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Imprecise computation is known as a technique for real-time systems where precise outputs are traded off
for timely responses to system events. This paper discusses how the technique can be applied to a class of
real-time Al systems designed for solving combinatorial problems and proposes an evaluation method for
assessing if imprecise computation can satisfy both the timing and functional requirements of these
systems.
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1. INTRODUCTION
Real-time computing is an open research area which
represents a major challenge to engineers and computer
scientists. The objective of real-time computing is to meet
the timing and functional requirements of individual
tasks. Thus, the most important property is predict-
ability; the functional and timing behaviour of each task
should be as deterministic as necessary to satisfy the
system specifications.

The incorporation of Artificial Intelligence (Al)
techniques into real-time control systems has emerged
to become a state-of-the-art demand in recent years as
evidenced from numerous conferences, workshops and
articles [1—5] held or published each year to discuss the
subject. One central theme of the discussion is how to
make such Al systems real time, that is, how to ensure
that the functional and timing requirements of such
systems are satisfied. This issue is interesting for two
reasons: (1) from the timing perspective, the exponential
search time behaviour exhibited by Al programs makes
them highly undesirable for real-time applications; and
(2) from the functional perspective, the correctness of the
output of Al programs is a fuzzy [6] rather than a binary
quantity, since results produced by Al techniques may
not be categorized as correct or not. For example, a non-
optimal result may not be considered as completely
correct because it is not the best solution; however, since
a non-optimal result normally takes less time to produce
than an optimal one, under a rigid time frame (e.g.
minutes to seconds, such as that in managing defensive
weapons against missile threats), non-optimal results
may be more desirable than optimal ones because they
can better satisfy the timing requirement. The existence
of a real-time constraint thus complicates the design and
implementation of Al real-time systems since satisfying
the timing requirement may have an adverse effect on the
satisfaction of the functional requirement, and vice
versa. Unfortunately, current design, analysis and
verification techniques for integrating Al techniques
into control systems have not kept pace; little work has

been done in designing and verifying the functional and
timing requirements of such systems [4,7].

Current research directions toward making Al systems
real-time are conducted on an ad hoc basis and basically
adopt one of the following two approaches. One
approach is to look at parallel architecture [8-10] for
better performance with real-time applications in mind
in the hope that the timing requirement may be better
satisfied. Another approach is to devise time-constrained
search algorithms [11—14] coupled with knowledge-
constrained search space [15,16] so as to commit to
actions based on limited information and computation in
limited time, e.g. the result produced thus far when time
expires is the one to be used since it represents the best
bet. These approaches give the system designers better
confidence in the embedded Al systems in control
systems; however, the degree of confidence is still an
open issue. Questions that remain to be answered
include: (1) since fast computing does not imply real-
time computing, how can one be sure that the timing
requirement is always (or most of the time) satisfied using
parallel architecture, and, if it does, how much con-
fidence should the system designers have in the use of
parallel architecture, (2) If time-constrained algorithms
can indeed be used to satisfy the timing requirement,
then how much functional requirement is compromised
and, in terms of the probability that the task can be
executed successfully (say, in missile systems), what is the
implication of using time-constrained algorithms, i.e.
how much confidence should the system designers have
in these algorithms? This paper is motivated by these
questions. We hope to provide implementation guide-
lines for implementing real-time Al systems with the
assurance that both the timing and functional require-
ments of the system can be satisfied.

We address the issue of trading off solution quality
(consequently the functional requirement is less satisfied)
for guaranteed response time (consequently the timing
requirement is more satisfied) in real-time Al systems by
formalizing the notion of acceptability criteria under
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which the resulting system is considered to have satisfied
both its functional and timing requirements and thus can
be considered real-time. More specifically, we investigate
whether the imprecise computation method [17,18] can
be applied as a specific technique for developing real-
time Al systems. Under the principle of imprecise
computation, more than one version of the Al system
software for the same system task are developed. These
versions may be implemented by incorporating time-
constrained search process and/or knowledge-con-
strained search space, and are designed to find a solution
for the same problem-solving request. However, each
version in succession is given less time to produce a
solution with the guarantee that some solution must be
found within the specified timing constraint, although
the solution found perhaps is not of the best quality. In
other words, the quality of the solution is monotonically
decreased as we select the first version over the second
version and so on. However, guaranteed response time is
assured more as we go in the same order. Of course, even
with imprecise computation, some systems still cannot
find a solution when time expires, especially if the time
constraint is stringent. In this paper, we exclude this
possibility (such that there is no deadline-violation
failures) by considering a class of real-time Al systems
for solving combinatorial problems for which there
always exist any-time or time-constrained solutions [11],
so that a solution, no matter how imperfect it can be, can
always be found when time expires. Such systems include
flying route-finding systems for which a direct flying
route between the source and destination can be
considered as an any-time solution [19], missile systems
for which not considering radar threats can lead to a
quick solution, and medical monitoring and caring units
for which immediate imperfect treatment plans are
available [4]. In these systems, lowest versions concep-
tually correspond to the mandatory component whose
execution time must be bounded and thus can be
guaranteed off line, while higher versions correspond to
optional components which are to be selectively executed
at run-time to refine the solution according to how much
computation time remains.

