Practical Length-limited Coding for Large

Alphabets*

ANDREW TURPIN AND ALISTAIR MOFFAT

Department of Computer Science, The University of Melbourne, Parkville 3052, Australia
Email: aht@cs.mu.oz.au

The use of minimum-cost coding for economical representation of a stream of symbols drawn from a
defined source alphabet is widely known. However, for large-scale compression minimum-cost coding has
the drawback that codewords generated may be longer than a machine word, limiting the usefulness of
both software and hardware implementations on word-based architectures. The solution is to generate
length-limited codes, and accept the consequent loss of compression effectiveness in order to preserve the
simplicity and speed of the encoding and decoding software. Here we re-examine the package-merge
algorithm for generating minimom-cost length-limited prefix-free codes and show that with a considered
reorganization of the key steps it is possible for it to rum quickly in significantly less memory than was
required by previous implementations, while retaining asymptotic efficiency. As evidence of the practical
usefulness of the improved method we describe experiments on an alphabet of over 1 million symbols, for
which length-limited codes can be constructed in 11 Mb of memory and about 20 seconds of CPU time.

Received March 24 1995, revised August 3 1995

1. INTRODUCTION

Text compression is an important tool when large
amounts of data are to be stored. Compression not
only saves storage space, but also reduces disk traffic,
sometimes to the extent that overall access times can be
shorter with a compressed text than with an uncompressed
text, even including the cost of the decompression (Zobel
and Moffat, 1995).

It is generally accepted that a compression system
consists of two activities: modelling and coding (Bell et
al., 1990). The model estimates, for each possible symbol
that might appear next, a probability of occurrence. The
coder is then responsible for representing the actual
stream of symbols with respect to those estimated
probabilities. There are many ways to model text and
for an overview the reader is referred to Bell et al. (1990).
Here we focus on the coding side of this partnership and
ask what happens when the model contains a very large
number—perhaps millions—of symbols. We do have in
mind a particular model, discussed in Section 6, and our
investigation has been motivated by very pragmatic
requirements arising from the use of that model.

Probably the most famous of all coding techniques is
Huffman’s method (Huffman, 1952) for generating a
minimum-cost code. Huffman’s algorithm is described in
textbooks covering both text compr&ssﬂ)n and the more
general area of algorithms and data structures. Moreover,
the behaviour of the minimum-cost codes generated by
Huffman’s method is well understood and in most
Practical situations they given compression very close to
the underlying model entropy (Manstetten, 1992), even
though all of the codewords are integral length.

* This paper includes material presented in preliminary form at the
1995 Australasian Computer Science Conference.

There are two reasons why large alphabets pose
problems for minimum-cost coding. The first is the
memory space required by the algorithm. Typical
descriptions (see e.g. Van Wyk, 1988, p. 238) make use
of linked data structures with multiple fields per node.
Since a code tree with n leaves (representing an alphabet
of n symbols) contains 2n — 1 nodes in total and each
node requires as many as four words of memory, a
straightforward implementation of Huffman’s algorithm
might require as much as 8n words of memory—32 Mb
to generate a code for one million symbols.

By using an implicit tree structure rather than an
explicit structure the space can be reduced. For example,
Sedgewick (1990, p. 328) gives a construction employing
arrays and an implicit heap structure that uses Sn words
of memory. Further savings result if codeword lengths
are calculated rather than actual codeword bit-descrip-
tions and the memory requirement can be reduced to 2n
words (Witten et al., 1994). Although these improve-
ments are in terms of constant factors only, the impact
they have is important for large n, making large-scale
coding practical. All of these algorithms require O (n log
n) time to generate minimum-cost codes for an alphabet
of n symbols and are asymptotically efficient. Note,
however, that if the input list of symbol frequencies is
already sorted then the running time of Huffman’s
algorithm can be improved to O(n) (van Leeuwen, 1976)
and n words of memory suffice to calculate the codeword
lengths (Moffat and Katajainen, 1995).

The second problem with minimum-cost coding is
more insidious; that of codeword overflow. If codewords
can be stored in one machine word, input and output
operations can be performed as a single ‘mask and shift’
sequence, giving rise to the high speed of practical coders
(Moffat et al., 1994). The speed of these coders is their

THeE COMPUTER JOURNAL,

VoL. 38, No. 5, 1995

20z Iidy 01 uo 3senb Aq | #0ZSP/6EE/S/BE/I01HE/|UIWOD/WOo" dNO"0IWEPEDE//:SARY WOl POPEOUMOC

340

A. TUuRPIN AND A. MOFFAT

principal advantage over arithmetic coding methods of
the form described by Witten et al, (1987) and
modifications to cope with the possibility of multi-word
codewords would severely erode this advantage.

For small alphabets of just a few hundred symbols
codeword overflow is usually assumed to be a remote
possibility. In reality, an alphabet of as few as 34 symbols
can force a 33-bit codeword. However, for overflow to
happen the least probable symbol must turn up fewer
than one time in 10 million (Witten et al., 1994), which
seems a safe bet, since reasonably accurate statistics for a
small alphabet can be achieved after just a few thousand
or tens of thousands of symbols have been processed. On
the other hand, when the alphabet is large, the possibility
of codeword overflow becomes quite real—one imagines
that when accumulating frequencies on an alphabet of 1
million symbols it is highly likely that several hundred
million symbols in total are to be processed. In such a
system it is thus desirable for a length-limit L to be
imposed, an upper bound on the permitted length of the
generated codewords. This entails some amount of
compression loss, but throughput rates are preserved.

