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This paper discusses stochastic extensions of a simple process algebra in a causality-
based setting. Atomic actions are supposed to happen after a delay that is deter-
mined by a stochastic variable with a certain distribution. A simple stochastic type
of event structures is discussed, restricting the distribution functions to be expo-
nential. A corresponding operational semantics of this model is given and compared
to existing (interleaved) approaches. Secondly, a stochastic variant of event struc-
tures is discussed where distributions are of a much more general nature, viz. of
phase-type. This includes exponential, Erlang, Coxian and mixtures of exponential

distributions.

1. INTRODUCTION

Though originally formal methods concentrated on the
specification, design, and analysis of functional aspects
of distributed systems, recently the study of quanti-
tative aspects of such systems has come into focus.
Several extensions of formal methods where the occur-
rence of actions can be assigned a (fixed) probability
and/or the time of occurrence can be constrained are
known from the literature (Nicollin & Sifakis, 1992; van
Glabbeek et al., 1990).

An important reason for enhancing formal methods
with notions such as probabilities and time is to facili-
tate the analysis of performance characteristics of sys-
tems designs. In this way the efficiency of design alter-
natives can be assessed such that in early design stages
designs can be rejected because of unsatisfactory per-
formance characteristics, thus avoiding costly redesign
at later stages. In addition, a formal specification in-
corporating quantitative aspects can be very useful for
establishing a well-understood and effective way of de-
veloping performance models, such as Markov chains
and queueing networks, from system specifications.

A lot of effort has been put into the extension of for-
mal methods where the time of actions is specified in a
completely deterministic way. In early stages of the de-
sign there is often no exact timing information available
and in, for instance, multi-media systems phenomena
like jitter and response times are not deterministically
determined but much more of a stochastic nature. In
these cases deterministic timed extensions of process
algebras are not always appropriate. Therefore, in the
field of stochastic process algebras the time of occur-
rence of actions is determined by stochastic (or ran-
dom) variables, in particular exponentially distributed

ones. Several approaches to enhancing process algebras
with exponentially distributed delays have been devel-
oped (Bernardo et al., 1994; Buchholz, 1994; Gotz et al.,
1993a; Hillston, 1994a).

Current stochastic process algebras all use labelled
transition systems as an underlying semantical model.
This results in a semantics based on the interleaving of
independent actions. Though the structure of transi-
tion systems closely resembles that of standard Markov
chain representations, the state explosion problem is a
serious drawback. Truly concurrent semantical models
are less affected by this problem as parallelism leads to
the sum of the components states, rather than to their
product (as in interleaving). In addition, true concur-
rency models retain explicit information about the par-
allelism between system components. As performance
models typically are based on abstractions of the con-
trol and/or data flow structure of systems, the use of
true concurrency semantics is thought to be a direct way
of narrowing the gap from functional models. Finally,
true concurrent models enable the possibility of local
analysis. This means that it is relatively easy to study
only that part of a system in which one is interested,
isolating it from the rest.

(Labelled) event structures (Winskel, 1989) consti-
tute a major branch of true concurrency models and
are well-suited as a semantical model for process al-
gebras like CCS. The basic ingredients of event struc-
tures are events modelling occurrences of actions, and a
causality relation indicating the causal dependencies be-
tween events. To fit the specific requirements of parallel
composition with multi-way synchronisation—as used
in process algebras like LOTOS and CSP—an adap-
tation of labelled event structures, bundle event struc-
tures, are appropriate (Langerak, 1992). Using bun-

THE COMPUTER JOURNAL,

VoL. 38, No. 7, 1995

¥202 I4dy 01 uo3senb Aq t1/00%/25G/2/8E/e191e/|uloo/woo dno-olwepeoe//:sdiy woi papeojumod



A STOCHASTIC CAUSALITY-BASED PROCESS ALGEBRA 553

dle event structures a compositional true concurrent se-
mantics for LOTOS can be defined that is ‘compatible’
with the standard interleaving semantics.

In (Katoen et al., 1995; Brinksma et al., 1994) we
extensively treated an extension of this type of event
structures with deterministic times in which time is as-
sociated to causal relations (termed bundles in our event
structure model) and to events. Bundle delays specify
the relative delay between causally dependent events
while event delays enable the specification of timing
constraints on events that have no incoming bundle.
In this timed model components may synchronise on a
common action as soon as all participants are ready to
engage, that is, when all individual timing constraints
are met. The work presented in this paper is based on
the generalisation of deterministic times in our timed
true concurrent model towards distribution functions.

We start by investigating a generalisation in which
we restrict to exponential distributions. This results in
a simple model where rates are associated with events
only. The principle that a synchronisation takes place
as soon as all participants are ready for it means in a
stochastic setting that the delay of such an action will
be distributed as the product of the individual distri-
butions (or, equivalently, as the maximum of the corre-
sponding individual stochastic variables). As the class
of exponential distributions is not closed under prod-
uct, we abandon our synchronisation principle and take
a pragmatic approach by computing the rate of a syn-
chronisation simply as some arbitrary function of the
individual rates—similar to existing stochastic process
algebras. The resulting model is used to provide a true
concurrent semantics of a stochastic process algebra. A
corresponding interleaving semantics is provided which
shows that our simple stochastic model closely resem-
bles existing interleaved proposals of stochastic process
algebras, thus providing evidence of the adequacy of our
approach.