To quantify the effect of trading off solution quality
for guaranteed response time due to the employment of
imprecise computation, we need a metric to tell whether
the system, after satisfying its timing requirement this
way, also satisfies its functional requirement. We define
this metric the quality function of the system, which is a
probability function that the functional and the timing
requirements of the Al system are both satisfied for all
problem solving requests encountered during the lifetime
of the Al system. In this paper, we first investigate if
various time-constrained algorithms can fit within the
specific framework of imprecise computation, i.e. they
can be used to produce various levels of solution quality
under various degrees of response time requirement for
the same system task. Then, after the timing requirement
is satisfied this way, we propose an evaluation method to

compute the quality function of the system so as to assess
if the functional requirement of the resulting system is
also satisfied with respect to some acceptability criteria
for functionality.

The rest of the paper is organized as follows. Section 2
describes the method for implementing real-time Al
systems based on imprecise computation, and discusses
possible ways of implementing multiple versions of Al
system software for the same system task. Section 3
presents an evaluation methodology for assessing the
resulting quality function of such real-time Al systems.
Section 4 illustrates the utility of the design and
evaluation methodology with an example. Finally,
Section 5 summarizes the paper and outlines some
future research areas.

2. APPLYING IMPRECISE COMPUTATION
TO REAL-TIME Al

In this section, we define the system model and discuss
possible approaches for implementing real-time Al
systems based on the concept of imprecise computation,
with the objective of satisfying the timing requirement. In
the next section, we will develop an assessment method
based on the notion of acceptability criteria to quantify
the trade off between the sacrifice in solution quality and
the guarantee in response time.

2.1. System model

In embedded control systems, the Al system is only a
part of a larger system such as a missile system. The Al
system usually must provide control functions and must
operate in real time in response to problem solving
requests to cope with various deadlines. Our system
model follows one possible structure of imprecise
computation in which the Al system software can have
n versions Vu V2,..., Vn for solving problem requests
(n = 2 is the common practice). Vx is the highest version
which can presumably produce the best possible solution
but may need a longer time to run, while Vn is the lowest
version which may run a non-optimal, time-constrained
algorithm but is able to generate a solution much
quicker. Thus, the versions are ordered according to
the efficiency with which they are able to produce
solutions. This structure is similar in concept to that of
recovery block in software fault tolerance [20].

Let Fi,F2,...,Fn be the respective response time
distributions and WuW2,...,Wn (in monotonically
decreasing order) be the worst-case computation times
which are obtained by testing each version with the
anticipated operational profile which the system is
expected to encounter during its operational phase
[21,22]. In responding to a problem solving request
with a deadline of tR, the system adopts the following
policy to ensure that the timing requirement is satisfied
while it tries to meet the functional requirement as much
as possible. The system first selects the highest version i
which has a worst-case response time W{ not higher than
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tR to ensure that the timing requirement is satisfied in
real time with respect to the request. Since the selection
of version / described above is based on the worst-case
planning time, it is likely that the actual time needed to
solve the problem request by version i is much less than
tR. If this is the case, the system uses the remaining time
to further improve the solution quaility as much as
possible, possibly by running the next higher version
/ — 1 until tR expires. This situation applies to the case
when version i is implemented with an any-time
algorithm. On the other hand, if version i is implemented
with a time-constrained algorithm, then Wt can be set to
tR so that version / is required to generate a solution at or
before tR. The bottom line is that the real-time
requirement must be satisfied from the system's perspec-
tive, although the solution quality may be compromised.
Below we describe possible ways of implementing
multiple versions of the Al system software to achieve
such a guarantee.