Of course, one could also move to more powerful
hardware, such as a 64-bit machine. At least 4.5 x 10
symbols must be processed before a 65-bit codeword can
be generated and so the only real drawback of this
alternative is expense. It is, however, pleasing to solve the
codeword overflow problem in an elegant algorithmic
manner rather than apply a brute-force solution and that
is the approach we describe here.

A further advantage of length-limited coding is that
the use of length-limit can ameliorate the undesirable
consequences of underestimating the source probabilities
(Gilbert, 1971). With a length-limit in force symbols
predicted to be of very low probability cannot generate
excessively long codewords and so if they turn out to be
more frequent than expected, the compression degradation
is, to a certain extent, controlled.

Many authors have considered the problem of
generating length-limited codes or, equivalently, mini-
mum-cost depth-limited binary search trees (Hu and Tan,
1972; Garey, 1974; Van Voorhis, 1974). These early
algorithms were intractable in terms of either space or
time, or both. Several other algorithms describe heuristics
that build length-limited codes, but do not guarantee that
the code is minimum cost (Murakami et al., 1984; Fraenkel
and Klein, 1993). It was not until 1990 that an efficient
solution to the problem of finding minimum-cost length-
limited codes was articulated, by Larmore and Hirschberg
(1990). They described two algorithms. The first—known
as the package-merge technique—takes O(nL) time and
O(nL) space to generate codewords limited to L bits for an
alphabet of n symbols. Package-merge requires an explicit
data structure and, supposing three words of memory for
each of the 2nL nodes required by the structure, requires
more than 700 Mb of memory to generate a 32-bit limited
code for an alphabet of 1 million symbols.

The second algorithm described by Larmore and

Hirschberg (1990) is a refined version of the first and js
called the recursive package-merge method. It uses
controlled amount of re-evaluation to reduce the space
requirement to O(n) within the same O(nL) time limit,
This algorithm is asymptotically efficient, but for our
purposes the constant factor is all-important and the
constant factor here is 16 words. To build a length-limited
code for one million symbols requires 64 Mb of memory.

In this paper we consider methods for reducing these
memory requirements. Starting with the O(nL)-space
package-merge algorithm we develop a new implementa-
tion with reduced space consumption and the same
O(nL)-time, O(n)-space asymptotic behaviour as the
recursive package-merge method. The improvementSis
done in two stages. In the first stage we describeSa
compact representation of the lists of trees used gy
Larmore and Hirschberg (1990) and show how they can
be manipulated to generate minimum-cost codes. Zn
total, this method requires 2n + 2nL/w + O(L) wordszpf
memory to generate minimum-cost length-limited co@s
for an alphabet of n symbols, where w is the numberf
bits per word in the machine being used. In magy
applications w = L (after all, this was one of the
arguments used earlier to motivate the need for lengh-
limited codes) and in these cases 4n words suffice,or
16 Mb for the hypothetical alphabet of 1 rnilli%n
symbols. Furthermore, the relationship between L and
the word size w, explored in detail below, is such that the
space requirement is less than 5» words for all waﬁle
combinations of w and L.

In the second stage we add a further t\mst—msteadaaf
calculating and storing that which is required to generzm
the final set of codes, we calculate that which is not aggd
then infer the set of codes from the ‘negative’ informa-
tion so obtained. It turns out that there is significantly
less negative information to be stored than there_is
positive information, and the space required is corze-
spondingly reduced. The final algorithm requiﬁ&s
2n+ 2n(L — logyn)/w + O(L) words. For 1 million
symbols and w= L =32, about 11Mb of memory
suffices. Note that the space usage after the second stage
improvement can be no worse than the first sta
algorithm and so the worst case space bound is again 0@)

A statement of the length-limited coding problem
appears in Section 2 and the package-merge solution of
Larmore and Hirschberg is described in Section 3.
Section 4 then describes the first improvement, the use
of a compact structure to record the progress of the
package-merge method. Section 5 re-examines the
requirements of the package-merge method and
shows how the memory requirement can be further
reduced. The results of generating length-limited code-
words on a distribution containing more than 1 million
symbols are described in Section 6.

2. PREFIX CODES

Suppose that in some stream of symbols there are 7

THE COMPUTER JOURNAL,

VoL. 38, No.5, 1995

LENGTH-LIMITED CODING FOR LARGE ALPHABETS 341

distinct symbols; and that the ith least frequent symbol
appears p; times. That is, we suppose that
p—[pilie{1..n}] is a list of n positive integers, with
p £ P2 < ... < py. The requirement that p be sorted is
not onerous—in any particular situation if this is not
already the case it can be achieved by a preprocessing
step in O(n log n) time, which does not dominate any of
the algorithms described here. Note, however, that
presorting does add n words to the stated space
requirements of all methods considered here. The extra
space is used by an index array that records the original
order of p.

A code is a list of n integers | = [/ |ie{1...n}], where it is
presumed that the ith symbol is to be represented by a
binary codeword of length /; over the set {0,1}.

A prefix-free code (sometimes known as a prefix code)
is a code for which $7,27/ <1. For example,
assig[x]ﬁng] l;=[logyn] is a prefix-free code, since
218" < 1. Given a prefix-free code /=[/] it is
straightforward to determine a set of n codewords, one
per distinct symbol, with the property that the code-
word for symbol i is exactly /; bits long and such that no
codeword in the set is a proper prefix of any other. A
code for which "7, 27 > 1 is ambiguous. Where there
is no possibility of confusion K is used to denote the
quantity S0, 2770

Once a prefix-free code has been determined and a set
of codewords is known they can be used to generate a
representation of the input stream and, perhaps, result in
a storage reduction compared to the original representa-
tion. However we do not concern ourselves with the steps
that actually assign final codewords or use them and will
regard our task as being over when, for each symbol, a
codeword length is assigned. One method for assigning
codewords that leads to fast decoding is summarised in
Witten et al. (1994).