Only a few stochastic process algebras are known (to
us) that allow for a more general class of distribution
functions (Ajmone Marsan et al., 1994; Gotz et al.,
1993b). The elegant—memoryless—properties of expo-
nential distributions enable a smooth incorporation of
such distributions into transition systems, while the in-
terleaving of independent actions seems to complicate
the use of more general (non-memoryless) distributions
considerably (Gotz et al., 1993b). When carefully in-
vestigating the replacement of deterministic times in
our model by general distributions it turns out that it
is possible to support a class of distributions which is
closed under product (corresponding to the maximum
of stochastic variables under the assumption of statisti-
cal independence), and which contains an identity ele-
ment for product. These properties will be justified in
this paper. As an interesting class of distribution func-
tions that satisfies these constraints we propose the use
of phase-type (PH-) distributions. PH-distributions can

be considered as matrix generalisations of exponential
distributions and are well-suited for numerical compu-
tation. They are used in many probabilistic models
that have matrix-geometric solutions, have a rich the-
ory (Neuts, 1981; Neuts, 1989), and include frequently
used distributions such as hyper- and hypo-exponential,
Erlang, and Cox distributions.

This paper is organised as follows. Section 2 briefly
introduces bundle event structures and Section 3 shows
how this model can be used to provide a causality-based
semantics to a simple process algebra. A treatment of
a deterministic time extension of this model is given in
Section 4. The timed model is a simplified version of
models elaborated in (Katoen et al., 1995; Brinksma
et al., 1994). Section 5 reports on the study of ex-
ponential distributions in our model and relates this
work to existing interleaved proposals. Section 6 inves-
tigates the use of more general distribution functions
in bundle event structures. Finally, Section 7 contains
conclusions and pointers for future work. Appendix A
introduces PH-distributions and provides some impor-
tant theoretic results that are relevant in the context of
this paper.

2. BUNDLE EVENT STRUCTURES

Bundle event structures consist of events labelled with
actions (an event modelling the occurrence of its ac-
tion), together with relations of causality and conflict
between events. System runs can be modelled as partial
orders of events satisfying certain constraints posed by
the causality and conflict relations between the events.

Conflict is a symmetric binary relation between
events and the intended meaning is that when two
events are in conflict, they can never both happen in
a single system run. Causality is represented by a re-
lation between a set of events X, that are pairwise in
conflict, and an event e. The interpretation is that if
e happens in a system run, exactly one event in X has
happened before (and caused e). This enables us to
uniquely define a causal ordering between the events
in a system run. When there is neither a conflict nor
a causal relation between events they are independent.
Once enabled, independent events can occur in any or-
der or in parallel.

Definition 2.1 A bundle event structure £ is a
quadruple (E,#,—,l) with E, a set of events, # C
E x E, the (irreflexive and symmetric) conflict relation,
— C 2F x E. the causality relation, and [ : E — L,
the action-labelling function, where L is a set of action
labels, such that £ satisfiesVX C F,e€ E :

X—e = (Ve,e; € Xe; #ej = e #ej)
O

The constraint specifies that for bundle X +— e all
events in X are in mutual conflict. Bundle event struc-
tures are graphically represented in the following way.
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Events are denoted as dots; near the dot the action label
is given. Conflicts are indicated by dotted lines between
representations of events. A bundle (X, e) is indicated
by drawing an arrow from each event in X to e and
connecting all arrows by small lines. We often denote
an event labelled a by e,.

In the sequel we adopt the following notations. For
sequences o = T ... ZIn, let & denote the set of elements
in o, that is, @ = {z1,...,Zn }, and let o; denote the
prefix of o up to the (i—1)-th element, that is, oy =
T1...%_1, for 0 <i < n+l.

Definition 2.2 For o a sequence of events e; ...e,
we define cfl(c) = {e € E | Je; € 7 : e;#e€} and
sat(oc) ={e€ E|VXCE: X—e = XNo#0}

O

cfl(o) is the set of events that are in conflict with some
event in 0. sat(o) is the set of events that have a causal
predecessor in ¢ for all bundles pointing to them. That
is, for events in sat(o) all bundles are ‘satisfied’.

The concept of a sequential observation of a system’s
behaviour is defined as follows. Event traces consist of
distinct events (i.e. e; ¢ 73, for all i) and are conflict-
free (e; € cfl(0;)), for obvious reasons. In addition, each
event in the event trace is preceded in the sequence by
a causal predecessor for each bundle pointing to it (that
is, e; € sat(0;)). That is,

Definition 2.3 An event trace o of £ is a sequence
of events e ...e, with e; € E (0 < i < n), satisfying
e; € sat(o;) \ (cfl(o;) U 77), for all <. a

Event traces correspond to linearisations of system
runs.

Example 2.4 Some bundle event structures are de-
picted in Figure 1. Event structure (c) has bundles
{ea,en}— ec, {€r} — €q, and {e. } — €4, and a con-
flict between e, and e,. Thus, event ey is enabled once
both e. and e, have happened, and e. once either e,
or e, has occurred before. Example event traces of this
structure are egzeq€c, €pec, and ecepeqe,. 0

a

eb ce
(@) (b) (©)
FIGURE 1. Some example bundle event structures.

3. A PROCESS ALGEBRA

In this section we introduce a (simple) process algebra
and show how bundle event structures can be used to
provide a causality-based semantics to a process algebra
in a compositional way. Let L be a set of action labels,
a € L U {7}, where 7 is a special label representing

silent actions, G C L (G finite), and H : L U {7} —
L U {7} a relabelling function with H(7) = 7 and
H(a) # 7 for a € L. We consider the process algebra

B:=0|a; B|B+B|B|lcB|B[H]|B\G.