2.2. Possible ways of implementing real-time Al
systems based on imprecise computation

For combinatorial Al search problems, existing any-time
and time-constrained algorithms (e.g. RTA* [14],
DYNORAII [13] and TCA* [12]) can be used to
implement lower versions while optimal algorithms
(e.g. A* [23] and IDA* [24]) can be used to implement
higher versions. For rule-based production systems
[9,25] different versions can be implemented based on
imprecise computation by restricting the knowledge or
information used by the Al software in searching for a
solution. A real-time rule-based production system
repeatedly executes the so called match-select-act cycle
in which it responds to an external event (for example, a
sensor event which inputs facts) by first matching
arriving facts against the left-hand-side (l.h.s.) condition
elements of the rules comprising the system (called the
match phase), then selecting a rule to fire among the rules
that are instantiated (called the select phase), and finally
executing the right-hand-side (r.h.s.) actions of the
selected rule (called the act phase). Firing a rule may
generate more new facts, causing the match-select-act
cycle to activate again. This process continues until some
newly generated facts meet the termination condition, at
which point the system is said to have reached a decision
and the sequence of rules fired on the solution path is
referred to as the solution found in response to the
problem-solving request.

There are two possible ways of implementing impre-
cise computation in rule-based production systems. One
way is to build several versions of the rule base, with
higher versions being more restricted than lower
versions. In other words, the algorithms used for
matching, selecting and firing rules remain the same,
but the rule base consists of less informative (and thus
better summarized) and more constrained sets of rules as
we go from higher versions to lower versions. Less

informative rules can be created by grouping several
rules together into one rule which summarizes the
knowledge of several rules. More constrained rules can
be created by not using the full expressive power
provided by the rule language as the rule base is being
created. These approaches reduce the matching time
performed by the underlying matching algorithm during
the match phase because the rule base is simplier, smaller
and less powerful [15,16]. Consequently, less time is
needed to find a solution.

The second way to implement imprecise computation
is to keep the rule-base the same, but use multiple
versions of the algorithms used in the match, select, and/
or act phases in order to reduce the planning time. For
the match algorithm, lower versions can have a more
restricted way of performing the match, including
limiting the number of matches for a join operation
and/or the number of instances of a pattern or a relation
embodied in the l.h.s. condition elements of rules (as
suggested in [26]). For the select algorithms, higher
versions can use optimal algorithms such as A* and lower
versions can use time-constrained algorithms such as
RTA* [14] or DYNORAII [13] to speed up execution.
For the firing phase, parallel rule firing [9] can also be
considered for implementing lower versions, while
sequential rule firing can be used for implementing
higher versions.

There are some important points that should be
mentioned. First, it is possible to combine the two
approaches to implement the lower versions of the Al
system software so as to reduce the worst-case computa-
tion time. Second, to guarantee that the timing require-
ments for all problem-solving requests are satisfied, it is
necessary to perform a statistical analysis of the
implemented versions to obtain the worst-case upper
bound on the response time for each version. After the
analysis is done, if no version (among the implemented
versions) exists to satisfy the timing requirement, more
restrictive rule base and/or algorithms should be sought
to implement (at least) the lowest version. Third,
conceptually the lowest version functions as the manda-
tory part of the imprecise computation process and
therefore its response time must be bounded and thus
guaranteed off-line. If due to non-convergence of Al
techniques employed its worst-case response time cannot
be bounded, we must instead implement (at least) the
lowest version using an any-time or time-constrained
algorithm so as to guarantee a bounded worst-case
response time. In this case, it suffices to use the average
rather than the worst-case response time to characterize
higher versions (corresponding to the optional compo-
nents) since higher versions can gradually refine the
solutions based on the solutions found by lower versions
when time is available. In the simplest form, the lowest
version can be just a table-lookup module, listing
approximate or crude solutions for some problem-
solving requests under perceived conditions. Also, for a
class of applications (e.g. a flight system with radar
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threat), it is always possible to find an immediate
solution (e.g. a direct route between the source and the
target without radar consideration), based on which the
solution can be gradually refined when more time is
available. For this latter class of real-time applications,
the lowest version can be implemented by using any-time
algorithms [11] to guarantee that the timing requirement
is satisfied.