A minimum-cost code (or minimum-cost prefix-free
code) is a set of codeword lengths /; such that not only is
Yr27" < 1 satisfied, but also such that B = "1, [p; is
minimized over all prefix-free codes. Quantity B is the
number of output bits used by the code to represent the
input stream; a code is minimum-cost if there is no other
code that results in an output representation requiring
fewer than B bits. Note that for any list p = [p,] there
may be more than one minimum-cost code; for the
assignment p = (1,1,2,2] both [=[3,3,2,1]and / =[2,2,2,2]
result in compressed representations that require B = 12
bits. A minimum-cost code maximises the value of X, i.e.
Y27l =1, ¢

An L-limited code (or L-bit length-limited prefix-free
code) is a set of codeword lengths /; that not only satisfies
Y127 <1, but is also such that I; <L for all
1<i<n, where L is some predetermined integer
number of bits. Finally, a minimum-cost L-limited code
(or minimum-cost L-bit length-limited prefix-free code) is
an L-limited code such that B =3 i, /;p; is minimal
over all L-limited codes for constraint L.

The problem we consider is: given a list of symbol

frequencies p = [py, p3,...,pn] and a bound L, derive a
minimum-cost L-limited code [=[},h,...,l,]. As
always, we seek efficient algorithms, and are interested
in bounding the running time and memory space
consumed by any method as functions of n and L.

In all of the algorithms that follow we will count n
words of storage for the input list p (i.e. p is assumed to
be stored in an n-item array) and L words for the output
list /. The latter bound is possible because for sorted
input there is at least one minimum-cost code for which
L>15>5L..>1,>1, and so it suffices to generate an
L-item list C, with C[j] recording the size of the set
{l;:1;=j}. For clarity of description it is, however,
convenient to suppose at first that /; exists as a scalar
variable, so that the method of calculating each value /;
is clear. Conversion between these alternative output
formats is described in detail below. To be added to this
basic cost is the memory space required by auxiliary data
structures, and it is this space that we wish to minimize.
In this framework an algorithm that requires n+ O(1)
words of auxiliary structures will be recorded as
requiring 2n + L + O(1) words of memory in total.

The model of computation we assume is a unit-cost
random access machine, in which values as large U can
be stored in a single word, where U = 3_i_ p; is the sum
of the input frequencies and is the largest value
manipulated during the execution of most code-
generation algorithms. That is, we suppose that
addition and comparison operations on integer values
in the range 1...U require O(1) time each. Note that if w
is the number of bits in a machine word, then for any
code-generation program to assume unit-cost opera-
tions, it must be the case that w > [log,U]. We will
make use of this fact below.

3. THE PACKAGE-MERGE ALGORITHM

In this section we describe the (non-recursive) package-
merge algorithm of Larmore and Hirschberg (1990).

In order to build a minimum-cost L-limited code we
begin with each of the n symbols assigned /; = 0. The
resulting code is certainly efficient (one cannot hope to
do better than B = 0) and meets the length limit, but is
ambiguous, since K = 51, 2~/ = n. The latter quantity
can only be reduced if one or more of the /,;’s are
increased. What is required is a mechanism for deciding
which subset of the /;’s should be increased (and by what
amount) to make the code unambiguous, without
violating the length limit, and with minimal increase in
B. Incrementing /; to one reduces the sum K by 0.5 and
has, over all possible changes, the minimum impact upon
the number of output bits B, since p, is the smallest
frequency count. Incrementing /, to 1 is then guaranteed
to achieve a further 0.5 reduction in K with minimal
impact upon B. After these two steps K = n — 1 and B is
Py +pa.

The third step is not so obvious. There is now a
choice—either the third least frequent symbol can be

Thre COMPUTER JOURNAL,

VoL. 38, No. 5, 1995

¥20Z Iudy 01 uo 1senb Aq |L¥0ZG/6€E/S/8E/81Ie/|UulWwoo/woo dno-ojwepeoe//:sdiy wolj papeojumod

342 A. TURPIN AND A. MOFFAT

1. Suppoae'.hm.puanmayoln&equandeu,udthup{l]gp{i]sm
L be the length limit.
2. If L < {logy n] return with failure, no prefix cods is possible.
3. /* First list is & copy of the input array */
Set Q1] - p-
4. /* Calculate L - 1 more lists */
Fori«—1ltoL-1do
Set Q[s + 1] ¢ merpe(p, package(Q[il)).
5. Set 1 + [0,0,...,0]
6. Forj«—1to2n—-2do

(a) Recursively expand Q[L, j], tracing its composition through the pointers
established by package.
(b) For each symbol k such that p{k] appears as a leaf in the tree rooted at
QIL.s]
Set Iy — L +1.

7. Return the list]

where package(Q[i]) conmsts of

1. Set outputist + [.
2. For § + 1 to |Q[f]] div 2 do

(a) Make a new node.

(b) Link Q[i,2; — 1] and Q[i, 2j] as left and right subtrees respectively of the
new node.

(c) Set the welght of the new node to the sum of the weights of Q[i,2j ~ 1]
and Qfs, 27).

(d) Append the new nods to output ist.

3. Return ouiput hist.

pin] Let'|™

nndwhmmaycisastanda:dhstmargvbaseduponnodonigbh.