The precedences of the operators are, in increasing bind-
ing order: ||g, +, ;, [] and \.

Actions are considered to be atomic and to occur in-
stantaneously. 0 represents the behaviour that can per-
form no actions at all. a; B denotes a behaviour which
may engage in a and after the occurrence of a behaves
like B. B; + B, denotes the (standard) choice between
behaviours B; and By, while By ||¢ Bz is their parallel
composition where synchronisation is required for ac-
tions in G. B[H] denotes a behaviour which is obtained
by renaming the actions in B according to H. B\ G
behaves like B except that all actions in G are turned
into invisible actions (i.e. 7).

A causality-based semantics can now be defined as
follows. Let E[ B; ]| = & = (Ei, #4,—4, i), i=1,2 with
E, N E5 = @&. For action-prefix a; B;, a new event
e, (labelled a) is introduced which causally precedes
all initial events of &; (cf. Figure 2). £[B; + Bz] is

(@) (b)

FIGURE 2. (a) £[B1] and (b) £[a; B1].

equal to the union of £; and &> extended with mutual
conflicts between all initial events of £; and £; such that
only B; or B can happen. £[B; \ G] is identical to
E[ B1] except that events labelled with a label in G are
now labelled with 7 turning those events into internal
ones. £[Bi[H]] is defined similarly where events are
relabelled according to H.

For parallel composition the events of £[ By ||g B2]
are constructed as follows: an event e of & or & that
does not need to synchronise is paired with the auxil-
iary symbol *, and an event which is labelled with an
action in G is paired with all events (if any) in the other
process that are equally labelled. Thus events are pairs
of events of £ and &,, or with one component equal to
*. Two events are now put in conflict if any of their
corresponding components are in conflict, or if differ-
ent events have a common component different from
(such events appear if two or more events in one process
synchronise with the same event in the other process).
A bundle is introduced such that if we take the projec-
tion on the i-th component (i=1,2) of all events in the
bundle we obtain a bundle in &; (cf. Figure 3).

We suppose there is an infinite universe Ey of events.
For G C L,set Ef = {e € E; | li(e) € G} is the set
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of synchronised events and Elf = E; \ E; the set of
unsynchronised events. The set of initial events of &
are events that have no bundle pointing to them, i.e.
mit(§) ={e€E| -3AXCE:Xwr—e€)}.

a c b c
o o Il o—w = c
b
a a a _ a a
o s @ e Y PY
b b
a c
o———o
: a b
h, e—® =
S,
a d
a b

oo Iy o

FIGURE 3. Examples of parallel composition.

Definition 3.1 &[] is defined as follows:

g[o] = (2,2,2,9)
Ela; B1] = (E,#1,—,l) where
E = EiU{e}fore, € Ey\E;
m = 1 U({{ea}} x imit(€r))

I = L U({(e,a)}

E[B1+ B2] = (E1UEs, #,—,1; Uly) where
# = #1 U #2 U (init(&1) x init(€2))
= ey Uiy
E[Bi1\G] = (E1,#1,—1,l) where

(le) eG = l(e) =7)
A (li(e) €G = l(e) =li(e))
E[Bi1[H]] = (E1,#1,—~1,Holy)
E[B1lle B2] (E, #,—,1) where
E = (Elx{x)u({*}xEHu

€1 #1 6’1) \% (62 #26’2) \%
(e1 =€y #x N ea#ep) V
(e2=eh #x A e #€))
X+—>(el,62) =4 EIXlZ(XlP—?l e;r A

(617 62) # (6,17 612) A

X ={(esej)€eE|e; €X1}) V

3X,: (X2 9 €9 A
X ={(ei,ej) €E|ej € X2})
I((e1,e2)) = if e; = * then lz(e2) else I1(e1)
a

(
{(e1,e2) € EY x E3 | li(e1)=l2(e2) }
(

Here, o denotes function composition.

4. TIMED EVENT STRUCTURES

Time is added to bundle event structures in two ways.
To specify the relative delay between causally depen-
dent events time is associated to bundles, and in or-
der to facilitate the specification of timing constraints
on events that have no bundle pointing to them (i.e.
the initial events), time is also associated to events.
Though it seems sufficient to only have time labels for
initial events, synchronisation of events makes it nec-
essary to allow for equipping all events with time la-
bels, including the non-initial ones. Alternatively, we
could explicitly model the start of the system by some
fictitious event, w say. Then the time associated to
event e can be considered as the time associated to the
bundle pointing from the fictitious event to e. We do
not consider the introduction of such an event w as the
definitions become more complex—w has to be treated
differently from ‘normal’ events—and proof obligations
become more severe—e.g. one has to prove that bundles
X —esatisfy X ={w}, orw ¢ X and e # w.

We assume mappings 7 and D to associate a value
of T, the time domain, to bundles and events, respec-
tively. A bundle (X,e) with T((X,e)) = t is denoted

by X N e; its interpretation is that if an event in X
has happened at a certain time, then e is enabled t
time units later. D associates time to events; the in-
terpretation is that e with D(e) =t can happen after ¢
time-units from the beginning of the system.

Definition 4.1 A timed event structure is a triple
(€,T,D) with £ a bundle event structure (E, #,—,[),
T : — — T, the timing function, and D : E — T, the
delay function. m]

For depicting timed event structures we use the follow-
ing conventions. The time associated with a bundle and
event is a non-negative real and is depicted near to a
bundle and event, respectively. For convenience, zero
delays are omitted.

2 : 3
b
- o
a ;
7 6 ¢

(b)

()
FIGURE 4. Some example timed event structures.