3. ASSESSMENT METRIC AND
METHODOLOGY

In order for the system designer to have a concrete idea
on whether the functional requirement has been com-
promised by the deployment of imprecise computation,
we propose the notion of acceptability criteria which
precisely define the belief of the system designer
regarding a functional failure. Based on these accept-
ability criteria, the quality function of the embedded Al
system software can be defined and later assessed based
on testing of the resulting system. In our earlier work,
this quality function metric was defined as the prob-
ability that the Al system can satisfy both its timing and
functional requirements as a function of the number of
problem requests (or missions) which the system may
encounter during its life time [21]. Of course, for
continuous, reactive systems, the number of problem
requests which the system may encounter during its
lifetime is infinity. This quality function metric in this
paper now transforms into the probability function that
the Al system can satisfy its functional requirement,
given that the timing requirement is always satisfied due
to the employment of imprecise computation.

The acceptability criteria are related to this trans-
formed quality function metric by defining exactly how
the system designer views the functional requirement has
been satisfied or compromised.

In the following, we first discuss a few possible ways of
defining these acceptability criteria and their relation-
ships to the quality function metric and then we discuss a
possible testing methodology with which the quality
function of the embedded real-time Al system incorpor-
ating imprecise computation can be estimated from the
testing result.

3.1. Acceptability criteria

We first note that a problem solving request can always
meet its timing requirement due to the deployment of the
imprecise computation technique. However, the func-
tional requirement may be compromised. For example, a
straight-line route for a flight system in a radar threat
environment is apparently not a good solution, but it
takes little time to compute. For each problem solving
request, the quality of the solution generated can be
considered as a random variable in the range of [0,1] with
0 meaning that the solution is totally functionally
acceptable, and 1 meaning that it is totally functionally
unacceptable. This assessment of the solution quality for

each problem request can be done by the tester during
the testing phase and conveys the belief of the system
designer for the application in question. A natural way of
assessing the solution quality in this way frequently
exists. For example, in a flight system with radar threats,
the value assignment corresponds to the probability of
the flight being detected by the radar when following the
solution route planned. We shall call such value in [0,1]
as the 'imperfect solution level' (ISL).

The following acceptability criteria for functionality
can be applied to real-time Al systems implemented with
the imprecise computation technique.

• Strict. With the strict criterion, the system is
considered functionally unacceptable if the system
has encountered a problem solving request for which
the ISL measure is above an application-specified
threshold value. This criterion defines a system that
cannot tolerate even a bad solution; the threshold
value defines the way a system designer (or a user)
views the quality level below which the system can
still tolerate an imperfect solution. For example, a
radar detection probability of over 0.5 may be
considered functionally unacceptable for some flight
systems.

• Accumulation. With the accumulation criterion, the
system is considered unacceptable for functionality if
the sum of the ISL measures of all problem-solving
requests encountered by the system exceeds an
application-specified threshold value, say 1. This
criterion defines a system in which a single or even
several bad solutions may not immediately cause the
system to violate its functional requirement, but the
effect may accumulate and cause the system to become
functionally unacceptable. For example, a radar
detection probability of 0.1 may not cause a flight
system to be shot down for a single mission, but
chances are if there are many solutions with non-zero
radar detection probability then eventually the flight
system will fail. Note that this criterion applies to
systems designed to solve more than one problem
request, which is typically the case for reactive real-
time systems.

• Accumulation within a mission window. With this
criterion, the system is considered acceptable for
functionality as long as the accumulated ISLs
encountered in an application-specified mission
window do not exceed an application-specified thresh-
old value. A 'mission window' means a moving
window of missions, e.g. m means a moving window
of m missions within which the accumulated ISLs
cannot exceed a threshold limit. This criterion defines
a system that can tolerate occasional imperfect
solutions so long as not too many such imperfect
solutions occur in any mission window. A smaller
mission window hence implies a system with a better
recoverability because of the lower probability of
accumulating imperfect solutions' ISLs within a
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smaller window to exceed a threshold, given that
imperfect solutions occur at about the same rate
regardless of the size of mission window. This
criterion is appropriate for some real-time applica-
tions for which imperfect solutions can be digested or
tolerated as long as not all of them occur in the same
mission window period. For example, in a manufac-
turing system, under a tight production rate require-
ment, if too many bad products are produced in the
same window period, then the functional requirement
is considered not satisfied.

3.2. Relationship between acceptability criteria and
quality function

The quality function of real-time Al systems implemen-
ted based on imprecise computation is driven by the
acceptability criteria defined by the system designer. In
this section, we analyse their relationship by using
probability modelling.