FIGURE 1. Package-merge algorithm.

assigned /3 = 1 or to obtain the same 0.5 reduction in X,
the first two symbols can be jointly incremented, setting
{; = I, = 2. In the first case the increase in B is by p; and
in the second, B goes up by p; + p,. To follow the path of
minimal increase we choose the smaller of these two and
increment /,;’s accordingly.

Continuing in this way for a total of 2n—2
‘increments’, each of which reduces K by 0.5, brings us
to the point at which the code stops being ambiguous and
becomes complete (K = 1). Provided that the set of
symbols chosen in each increment generates a minimal
increase in B and that no increment is allowed to boost
any /; value beyond L, then the final list [/,] is a
minimum-cost L-limited code. The package-merge algo-
rithm stipulates a mechanism for enumerating packages
of symbols that allows easy recognition of which 21 — 2
increments should be performed to obtain K = 1, with
minimal increase in B.

The full algorithm is sketched in Figure 1. In Figure 1,
Q is a list of lists, so that Q[i] is the ith list and Q|[i, j] is the
jth element of that ith list. The algorithm generates, in a
bottom-up manner, a list Q[L] of items. A total of L — 1
other lists must also be formed and these are stored as
lists Q[1] through to Q[L — 1]. Each item in list i is a
binary tree whose leaves describe which /;’s to increase to
yield a 27" reduction in K. That is, each item
describes some of the increments mentioned above.
Each list is generated in ascending order of impact
upon B and so the first 2n — 2 items of Q[L], each of

FIGURE 2. Package-merge on p = [1,1,3,5,6,11,13] with L = 4,

which account for a 0.5 reduction in K, describe a
minimum-cost L-limited code.

The generation of Q[L] is based upon the original list
of probabilities p and the previous list of items Q[L —
which represents increments each of which decrease K
0.25. List Q[L — 1] is, in turn, built out of an earlier lit
and, provided that there are exactly L lists in total,
single /; value can be incremented more than L times.
The items in list Q[1] are leaves with weight equal to their
original frequency in p; each increment on this list také’s
one codeword to /; = L bits long, reduces K by 27 a@
adds p; to B. Once Q[L] has been generated it is s1mpl)ba
matter of choosing the first 2n — 2 of its items a@i
increasing the /;’s corresponding to each leaf in the trge
rooted at each item.

Figure 2 shows an example of the package- menge
algorithm when applied to the list p =[1,1,3,5,6,11,13]
with L = 4. A minimum-cost code is / =[5,5,4,3,2,2,%,
with B = 97 bits. Restricting codeword lengths to fogr
bits results in the first two symbols having reduced
codeword lengths and one or more other symbols havigg
a longer codeword in order to maintain K =1. To
calculate the code, the first 12 items from Q[4] must B
expanded, where 12 =2n—2 is the number of 03
increments necessary to reduce K from 7 to 1. These
items are shown in grey. They involve, not surprising&,
all of the seven [; values, plus the expansion of ﬁfsc
packages, which correspond in turn to the first 10 1tems
of Q[3]. Inspection of the list Q[3] shows that to obt@l
these 10 items, seven leaves must be traversed, causing
increments so that /; = 2 for all i and three packagis
must be expanded. These three packages are drawn from
the first six items in Q[2]; they in turn cause of¢
package—two items— to be expanded out of Q[@
Accumulating all of the individual increments 6n
symbols (all of the grey regions), the final code i
1=[4,4,3,3,3,2,2] (i.e. C[4...1] = [2,3,2,0]), which results
in B = 98. By taking the first 12 items from Q[3] the sameé
table can also be used to generate a 3-limited code; in this

case the answer is [=[3,3,3,3,3,3,2] (@@
C[3..11=[6,1,0]) and B = 107. There is no 2-limited
code possible for n = 7 symbols.

Let us now examine the space required by the package
merge process. Implemented as described here, there ar¢
L lists generated, Q[1] to Q[L], and each contains:3
mixture of n symbols and at most n — 1 packages. The
latter bound is shown by the following inductive
argument. The first list contains no packages and s0 8
base for the induction is established. Assume that list Ol

THE COMPUTER JOURNAL,

VoL. 38, No.5, 1995

LENGTH-LIMITED CODING FOR LARGE ALPHABETS 343

contains n symbols and at most n-/ packages. List
Q[i + 1] must contain |(n + n — 1)/2] packages, which is
po greater than n— 1, completing the inductive step.
That is, each list contains at most 2n — 1 items, and so
there are fewer than 2nL items in the entire structure.

Each item requires a field for its weight, and left and
right pointers (if it is a package) showing its composition.
Leaves (i.e. symbols) can be indicated by the use of null
pointers. Since the items are generated in increasing
order of weight they can be stored in an array rather than
linked together and so the list ordering can be managed
implicitly rather than with an explicit pointer. Even so,
assuming that pointers and weights occupy one word, a
total 6nL words of memory are consumed. For an
alphabet of 1 million symbols with L = 32 the structure
occupies 730 Mb, a formidable requirement.

4. COMPACT PACKAGES

The first improvement to the package-merge algorithm
involves representing each package with a single bit,
rather than as a three-word item. Section 4.1 introduces
this alternative representation and Section 4.2 describes a
method for generating it efficiently. The relationship
between the length-limit imposed on codewords, L, and
the machine word size, w, is examined in Section 4.3,
resulting in a tight asymptotic bound for the space usage
of the new representation. The use of the list C to store a
description of the minimum-cost L-limited code is
described in Section 4.4.