Example 4.2 Some example timed event structures
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are depicted in Figure 4. Figure 4(a) has bundles
{ea} A e, {ev} A e, {ev} A eq, and a conflict
between e, and eq. For Figure 4(b) we have D(e,) = 2,
D(ep) = 3 and D(e.) = 7. Note that e, is a non-initial
event having a delay associated with it. m]

As a generalisation of the notion of event trace we define
the notion of timed event trace. As a shorthand nota-
tion for sequences of timed events o = (e1,t1) ... (én,tn)
let |o] denote the set of events in o, ie. |[o] =
{ei1,...,en }. A timed sequential observation of the sys-
tem is now defined as an untimed sequential observation
where each event has a correct timing associated with
it.

Definition 4.3 A timed event trace of (£,7,D) is
a sequence o of timed events (ej,%1)...(en,tn) with
e; € E, t; € T (0 < i< n), satisfying

1. e;...e, is an event trace of £
2. Ve; : t; > max(D(e;), h;) where h; equals
Max{t+t; |IX CE:X+5e A XNloy] ={e;} }.
]

Max of the empty set is 0. Note that—according to the
last constraint—events can happen at any time from
the moment they are enabled. The motivation for this
non-urgency is that in general an event may be subject
to interaction (e.g. with the environment) which may
introduce further delays. e is enabled if at least its
delay, D(e), has elapsed and the time relative to all its
causal predecessors.

Some timed event traces of the timed event structure
of Figure 4(a) are:

(arta)(enstv)(€a,ta) Wwith tq>1tp+2, and
(€a,ta) (e, to)(ec,te) Wwith t. > max(t,+3,t,+5)

Notice that event traces do respect causality, but not
necessarily time. That is, two (or more) independent
events can occur in the trace in either order regard-
less of their timing. For example, (ep,1)(eq,3) and
(eq,3)(ep,1) are event traces of the structure in Fig-
ure 4(a). The possible choices correspond to the possi-
ble interleavings of the (independent) events.

Theorem 4.4 o (ei, ti)(eH.], ti+1) 0'/ with ti+1 < ti is
a timed event trace of (£,7,D) iff o (€i+1,ti+1)(es,t:) 0’
is a timed event trace of (£,7,D).

Proof: ‘=’ : assume o (e;t;)(€it1,ti+1) 0 is a

timed event trace and let t;;; < t;. Then prove that
o (ei41,tiv1)(ei,t;) o’ is also a trace by checking the
conditions of being a timed event trace (by contradic-
tion). The same procedure applies for ‘<. O

For a more extensive discussion on ‘ill-timed’ but
‘well-caused’ timed traces we refer to (Aceto & Mur-
phy, 1993).

5. SIMPLE STOCHASTIC EVENT STRUC-
TURES

5.1. Exponential Distributions
Exponential distributions are defined as follows.

Definition 5.1 A probability distribution function
F, defined by F(z) =1 —e~?® for z > 0 and F(z) =0,
for x < 0, is an exponential distribution with rate A
(A€ R™). ]

Evidently, a rate uniquely characterises an exponential
distribution. A well-known property of exponential dis-
tributions is the memoryless property.

Lemma 5.2 For U an exponentially distributed
stochastic variable, z,y > 0 we have Pr{U < z +y |
U >y} = Pr{U < z}. This property is known as the
memoryless (or Markovian) property. m|

Informally, it states that the probability of U being at
most z+y given that it is larger than y is independent
of y and equal to the probability of U being at most z.
So, the fact that U > y is completely irrelevant.

5.2. The Model

In this section we develop a simple stochastic variant of
bundle event structures by associating rates to events.
The motivation for only associating rates to events, and
not to bundles too, is that when choosing to remain in
the domain of exponential distributions it turns out to
be sufficient to attach rates to events only. Consider,
for example, the following event structure in which rates
are associated to bundles:
a

b

The interpretation is that a rate associated to bundle
X pointing to e determines the time of e’s enabling rel-
ative to the time of occurrence of its causal predecessor
in X. The above structure specifies that the time period
between the enabling of e. and the occurrence of e, (es)
is exponentially distributed with rate A (u). Given that
we want to stay in the domain of exponential distribu-
tions this is equivalent to saying that the time between
the last occurrence of an event preceding e. and the
enabling of e, is exponentially distributed with rate v
where v is determined by A and p. Due to the memo-
ryless property this is statistically equivalent to saying
that the period between the start of the system and the
enabling of e. is exponentially distributed with rate v:

a
v
c

b

Therefore we choose to associate rates to events only. In
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this way we also keep close to the stochastic transition
systems that underly stochastic process algebra based
on interleaving (see also Section 5.4). Thus,

Definition 5.3 A simple stochastic bundle event
structure is a tuple (£, R) with £ a bundle event struc-
ture (E,#,~,l) and R : E — R, the rate function.

O

As a generalisation of the notion of event trace we de-
fine the notion of stochastic event trace.

Definition 5.4 A stochastic event trace of (€,R) is
a sequence o of rated events (e1,A1)...(en,A\,) with
e, € E, N e R" (0 <i < n)iffe;...e, is an event
trace of £ and A; = R(e;) for all i. a

The set of stochastic event traces of stochastic bundle
event structure £ is denoted STr(£).

5.3. A Simple Stochastic Process Algebra

Let the syntax of the language SL of simple finite
stochastic behaviours be defined as follows:

B:=0|()\) a;B|B+B|B|cB|BlH]|B\G.