With the strict criterion, we consider the system
functionally unacceptable if it ever generates an imper-
fect solution with its ISL measure greater than a specified
threshold value, a, which defines the tolerance level of
the resulting system with respect to a functionally
imperfect solution. The extreme case is that when a is
0, the system cannot withstand even a slightly imperfect
solution. One possible way to obtain the expression for
the quality function of the system is to model the ISL
measure of an imperfect solution by a distribution G(-)
such that G(0) = 0 and G(l) = 1, and the arrival of
imperfect solutions by a Poisson process with an arrival
rate A. Let X( be a random variable indicating the ISL of
the ith imperfect solution. Then, since 0 sg cr < 1, the
quality function of the system after the system has
serviced M requests, denoted by Q(N), is given by

Q(Af) = Prjsoftware is alive after M problem requests}

= Pr{the ISL of every imperfect solution
encountered ^ a<\, if any}

{TJ imperfect solutions experienced over
«=o M problem-solving requests}

^ — ^ 1 v ^ «• ^ 11 C 1 1
§ < 7 < l , . . . , A n ^ C 7 < l J [I)

-[G(a)]n

where n is the total number of imperfect solutions which
can probabilistically occur in N problem-solving
requests.

Equation (1) above gives the quality function as a
function of the number of problem-solving requests for
an Al system incorporating imprecise computation and
adopting the strict acceptability criterion as its functional
requirement. Naturally, if the system adopts another

acceptability criterion (say, the accumulation criterion)
for its functional requirement, the quality function
expression would be different since the underlying
acceptability criteria are different. For the accumulation
acceptability criterion, if the threshold is XL, then

Q(AT) = /'{accumulated ISL levels experienced =* XL}

oo

= y^Pr{« imperfect outputs encountered over
«=o Af missions} P r ^ + . . . + Xn s£ XL}

(2)
n\

G(n){XL)

where n is the total number of imperfect outputs which
can probabilistically occur in TV missions, and G^"\x)
denotes the n-fold convolution of G(x), representing the
probability that the sum of n imperfect solutions of G(-)
is less than x. It is denned as

1

if n = 1G^\x) = i Gjx)
[ r G 1 " - 1 ' ^ - ) ' ) ^ ) i fn>l

On the other hand, if the accumulation within a mission
window acceptability criterion is considered for which the
mission window is m (missions), it can be shown that

Q{N) = , - ^ - £ ~ o ^ ^ ' > ( * ) ) (3)

3.3. Evaluation methodology

Our evaluation methodology has its origin from the field
of software reliability engineering for assessing the
system reliability of computer software. Under the
evaluation methodology, the system developed is tested
based on its operational profile [27], from which testing
results are collected so as to parameterize (i.e. give
parameter values to) a quality function equation (such as
Equation (1) derived based on the strict acceptability
criterion) to measure the quality function of the system.

Two sets of testing data are required in order to
estimate the parameters of a quality function equation
such as Equation (1). These are (Nu N2, • • •, Nr) (for
imperfect solutions) and (f\,f%•,••• ,fr) (for associated
ISLs), where Nt is the problem-solving request number
for which the ith imperfect solution is found; and/ is the
ISL of the zlh imperfect solution. These testing data may
be obtained during the testing and debugging phase
through testing the Al system incorporating imprecise
computation with its anticipated problem-solving
request profile.

The maximum likelihood estimates (MLEs) [22] of
G(-) and A can be derived as follows.

The probability density of imperfect solutions is

PDFhi(N) = A<TW

Therefore, the maximum likelihood estimate of A can be
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estimated as

A = (4)

where r is the total number of imperfect solutions
experienced during the testing period, and Nr, defined as
before, is the problem-solving request number for which
the rth imperfect solution (i.e. its ISL > 0) is experienced.
For example, if (#5, #78, #256 #655 #1000) are a set of
five problem-solving requests for which imperfect solu-
tions are detected during the testing phase, then A is
calculated as 5/1000. In other words, the system can
experience an imperfect solution once in about every 200
problem-solving requests when the system is in its
operational phase.