4.1. Package representation

The key to reducing the space required by package-
merge is the observation that it is not necessary to
permanently record the composition of each package,
only the fact that it is a package. Consider again the
example shown in Figure 2. In the first 12 items of list
Q[4] there are seven symbols and five packages; those
packages must, of necessity, correspond to the first 10
items of list Q[3]. Similarly, the three packages within the
first 10'items of Q[3] must correspond to the first six
items in list Q[2] and the single package expanded from
Q[2] must have as its source the first two items in Q[1].

Suppose then that a bitmap M is added, with M[ij] set
to 1 if the jth item in list Q[i] is a package (internal tree
node) and to 0 if it is a symbol (leaf). Bitmap M requires
2nL bits and if there are w bits per word on the machine
being used, consumes 2nL/w words.

Furthermore, observe that the negd to know the actual
weight of each item is only tempordry and once Qfi + 1]
18 constructed there is no need for any detail of Q[i] to be
Preserved aside from the bitmap M[i], which has the
responsibility of showing the ordering of items in Q[i].
This observation suggests a swing buffer arrangement, in
which Q[i] is maintained in one array of 2n words until
ofi + 1] is constructed and then overwritten by Q[i + 2]
during its construction. The next list, Q[i + 3], is then
developed from Q[i + 2] and overwrites Q[i + 1], and so

14 -4

+PP

3 <
¢

9 | Qi packages < Qi+ 1] packages

! boe Vo "

FIGURE 3. In-place calculation of Q[i + 1] from p and Qli].

on. These two 2n-word buffers, plus one n-word array to
store p, are sufficient, since M records all of the other
necessary information from which the L-limited code can
be built. In total, 2nL/w + 5n + L words are required by
this variant.

4.2. In-place package development

In fact, with careful management it is possible for Q[i]
and Q[i + 1] to coexist in a single array ¢ of just n words,
further reducing the space requirement. The improved
procedure is illustrated in Figures 3 and 4, in which Q[i] is
still logically the ith list of the package-merge process,
but is not stored and manipulated directly. Instead, at
any given stage both Qli] and Q[i + 1] are represented
within the array g, which stores packages only. To be
sure that the two uses of array ¢ coexist rather than
collide, the packaging and merging must now be
performed from the largest item down. Reversing the
direction of the merge means that Q[i] is of odd length,
the largest item—either a symbol or a package—must be
discarded before any packages are formed (step 3 in
Figure 4). Note also that the termination condition

1. Suppose that p{1]...p{n] is the original array of symbol frequencies, and that p
and g{1...7] jointly store the ith list Q[i], where r is the number of packages in
Q[s] and Qfi] has n + r items in total.

2. Setppéen,pger,pren,and j e ntr.

3. /+ Discard the last item if list length s odd »/

If (n+r) mod 2=1 then
If q[pg] > plpp] then
Set pg—pg—1
else
Set pp—pp—1.
4. While pp # 0 do

(a) /+ Find first item for next package +/
if plpp] < qipq] then
Set qlpr] « alpg), M(i,j] « 1,
pepg-landjy-1
else
Sﬁq[P"]‘—P[PP]- M[i,j]‘—o,
pp+pp—l,andyej -1
(b) /» Find other item +/
Set pr—pr-1,
Repeat step 4a.
(c) /» Form package +/
Set glpr + 1] + qlpr] + qfpr + 1]
5 /[« Moveleft in g »/
Set ¥’ + (n+7)/3,
Shift each item in qlpr + 1...n) Jeft pr positions.
6 List Qi + 1) v now stored jointly in p and ¢f1...r'], in the same form as was
QI[t] at the beginning of the procees.

FIGURE 4. In-place calculation of Q[i + 1] from p and Q[i].

THE COMPUTER JOURNAL,

Vor. 38, No.5, 1995

20z Iudy 0 U0 1s9nB AQ LH0ZSH/6EE/S/BE/BI0IME/|UlWO0/WOo" dNO-IWBPEE//:SARY WOl Papeojumod

344 A. TurPIN AND A, MOFFAT

shown at step 4 of Figure 4 is somewhat simplified anda -

more careful test is required in the actual implementation.

Merging from largest to smallest guarantees that ¢ has
enough room for Q[i] and Q[i + 1] to coexist. All of the
largest items in Q[i] must be packages, and so in the
initial stages of the algorithm detailed in Figure 4, pg
moves left faster than pr; and since pq starts at least one
position to the left of pr (the maximum value of risn — 1,
by the argument used above to bound the space of the
original implementation described), pg can never be
overtaken by pr. The relative locations of the pointers pp,
pg and pr are shown in Figure 3. The grey area depicts
where the two values generated by step 4(a) reside. Once
the merge is complete then the entries in g are shifted to
the left so that they end up in positions 1...r'.

While Q[i+ 1] is being built the bitvector M[i] is
constructed. The merge can thus be performed in
2n + 2nL/w words—n for the list p, which is not altered;
n for the array g, to hold all the packages; and 2nL/w for
the bitmap M. A further L + 1 words are required for the
output list C of code length counts. For the hypothetical
problem of n=1000000 and L =32 this amounts to
16 Mb, assuming w = 32.

4.3. Allowable values of L

The model of computation assumed in Section 2 allows
integer values as large as U =} | p; to be stored in a
single machine word and manipulated using O(1)-time
operations. Let us now consider the effect that this
assumption has upon the space required for the bitmap
M. It was already observed that if w is the number of bits
per word, then w > [log,U] > log,U. It remains to
calculate an upper bound for L.

If H is the length of the longest codeword in a
minimum-cost (i.e. unrestricted length) code for p, then
L < H. We can easily guarantee this constraint with the
addition of a preprocessing step that calculates a
minimum-cost code—using, perhaps, the method of
Moffat and Katajainen (1995)—and accepts that code as
an L-limited code if the longest codeword is already
shorter than the required bound L.