Actions are considered to be atomic and to occur in-
stantaneously. (A) a; B denotes a behaviour which may
engage in a from a time period relative to the beginning
of the system with an exponential distributed length (of
rate A) and after the occurrence of a behaves like B. A
specifies the rate of the exponential distribution of a
relative delay of an action.

In the deterministic timing case a set of behaviours
may synchronise on a common action as soon as all
participants are ready to engage in this action. For ex-
ample, in an expression like (t) a||, (') a the resulting
action a is enabled from max(t,t’). In the case where
the delay of actions (in fact, events) is determined by
a stochastic variable, it seems natural—and a straight-
forward generalisation of the deterministic time case—
to let the enabling time of a synchronisation be deter-
mined by the maximum of the stochastic variables that
determine the local delay of this action. From basic
probability theory (Kobayashi, 1978) we know that the
distribution of the maximum of two (or more) indepen-
dent stochastic variables corresponds to the product of
their distribution functions. That is,

Theorem 5.5 Let Uy,...,U, (n > 1) be independent
stochastic variables where U; has distribution Fy,, and
W = Max{Uy,...,U, }. Then the probability distribu-
tion function of W equals

FW('T) = HFUl(z) ’
i=1

and its probability density function

F(@) =Y | Fj,@) [] Fu, @)

i=1 j=lj#i

(]

Unfortunately, the product of two exponential distribu-
tions is not an exponential distribution (see also Exam-
ple 7.5). Therefore, we take in this section a pragmatic
approach by combining individual distributions in such
a way that the resulting distribution of a synchroni-
sation action is again exponential. This is achieved
by computing the rate of the resulting action from
the individual rates of the components according to
®:RT x Rt - IR*. E.g., action a in the composite
behaviour () a||q (1) a will have rate A ® u. Different
choices for ® are possible. For an extensive discussion
on these possibilities, their (stochastic) interpretation,
and desired algebraic properties of ® we refer to (Gotz,
1994; Hillston, 1994b).

We provide a semantics of SL by defining a map-
ping X[ B] which associates a simple stochastic bundle
event structure with each expression B of SL. X is an
orthogonal extension of the mapping of process algebra
to bundle event structures (cf. Definition 3.1). Let ® be
a function associating to a stochastic behaviour B its
corresponding non-stochastic behaviour ®(B) by sim-
ply omitting the rates in B. In the rest of this section
let X[B;] = ((Ei, #i,—4, 1), Rs), for i = 1,2, with
E, N Ey = . We assume ® to be commutative, asso-
ciative and have an identity element, denoted u. That
is, forall A € R* we have \@u=u® X\ = \.

Definition 5.6 X[ ] is defined recursively as follows:

x[o] = (€[2(0)],2)

X[(A) a; Bi] = (€[2((N) a; B1)],R1 U {(ea; M) })

X[B1+ Bz] = (E[®(B1+ B2)],R1 U R2)
X[Bi\G] = (€[2(B1\G)],R1)
X[Bi[H]] = (€[2(B:i[H]) ], R1)

X[Billc B2] = (€[®(B1llg B2)],R) where
R((e1,e2)) = Ri(er) ® Ra(ez) s.t. Ri(x) =u.

]

The definition of X is exemplified by providing the se-
mantics of the following stochastic behaviours (cf. Fig-
ure 5):

(@) Bi = (A1) a; (A2) bll6(A3) ¢; (M) b
(b) B = (m1) a; (u2) blls ((u) b+ (u3) d) , and
(¢) Bill{a,py B2

Actions with rate u, the identity of ®, do not con-
tribute to the resulting rate of a synchronisation. That
is, (u) a||q (A) a results in action a with rate A\. Such
actions are referred to as passive and often occur in per-
formance modelling to model service-like activities.

We conclude this section by discussing immediate ac-
tions. In performance modelling actions that are ir-
relevant from a performance evaluation point of view
are often considered to take place immediately thus not
imposing any additional delay on the system’s execu-
tion. This led to the notion of immediate transitions
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(N ag; B
Bl (5:0«,'\) Bi
B + B, -&22, B
B (f’av)\) B/
- - (a¢G)

Bi|lg B, &2, Bt || By

B: ——’(E’G’A) Bi A By

(&,a,2) B

Bs (€,a,0) Bé

By + B, 422, By

B, (&,a,2) Bé

B (&,a,2) B
B\G-&2X, g\ G

(a g G)

Bi|l¢ B2 ((§,9),a,A\®p) Bi HG Bé

B (&,a,0) B’

e (a g€ G)
Bi|lg By 220 B || B
(¥,a,p) Bl
2 (a€@)
B (5»av/\) B/
X (a € G)
B\ G-, B\ G

B[H] (§,H(a),M) B'[H]

TABLE 1.
M M @y " "

a b a@———@b
c . d
A3 H3
(a) (b)

M ® (A ® Ay) ®

b
c . d
13 M3
(©)
FIGURE 5. Some example simple stochastic event structure
semantics.

in stochastic Petri nets, and similarly to the notion of
immediate actions (i.e., actions with rate co) in stochas-
tic process algebras (e.g. (Bernardo et al., 1994; Gotz,
1994)). In our model such actions can easily be in-
corporated by extending the definition of ® such that
A®oco=ocforall A€ R" U {0}.