A reasonable model for G(.) is the Beta(a,/3)
distribution1 with density

„<*-!

g(x)={T(a)T(py
0

{\-x f~x

otherwise

The maximum likelihood estimates of a and P can be
obtained by numerically solving the following equations
using the ISL data set (/"i,/2, —,fr) collected during the
testing phase:

A r
drw

da

dT(a + P)

dp

da
r(d) 1 = 1

where

dT{a + P)

r(d)

= r
Jo

(5)

le~xdx

After the MLEs of A and G() are obtained as
described above, the quality function of a real-time Al
system based on imprecise computation and a pre-
specified acceptability criterion (e.g. such as Equation (1)
based on the strict acceptability criterion) can then be
quantified by using the testing data collected as a
function of the number of problem requests encountered
by the system.

4. EXAMPLE

This section shows an illustrative example. Consider a
real-time Al planning subsystem embedded within an
intelligent missile launching system that launches mis-
siles against anti-missile threats [19]. The aim of the
mission for each missile launched is to hit the target

1A beta distribution is defined as follows: if X and Y are
independent gamma random variables with parameters (a, A) and
(fi, A), respectively, then the joint density of X/(X + Y) is called the
beta density with parameter (a,/?).

without being shot down. From the view of the missile,
the sky (from some particular altitude looking down) is a
two-dimensional x-y map with certain locations marked
with anti-missile threats and associated intensities. As
the missile's altitude/location changes as it moves toward
the target, the corresponding x-y map changes, thereby
creating a map by map three-dimensional search space
through which the Al program needs to find a best flying
route for each missile launched to accomplish its mission.
We consider the case that the Al program is implemented
with two versions based on imprecise computation. Both
versions must consider the physical constraints of the
missile dynamics, e.g. no backward, and sudden vertical
movements, etc. The first version uses an optimal search
algorithm called A* [23] which, when given sufficient
time, can always find the best flying route among all in
terms of the smallest probability of being shot down. It
considers the whole search space as it looks for the
optimal route. The second version, on the other hand,
uses a suboptimal search algorithm called RTA* [14]
coupled with an any-time algorithm [11]. Under the
second version, the missile moves toward the target in
increment of horizontal distance window (e.g. 50 kilo-
metres) nearer to the target one at a time such that within
each distance window the probability of being shot down
is the minimum. (See Figure 1 for an illustration of the
x-y map window.) In other words, the search space is
only one distance window at a time (at lower heights as it
approaches the target) instead of the whole distance
spanning the source and the target as having been done
by the first version. Furthermore, in order to guarantee a
timely response for the missile launching system to make
a decision to launch a missile at or before the deadline
tR, the second version will use the straight-line route
between the end distance point planned so far and the
target point as its last part of the flying route when tR

expires. By this way, the second version will always find
some flying route to reach the target, although the
probability of being shot down against the anti-missile
threats is perhaps not the smallest.

We consider that whenever the missile launching
system is ready to launch a missile, it can obtain real-
time information regarding the anti-missile distributions
and intensities and also a deadline tR, both of which vary

/0 .5

)

c

r

r •^0.3

J

FIGURE 1. An x-y map window marked with anti-missile threats
and intensities.
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FIGURE 2. Quality function of the missile launching system with
strict and accumulation criteria.

on a mission by mission basis depending on the real-time
situations. The worst case planning time of the first
version is determined a priori by testing it through a
simulated environment profile (consisting of the anti-
missile distributions and intensities, and target location
distributions). On the other hand, since the second
version always finds a flying route with any deadline tR,
no simulation experiment is necessary for the second
version. The missile launching system behaves as follows:
for a given tR, it selects the first version over the second
version if the worst case planning time of the first version
is shorter than tR given; otherwise, the second version is
chosen. In the latter case, if the second version finds a
route before tR, the first version is invoked using the
remaining time; if a route is found by the first version
before time expires, the route found by the first version
replaces the one found by the second version since it has
a smaller probability of being shot down. In any case, the
route found is used by the launching system to control
the actual flying route of the missile launched so as to
minimum the possibility of being shot down.

The designer now wishes to know what the quality
function of the system looks like with such a design based
on imprecise computation. This question is equivalent to
knowing whether the system can satisfy both the timing
(already satisfied via imprecise computation) and func-
tional requirements. To find the answer, the system
implemented was tested through its simulated opera-
tional profile (consisting of the environment profile plus
the distribution of tR) one mission at a time and history
data were collected which consisted of (N{, JV2,..., Nr)
(for imperfect solutions) as well as the associated
(/i >/2i • • • i/r) (f°r ISLs), with fj>0 denoting the non-
zero probability of being (detected and) shot down by the
anti-missile threats. The data were subsequently used to
compute the values of the model parameters based on the
method discussed in Section 3.3, yielding A = 0.01;
a = 1.0 and 0 = 20.0.