The maximum length of a minimum-cost code has
been extensively studied (see, for example, Katona and
Nemetz (1976) and Buro (1993)), and is related to the
Fibonacci sequence. Define F(0)=F(1)=1 and
Fky=F(k—1)+F(k—2) for k>2 Then for a
minimum-cost code to have H bits, it must be that
U=30.1p,>F(H+2). Define ¢=(1++5)/2, the
golden ratio. Graham et al. (1989) show that F(k) may
be evaluated as

with the final inequality holding because ¢2/+/5 > 1.

L is 2n — 2, as discussed in Section 3.

1. Suppose that A has been created, that L is the length-limit, and that there are
n gymbola.
2 Set C[L...0] « [0,...,0,n],
te-Landte2n-2
3. While t ¥ 0 do

(a) Set ' + 0.
(b) For j +~ 1totdo
If M[s,5] =1 then
Sett! «t'+1
else
Set C[L—i] « C[L-i]-1and
CIL-i+1]+~CIL-i+1)+1.
{¢) Sett 2 and i =1 - 1.

4. Return C[L...1}, it describes & minimum-cost L-limited code for p.

FIGURE 5. Determining C from M.

For a minimum-cost code to have a longest codewor
of H bits, U > ¢”, ie. L< H <logyU.
Combining these inequalities on w and L we see tha
2nL < 2nlog,U
w — log,U
= 2nlogy2
= 2.88n
That is, for all viable combinations of L and U, 2.88%
words of memory suffice for matrix M and a total of 513

words of memory is adequate for all of the data structure
used in the improved package-merge implementation.

noouuepAeoe//:sdunuou fBpeojumoq

g¢/eoue/|ulw

4.4. Storing the solution

To generate the list C we process the bitmap M in thcg
manner shown in Figure 5. Bits are inspected across each®
row of M, starting at row L; one bits indicate packag&ﬁ
that need to be expanded from the previous level, the=
number of which is counted using ¢’; while zero bitss
indicate leaves that should have their code lengthse
increased by one bit. These are counted into?
C[L —i+1] and removed from the count in C[L —i}S
The process can stop as soon as /, the number of items toS
be expanded, reaches zero. The initial value of ¢ for ro

¥coc M

5. TRIMMING THE EDGES

The discussion in Section 4 assumed that M was a
rectangular bitmap of L rows and 2n columns. We can,
however, calculate the exact number of bits required fof
each row in advance, thus reducing the total number of
bits to be stored. For example, none of the items stored i
Q[1] are packages and so M([1] need not be stored at all
Similarly Qf2] contains |n/2] packages, and so B
n+ |n/2| items long, and Q[3] contains |(n + |n/2])/2)
packages and so on. By shortening each of the rows of M
to eliminate the unused storage a total
2n+n/2+n/4+ ... = 3n bits can be saved. .
At the other end of M even greater savings 8r°
possible. Consider Q[L], the last list. We know I
e

THE COMPUTER JOURNAL,

Vor. 38, No. S5, 1995

LENGTH-LIMITED CODING FOR LARGE ALPHABETS 345

FIGURE 6. The necessary sections of M.

advance that 2n — 2 items will be examined. Moreover,
there must be exactly n leaves amongst those items, since
if this were not the case there would be symbols for which
/;=0 at the end of the process, which is clearly
untenable. That is, of the 2n — 2 items of Q[L] that are
examined, exactly n — 2 must be packages. For example,
in Figure 2 for which n =7, there were five packages
amongst the 12 items expanded for Q[L]. Moreover, it is
only the number of packages involved—and not their
positions—that affects the final code. There is no need to
store any elements of M([L| and a further 2n bits can be
saved.

Further savings are possible in Q[L — 1]. We know
that 2n — 4 items will be required from the front of
QIL — 1] to build the required n — 2 packages. We also
know that Q[L — 1] is at most 2n — 1 items long (the
exact length of Q[L — 1] can be deduced without actually
constructing it) and contains exactly n leaves. Hence, if
we know for each of the at most three (depending upon
the exact length) final items on Q[L — 1] whether or not it
is a package, we can calculate how many of the first
2n — 4 items are packages. That is, three bits or fewer
suffice to represent ML — 1]. Furthermore, since the
merge takes place from largest to smallest, only a small
subset of the computational effort is required. Note that
here we have assumed the worst case scenario of list
Q[L — 1] being 2n — | items long. In practice the exact
length of list Q[L — 1] may be less.

In general, suppose at least 2n — 2! jtems (either
packages or symbols) are to be expanded from the front

list Q[L —). Since at most n of these can be leaf symbols,
there must be at least n — 2! packages in Q[L — i]. Each
package in Q[L — i] corresponds to two items in the
previous list Q[L —i—1] and so in list Q[L —i—1] at
least 2n — 2.2 = 2n — 2*? jtems must be expanded.
The basis for the induction was established when it was
noted that 2n — 2 items must be expanded in Q[L] and so
the claim is correct.

Since Q[L —] is at most 2n — 1 items long, it is only
necessary for M to record the composition of the final at
most 2n — 1 — (2n — 2!y = 2" _ 1 items, since none of
the earlier items can influence the final code. That is,
three bits suffice for M[L — 1], seven bits for M[L — 2]
and so on, until the full 27 — 1 bits are required for row
M|[L — logyn|. The net effect of these two approaches—
savings at the end of each row of M{i], but decreasing as i
increases from one, and savings at the beginning of each
row M([i], increasing as i increases towards L—is that
although there are potentially L bits in each column of M,
only L — log,n of them are actually required. The matrix
M is shown in Figure 6; only the shaded region need be
stored. Since there are still notionally 2n — 1 columns, the
space occupied by M is thus reduced to 2n(L — log,n) bits
or 2n(L — logyn)/w words. The running time is similarly
reduced to O(n+ n(L — logn)/w). When L is close to
log,n—and there is the most pressure on the length
limit—the total amount of space required to devise a
length-limited code is close to 2n words and the running
time is almost linear.