5.4. Operational Semantics

Various stochastic extensions of process algebras are
known that are based on an interleaving semantics. In
order to compare our approach to these existing ap-
proaches and to investigate the ‘compatibility’ of our
proposal with the standard semantics of process alge-

Event transition system for SL.

bras we define an operational semantics for SL that
corresponds to the non-interleaving semantics. The ap-
proach we follow in this paper is a straightforward gen-
eralisation of the case for untimed LOTOS (Langerak,
1992) and quite similar to the approach taken for the
deterministic timing case (Katoen et al., 1995). The
basic idea is to define a transition system (in the sense
of (Plotkin, 1981)) in which we keep track of the occur-
rence of actions in an expression of SL. This results in
a (stochastic) event transition system.

In order to define an event transition system each oc-
currence of an action-prefix is subscripted with an ar-
bitrary but unique event occurrence identifier, denoted
by a Greek letter. These occurrence identifiers play the
role of event names. E.g. an expression like a; b+ b be-
comes ag ; by, + by. For parallel composition new event
names are created. If e is an event name of B and €’ an
event name in B’, then possible new names for events in
B||g B’ are (e, *) and (x,€’) for unsynchronized events
and (e, e’) for synchronized events.

The transition relation — is defined as the small-
est relation closed under all inference rules defined in
Table 1. B —©2Y, B’ means that behaviour B can
perform event e, labelled a with rate A and evolve into
B'.

Using the transition relation — the notion of
(stochastic) event trace can be defined in the usual way.
As the transition system induced by — is determinis-
tic, the transition system for B can be represented by
its set of stochastic event traces T[ B]. This set can
be characterized in a denotational way, and proven to
coincide with the set of stochastic event traces of the
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corresponding event structure X' B]. This proves the
consistency between the operational semantics and de-
notational semantics in terms of event structures.

Theorem 5.7 VB e SL:STr(X[B])=T[B].

Proof: In asimilar way as for the deterministic timing
case (Katoen et al., 1995). a

From the event transition system defined by — we can
easily obtain the standard inference rules for process
algebras like CSP and LOTOS by omitting the rates
and event identifiers. In addition, the transition rules
strongly resemble the operational semantics of existing
stochastic process algebras, and for some of these al-
gebras we obtain identical rules when substituting the
appropriate operator for ®. This provides adequacy for
our stochastic causality-based model.

In MTIPP (Gétz et al., 1993a; Herrmanns & Rettel-
bach, 1994) the rate of a synchronized action is sim-
ply the product of the rates of the components, thus
A® p = Ap. For B-MPA (Bernardo et al., 1994) the
resulting rate is the maximum of the individual rates
under the condition that at least one of the partici-
pating behaviours must be passive with respect to the
interaction, thus, A\® u = max(\, u) given that A = u or
= u. In the first proposal for PEPA (Hillston, 1993)
the expected delay (i.e., the reciprocal of the rate) of
the interaction is assumed to be the sum of the ex-
pected duration of the action in each of the partici-
pants, i.e. A® p = (Ap)/(A+ p). In the final proposal
for PEPA (Hillston, 1994a) the rate of an interaction
is computed by taking into account the total capac-
ity of a behaviour to participate in actions with a cer-
tain label (the so-called apparent rate). Since apparent
rates are based on the entire behaviour of a partici-
pant rather than solely on the (local) rate of an event
this synchronization policy cannot be modelled using ®.
In D-MPA (Buchholz, 1994) a somewhat different ap-
proach is taken—each action label a is assigned a fixed
transition rate p,, and (r) a; B (r € R1) denotes a be-
haviour that may engage in a where the time before a
is performed is exponentially distributed with rate 7 yq.
When (r1) a and (r2) a synchronize the time before in-
teraction a happens is distributed with rate r; ro yg.
Using ® as product on r; (rather than on rates) assum-
ing that p, is given the same scheme can be obtained
with the rules of Table 1.

As noted before, desired algebraic properties of ® are
associativity, commutativity and the existence of an
identity element. (Algebraically speaking, this means
that (RT,®) is a commutative, or Abelian, monoid.)
Besides these two properties (Gotz, 1994; Hillston,
1994b) require ® to be distributive over the addition
of rates in order to consider (\) a + (i) a and (A+u) a
to be equivalent, also in the context of parallel composi-
tion (which leads to the distributivity). It is interesting
to note that in our model rates are associated to events
rather than to actions, and the two a actions in the

choice expression above are modelled by distinct events.
So, it seems that distributivity of ® over + is not a nec-
essary requirement in our model unless distinct events
are identified by some congruence relation.

6. GENERALISED STOCHASTIC EVENT
STRUCTURES

The main advantage of the model of the previous sec-
tion is that it is a rather simple extension of bundle
event structures which corresponds quite closely to ex-
isting stochastic process algebras such as MTIPP (Gotz
et al., 1993a), PEPA (Hillston, 1993), D-MPA (Buch-
holz, 1994), and B-MPA (Bernardo et al., 1994) (de-
pending on the choice for ®). Unfortunately, for keeping
the model within the domain of exponential distribu-
tions we were unable to let the stochastic variable that
determines the delay of the synchronized action be the
maximum of the individual stochastic variables, whilst
this seems quite reasonable and would be a straightfor-
ward generalisation of our deterministic timing model.

In addition, exponential distributions are a bit re-
strictive in performance modelling and there is a consid-
erable need for more realistic (i.e., non-memoryless) dis-
tributions. Especially in the analysis of high-speed com-
munication systems or multi-media applications where
the correlation between successive packet arrivals is no
longer negligible and packets tend to have a constant
length the usual Poisson arrivals and exponential packet
lengths are no longer valid assumptions.