As the quality function of the system must reflect the
imposed functional requirement demanded by the
system, the system designer tests three acceptability
criteria deemed appropriate for the system under
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FIGURE 3. Quality function of the missile launching system with the
accumulation within a mission window criterion.

evaluation. Figure 2 shows the evaluation result in
which the quality function is expressed as a function of
the number of missions (missiles launched by the
launching system) for two acceptability criteria: strict
with a = 0.5 and accumulation with XL = 1.0. It can be
seen that the acceptability criterion selected affects the
quality of service delivered by the system. The quality
function of the system with the accumulation criterion
with XL = 1.0 deteriorates quickly after an upper bound
of 1000 is exceeded. If the system designer believes that
the accumulation criterion with XL =1.0 is the right
choice, it is better that the system will only launch 1000
missiles or less to the same target area or the
functionality of the system is in great risk. If we
assume that missiles are launched to the same target
area in one batch job, then the system can satisfy its
imposed functional requirement (with probability near 1)
with the batch size less than 1000.

On the other hand, if the system designer believes that
the strict criterion with the tolerance threshold a = 0.5
should be adopted, then the functionality steadily
deteriorates as the system launches more and more
missiles. The probability that the system can satisfy its
functional requirement in this case drops to 0.9 after
launching 750 missiles. This result is reasonable because
the strict criterion requires that every missile launched
must have its probability of being shot down to be less
than 0.5 or the system is considered as having violated its
functional requirement. Figure 2 also shows the cross-
over point (at around 2000) beyond which the strict
criterion is better than the accumulation criterion in
terms of meeting the functional requirement.

Figure 3 shows the quality function of the system with
the accumulation within a mission window criterion for
which the system's tolerance to imperfect results is
modelled by a mission window m. The smaller the value
of m, the better the system's ability to tolerate occasional
bad results. At one extreme, where m = oo, a system with
the accumulation within a window criterion behaves just
like a system with the accumulation criterion alone
because the system fails as soon as the accumulated
ISLs exceed XL = \. At the other extreme, m — 0
represents that the system is able to tolerate bad results
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instantaneously, in which case the quality function is
always 1. For any m value between these two extremes,
as m increases the value of the quality function decreases
for the same number of missions, because a larger m
implies a higher probability that the accumulated ISLs
in the mission window m may exceed XL, thereby
making the system more vulnerable to imperfect
solutions. Note that m is to be specified by the system
designer. For this example, Figure 3 suggests that when
m = 500 or 600 the system's functional requirement can
be satisfied with a high probability (close to 1) for up to
10000 missiles launched.

The quality function curves obtained in Figures 2 and
3 thus provide the system designer a firm idea about how
the functionality of the system is compromised as a result
of adopting imprecise computation to trade off" solution
quality for guaranteed response time. It is important to
note that the quality function curve varies as the
acceptability criterion chosen by the system designer
varies. For example, if the threshold a value is 0.75, the
whole curve under the strict criterion in Figure 2 will
move up toward 1. If the system designer is not satisfied
with the shape of the curve, he or she will have to
redesign and re-evaluate the Al programs for one or even
all versions because it is of little value for the system to
satisfy the timing requirement at the entire expense of the
functional requirement.

5. SUMMARY

Imprecise computation is a technique suitable for real-
time systems for which a response must be generated
within a real-time deadline or catastrophe may result. In
this paper, we discussed how imprecise computation can
be applied to implementing Al programs embedded
within real-time systems. We proposed the notion of
acceptability criteria for functionality to quantify the
trade-off between the sacrifice in solution quality and the
guarantee in response time. For a chosen acceptability
criterion as deemed appropriate for the system under
evaluation, we developed a method for quantifying the
system's functional requirement, expressed in terms of
the probability of satisfying the acceptability criterion as
a function of the number of missions serviced by the
system during its lifetime. Analytical expressions for this
system quality function with various acceptability
criteria were derived and a detailed example was shown
to demonstrate the utility of the result. The methodology
developed in the paper is invaluable for system designers
who wish to apply imprecise computation to building
real-time Al systems; it allows the system designer to
evaluate whether an implemented system can indeed
satisfy both the timing and functional requirements of
the system.

A possible future research area is to apply the method
to the design, development and evaluation of real-time
rule-based programs embedded in process-control
systems.
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