6. EXPERIMENTAL RESULTS

Our investigation has been motivated by the work we
have been undertaking with the TREC -collection
(Harman, 1992), a large corpus of text drawn from
several sources including newspapers, government pub-
lications, and the US Patent Office. As originally
processed, TREC consisted of two gigabytes of text.
We have been compressing TREC using a zero-order
word-based model and minimum-cost coding; there are
about 350 million symbols in total and nearly 1 million
distinct symbols. By luck, the minimum-cost code on this

TABLE 1. Results for the generation of codes on the TREC collection

Length-limit (bits)
Method 22 27 32

Space (Mb) recursive package-merge 65.5 65.5 65.5

improved package-merge 8.7 10.0 11.3

Fraenkel and Klein 8.2 8.2 8.2

in-place minimum-cost — — 4.1

Time (5) recursive package-merge 121.1 165.1 176.7

improved package-merge 19 14.6 20.6

Fraenkel and Klein 2.1 2.1 1.5

in-place minimum-cost — — 1.3
Compression (bits/word) Fraenkel and Klein 14.460 11.526 11.521
package-merge 11.846 11.523 11.521
minimum-cost — — 11.521

Thue CoMPUTER JOURNAL, VoL. 38, No. 5, 1995

20z Iudy 0 U0 189nB AQ L #0ZSH/6EE/S/BE/I0IME/|UlWOS/WOS"dNO" OIS PEDE//:SARY WOl PEPEOIUMO(

346 A. TURPIN AND A. MOFFAT

distribution yielded codewords that peaked at 30 bits and- -

so did not present a problem on 32 bit machines (Moffat
and Zobel, 1994). However, the collection has recently
grown by another gigabyte, and it became apparent that
the existing method of generating codewords could not
be used indefinitely.

To gauge the effectiveness of the new package-merge
implementation, we used it to generate 22-,27- and 32-bit
length-limited codes for the full three gigabyte TREC
word distribution, which contains n =1073971 distinct
symbols and U =480911 085 symbols in total. The most
frequent symbol—the word ‘the’—appears 23795 386
times, with an overall probability of 4.94%.

The results of these experiments are shown in Table
1. We compared the new implementation against the
O(n)-space recursive package-merge of Larmore and
Hirschberg, the O(n)-space approximate length-limited
coding method of by Fraenkel and Klein (1993)
(including all of the improvements they describe) and
against the in-place minimum-cost code generation
" method described by Moffat and Katajainen (1995).

The first section of Table 1 shows the data space
consumed by actual implementations, including all
allocated arrays and bitvectors, and including the n
words of memory required to specify the input list p. The
improved implementation requires substantially less
memory than the O(n)-space method of Larmore and
Hirschberg, and only a little more space than Fraenkel
and Klein’s approximate method. (The space required by
Fraenkel and Klein’s method can be halved if the
refinements they mention are not implemented. The
resultant code is, however, less efficient.)

The execution times shown in the second part of Table
1 show the corresponding amount of CPU time required
when these programs were executed on a Sun SPARC 10
Model 402. It is assumed that the input to the programs
is a sorted list of frequencies, and so the time taken to
read and sort the frequencies is not included. If the input
is in fact not already sorted, an extra array of n words
(4.1 Mb) is required to record the permutation of the
input generated by the sorting process and an allowance
of 3.15s should be added to the execution times.
Although not as fast as the Fraenkel and Klein heuristic
approach, the new implementation is substantially
quicker than the recursive package-merge method. This
latter algorithm performs a controlled but nevertheless
non-trivial amount of repeated computation and this
extra work accounts for the bulk of the difference.

It is also interesting to measure the compression
inefficiency introduced by the use of length-limited codes.
The final section of Table 1 shows the average codelength
achieved by the various methods at the three length
limits, measured as the average number of output bits per
input symbol (in this case, a word in English text). Codes
of fewer than L = 21 bits are not possible for the 3Gb
TREC collection, since the vocabulary contains
1073971> 2% distinct words. The unrestricted mini-
mum-cost code is just 0.27% inefficient compared to the

entropy of the distribution and so there would be almost
no gain to be had by using arithmetic coding for thig
problem. Relatively severe length limits have surprisingly
little effect on compression efficiency, provided that
minimum-cost codes are used.

7. SUMMARY

We have examined the package-merge method of
generating minimum-cost L-limited prefix codes for an
alphabet of n symbols, where n might be large. Although
the O(n)-space algorithm of Larmore and Hirschberg is
asymptotically efficient, in practice it is both memory-
extravagant and relatively slow.

The alternative implementation described here has éle
same asymptotic space and time bounds, but for
practical application uses substantially less of bath
resources. It runs sufficiently quickly and within suffi-
ciently limited memory spaces that it can be used aia
realistic alternative to standard minimum-cost codlgg
For example, to actually compress the TREC collectran
takes several hours, and so the extra seconds reqm%d
to generate a length-limited code are easily justified. 3

Further improvements in the package-merge method
are also possible. In collaboration with J. Katajainen#e
have recently devised an implementation of the package-
merge paradigm that operates in n+ O(L?) wordsaof
memory and O(nL) time (Katajainen et al., 1995).3 3A
number of related problems have also received attention
recently: Larmore and Przytycka (1994, 1995) have given
new solutions for the length-limited alphabetic codihg
problem and the parallel minimum-cost coding problcoﬁl,
and Schieber (1995) has also given an asymptotlca‘ﬂy
time-efficient algorithm for minimum-cost length- limited
coding.