In this section we replace the deterministic times as-
sociated to bundles and events in our deterministic tim-
ing model (cf. Section 4) by stochastic variables hav-
ing arbitrary distributions, and investigate what the re-
quired (algebraic) properties of such distributions are
given that the treatment of synchronization is similar
to the deterministic case.

6.1. The Model

Distribution functions are added to bundle event struc-
tures in two ways. A distribution function associated
with event e determines the time between the start of
the system and the occurrence of e, while a distribution
function associated to bundle X +— e determines the
relative time between the occurrence of e and its causal
predecessor in X.

The interpretation of bundle { e, } — e, decorated
with distribution F is that if e, has happened at a cer-
tain time t, then the time at which e, is enabled is
determined by t,+U where U is a stochastic variable
with distribution F'.

If more than one bundle points to an event the fol-
lowing interpretation is chosen. For instance, suppose
{€a} — e. and {ep } — e, with distribution F' and G,
respectively. Now, if e, (ep) happens at ¢, (tp) then the
time of enabling of e. is determined by the stochastic

THE COMPUTER JOURNAL,

Vor. 38, No. 7, 1995

¥202 I4dy 01 uo3senb Aq t1/00%/25G/2/8E/e191e/|uloo/woo dno-olwepeoe//:sdiy woi papeojumod



560 E. BRINKSMA et al.

variable max(t,+U,t,+V), where U (V) has distribu-
tion F (G).

As a final example, consider {e, } +— e, decorated
with distribution F' and e, having distribution G. Using
a similar reasoning as above, we infer that the stochastic
variable max(U, t,+V') determines the time of enabling
of e, given that e, happens at time .

Let DF denote an arbitrary class of distribution func-
tions.

Definition 6.1 A stochastic bundle event structure
T is a triple (£, F,G) with £ a bundle event structure
(E,#,—,l), and F : E — DF and G : — — DF, associ-
ating a distribution function of class DF to events and
bundles, respectively. O

We denote a bundle (X,e) with G((X,e)) = F by

X & e. Event traces are considered as sequences of
events where each event e; is associated with a stochas-
tic variable U; that uniquely determines the minimal
enabling time of event e;. The stochastic variable U;
is determined by the distribution function associated
with e; (i.e. F(e;)), the distributions linked to all bun-
dles pointing to e; and the stochastic variables U; of
the causal predecessors of e; in the trace (as these de-
termine the time of occurrence of e;).

Definition 6.2 A random event trace of I is a se-
quence o of events (e1,U1) ... (en,Up) with e; € E, and
U; (0 < i < n) a stochastic variable with distribution
function in class DF iff

1. e1...e, is an event trace of £, and
2. Ve; : Uy = max(Ug(,), Vi) where V; equals

Max{Uc+U; |3X: X S e; A XN |o;| ={e;} }.
0O

Notice the resemblance of this definition to Defini-
tion 4.3. For distribution function F, Ur denotes the
corresponding stochastic variable. V; is the maximum of
n (n > 1) stochastic variables for n bundles pointing to
e;. In general it is not straightforward to obtain a closed
formula for Uj; since statistical independence of its con-
stituents cannot always be guaranteed. The stochastic
variable U = (Uy,...,U,) spans an n-dimensional hy-
perspace and has joint distribution function

Ty Tn
FU(E)z/ / Fo(yr,- -3 Yn)dyn . .. dyr.
) )

Example 6.3 Consider the stochastic event struc-
tures in Figure 6. The event distribution of event
e, is denoted F, and is omitted in the figure for
simplicity. For (a) legal traces are (eq,U,)(ew,Up)
and (eb,Ub)(ea,Ua) with U, = Ufr, and Uy = Up,.
Note that the stochastic variables are equal for both
traces. For (b) (eq,U,)(ep,Up) is a trace with U, =
Ur, and U, = max(Up,,Us+U,). Finally, for (c)
(easUa)(es, Up)(ec, Ue) is a trace with U, = Ur,, Up =

ae a a b
G G H
eb b @ c

(@) (b) (©)
FIGURE 6. Some stochastic bundle event structures.

Upb and U, = Ma,x{ UFC, Ug+U,, Uyg+U, } O

6.2. A Generalised Stochastic Process Algebra

In this section we use the model of the previous sec-
tion as a semantical model for a generalised stochastic
process algebra. The aim of this exercise is to investi-
gate what the desired algebraic properties of distribu-
tion functions are. Let F' be a distribution in class DF.
The syntax of behaviours is now defined as follows:

B := 0|(F)a;B|B+B|B|cB|B[H]|B\G.

This syntax is identical to the stochastic process algebra
of Section 5 except that rates are replaced by arbitrary
distribution functions.

In a similar way as for the exponential distribu-
tion case we define a mapping S[B] which asso-
ciates a stochastic bundle event structure to expres-
sion B. In the following definition let S[B;] =T'; =
((Ei,#i,!—*i,li),fi,gi>, fori=1,2, with E; N Ey = 2.
We assume that the stochastic variables corresponding
to the bundle and event distributions in I'y and I'y are
statistically independent. The positive events of I" are
those events that have a distribution function differ-
ent from u, i.e. pos(T') = {e € E | F(e) # u}. Let
pin(T") = pos(T") U init(T).

