[-|-]=[+]]|

[OICI s s I<d > /02

Currently, all record and method references are fully
qualified.
B3. Expressions

The syntax of expressions is given below. The grammar

should be disambiguated by the usual rules of associa-
tivity and precedence.
<boolean_expr> ::= <boolean_expr>xor <boolean_expr>
| <boolean_expr> or <boolean_expr>
| <boolean_expr> and <boolean_expr>
|not <boolean_expr>
| <expr> <rel_op> <expr>
| <var_ref> | <boolean>
/*a static semantic error for <var_ref> not to have
type boolean*/
<expr> ::= <expr><op2> <expr>
| <opl> <expr>
| <expr> <opr>
| <var_ref>|<scalar>|<const_ref>
<length_assertion> ::= assert length <manifest_rhs>
| 7assert length

THE COMPUTER JOURNAL,

Vor. 38, No.4, 1995

$20z I4dy 01 uo 1senb Aq 6816G1/6LE/F/8E/e101ME/|Ulod/Wo0 dno olwepeoe//:sdiy wolj papeojumoq