S

ACKNOWLEDGEMENTS

We gratefully acknowledge the assistance of Jyrki
Katajainen (University of Copenhagen, Denmark) and
Tomi Klein (Bar-Ilan University, Israel). This work @m
supported by the Australian Research Council.

anb Aq L1102

¥zoz ud

REFERENCES

Bell, T. C, Cleary, J. C. and Witten, I. H. (1990) Text
Compression. Prentice-Hall, Englewood Cliffs, NJ.

Buro, M. (1993) On the maximum length of Huffman codes.
Information Proc. Lett., 45, 219-223.

Fraenkel, A. S. and Klein, S. T. (1993) Bounding the depth of
search trees. Comp. J., 36, 668-678.

Garey, M. R. (1974) Optimal binary search trees with restricted
maximal depth. SIAM J. Comput., 3, 101-110.

Gilbert, E. N. (1971) Codes based on inaccurate source
probabilities. IEEE Trans. Information Theory, IT-17, 304-
314.

Graham, R. L., Knuth, D. E. and Patashnik, O. (1989)
Concrete Mathematics: A Foundation for Computer Science.
Addison-Wesley, Reading, MA.

Harman, D. K. (1992) Overview of the first Text Retrieval
Conference. In Harman, D. K. (ed.), Proc. TREC Text

THE COMPUTER JOURNAL,

VoLr. 38, No. 5, 1995

LENGTH-LIMITED CODING FOR LARGE ALPHABETS 347

Retrieval Conf. National Institute of Standards Special
Publication 500-207, pp. 1-20, NIS, Washington, DC.

Hu, T. C. and Tan, K. C. (1972) Path length of binary search
trees. SIAM J. Appl. Math., 22, 225-234.

Huffman, D. A. (1952) A method for the construction of
minimum-redundancy codes. Proc. Inst. Radio Eng., 40,
1098-1101.

Katajainen, J., Moffat, A. and Turpin, A. (1995) A fast and
space-economical algorithm for length-limited coding. In
Proc. Int. Symp. on Algorithms and Computation. Springer-
Verlag, Berlin.

Katona, G. O. H. and Nemetz, T. O. H. (1976) Huffman codes
and self-information. IEEE Trans. ‘Information Theory, IT-
22, 337-340.

Larmore, L. L. and Hirschberg, D. S. (1990) A fast algorithm
for optimal length-limited Huffman codes. J. ACM, 37, 464—
473.

Larmore, L. L. and Przytycka, T. M. (1994) A fast algorithm
for optimum height-limited alphabetic binary trees. SIAM J.
Comput. 23, 1283-1312.

Larmore, L. L. and Przytycka, T. M. (1995) Constructing
Huffman trees in parallel. SI4AM J. Comput., in press.

Manstetten, D. (1992) Tight upper bounds on the redundancy
of Huffman codes. IEEE Trans. Information Theory, IT-38,
144-151.

Moffat, A. and Katajainen, J. (1995) In-place calculation of
minimum-redundancy codes. In Proc. Workshop on Algo-
rithms and Data Structures. Springer-Verlag, Berlin.

Moffat, A. and Zobel, J. (1994) Compression and fast indexing
for multi-gigabyte text databases. Aust. Comp. J. 26, 1-9.

Moffat, A., Sharman, N., Witten, I. H. and Bell, T. C. (1994)
An empirical evaluation of coding methods for multi-symbol
alphabets. Information Proc. Management, 30, 791804,

Murakami, H., Matsumoto, S. and Yamamoto, H. (1984).
Algorithm for construction of variable length code with
maximum word length, J[EEE Trans. Commun., COM-32,
1157-1159.

Schieber, B. (1995) Computing a minimum-weight k-link path
in graphs with the concave Monge property. In Proc. 6th
Ann. Symp. Discrete Algorithms. SIAM, Philadelphia, PA,
pp. 405-411.

Sedgewick, R. (1990) Algorithms in C, 2nd edn. Addison-
Wesley, Reading, MA. .

van Leeuwen, J. (1976) On the construction of Huffman trees.
In Proc. 3rd Int. Coll. on Automata, Languages, and
Programming, pp. 382-410.

Van Voorhis, D. C. (1974) Constructing codes with bounded
codeword lengths. IEEE Trans. Information Theory, IT-20,
288-290.

Van Wyk, C. J. (1988) Data Structures and C Programs.
Addison-Wesley, Reading, MA.

Witten, I. H., Neal, R. and Cleary, J. C. (1987) Arithmetic
coding for data compression. Commun. ACM, 30, 520-541.

Witten, 1. H., Moffat, A. and Bell, T. C. (1994) Managing
Gigabytes: Compressing and Indexing Documents and Images.
Van Nostrand Reinhold, New York.

Zobel, J. and Moffat, A. (1995) Adding compression to a full-
text retrieval system. In Software— Practice and Experience.
Vol. 25, pp. 891-903.

THe COMPUTER JOURNAL,

VoL. 38, No.5, 1995

20z Iudy 0 U0 189nB AQ L F0ZSH/6EE/S/BE/BI0MME/|UlLO0/WO0"dNO"OILIBPEDE//:SARY WOl PAPEOjUMO(