Definition 6.4 S| ] is defined recursively as follows:

S‘IO]] = (5“@(0)]],@,@)

S[(F)a; Bi] = (E[®((F) a; B1)],F,G) where
— = =1 U({{ea}} x pin(T'1))
F = (BEyx{u}) U{(e F)}
g = G U
{(({ea},€), F1(€)) | € € pin(T1) }
S[B1+ B:] = (E[®(B:1+ B2)],F,G) where
F = FAUFR
g = GIUG
S[Bi\G] = (£[2(B1\G)],F1,61)

S[Bi[H]] = ([®(B:[H])], F1,G1)
S[Bille B2] = (E[®(Bi1lle B2)],F,G) where
F((e1,e2)) = Fi(e1)Fa(e2) with Fi(x) =u

g(Xv (61,62)) = H;H, with
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H = f3X;: X 3e A
X ={(ei,e;) €EE|e; € X1}
then G else u

Hy = f3Xy:X2535e5 A
X ={(ei,ej) €eE|e; € Xp}
then G5 else u

O

From this definition we infer that the class DF of dis-
tribution functions is required to be closed under mul-
tiplication and to have an identity element u for multi-
plication. (Recall that the product of distribution func-
tions corresponds to the maximum of their stochastic
variables under the assumption of statistical indepen-
dence.)

Here, in S[(F) a; B1] a bundle is introduced from
a new event e, (labelled a) to all initial events of I'y
and, in addition, to all events in I'; that have a distribu-
tion function different from u. The distribution of these
events is now relative to e,, so each bundle { e, } — e is
associated with a distribution Fj(e), and the distribu-
tion F(e) is made u. The distribution F(e,) becomes
F. In the untimed and exponential case (cf. Defini-
tions 3.1 and 5.6) it suffices to only introduce bundles
from e, to the initial events of I';. Introducing bundles
from e, to all events in pin(T';) is, however, semantically
equivalent and is used here only to make distributions
of events relative to e,. To exemplify this, Figure 7 de-
picts (a) S[Bi1 ], and (b) S[(F) a; B;] (Compare with
Figure 2).

d d
o
G ™
e
u
b c 1
K J H

(a) (b)

FIGURE 7. Example of timed action prefix.

Finally, we explain the semantics of the parallel com-
position operator. The events of S[ B, ||¢ B2] are con-
structed in the same way as in Definition 5.6. The dis-
tribution associated with a bundle is equal to the prod-
uct of the distribution functions associated with the
bundles we get by projecting on the i-th components
(i=1,2) of the events in the bundle, if this projection
yields a bundle in S[ B;]. The distribution of an event
is the product of the distributions of its components
that are not equal to *.

6.3. Recursion

In this section we extend the behaviours under con-
sideration with recursion. To that end we extend the

syntax with the construct B ::= P where P denotes a
process instantiation. We assume a behaviour is always
considered in the context of a set of process definitions
of the form P := B where B is a behaviour possibly
containing occurrences of P.

S[P] for P := B is defined in the following way
by using standard fixed point theory. A complete par-
tial order (c.p.o.) <« is defined on stochastic bundle
event structures with the empty event structure (i.e.,
S[0]) as the least element L. Then for each defini-
tion P := B a function Fp is defined that substitutes
a stochastic event structure for each occurrence of P
in B, interpreting all operators in B as operators on
stochastic event structures. Fpg is shown to be contin-
uous, which means that S[P] can be defined as the
least upper bound (L.u.b.) of the chain (under <) 1,
Fe(l), Fe(Fp(L)),.... For this paper we just define
the appropriate ordering < and the corresponding l.u.b.
Given these ingredients it is rather straightforward to
define a continuous function Fp in a similar way as for
the non-stochastic case (Langerak, 1992, Chapter 8).

Definition 6.5 Let I'; = ((E;, #i,—i, i), Fi, G;) for
i=1,2. Then T, Q Ty iff

1. By, C E,
2. #1C#2 ANVe e €FE1:e#qe = e#i€
3. (I) ‘v’Xl,eGEl:
Xl'ile = 3X2:X2£>Qe AN Xi=X2NE;
() VXs,e€ E1: Xorose = (XaN Ey) oy e
4. 1 1 Ey =1
5. F2 | E1=F

6. G2 | —1=G1.
]

where | denotes restriction. The constraints E; C E,
and #; C #- are self-explanatory. In addition we re-
quire for conflicts that no new conflicts should appear
in T'; between events that are already in I';. Simi-
larly, 3. (II) forbids the introduction of bundles in I'y
for events in I'; for which there exists no bundle in I';.
These conditions guarantee that a ‘larger’ stochastic
event structure (under <) does allow more event traces.
Constraint 3. (I) allows for bundles to grow in such a
way that the old bundle is contained and the associated
distribution remains the same. It is now straightfor-
ward to verify that 9 with L = ((9,9,92,9),9,0) is
a c.p.o. A useful property is

Theorem 6.6 (Fl dIANE; = E2) = I'y =T5.

Proof: Straightforward by systematically checking the
equality of the components of I'; and I's. m]

The Lu.b. of a chain 'y < T2 & ..., denoted | |, T,
is defined as follows. For the set of events, conflicts,
labelling function, and event distributions we simply
take the union of all events, conflicts, labellings and
event distributions of the event structures in the chain.
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As bundles may grow this approach does not apply to
the set of bundles. Suppose some I'; has bundle X; +—;
e. According to the definition of < there is a series of
bundles X; —; e, X411 ;41 e,... satisfying Xz N
Ey = Xy for k > j. Then the Lu.b. contains bundle
(U,, Xj+n) — e. As all bundles in a series retain the
same distribution the bundle distribution is simply the
union of the bundle distributions of the structures in
the chain. Thus,

Definition 6.7 Let I'; 9 T2 < ... be a chain, then
I_Iz' I = <(Uz Eian #i7H7Ui lz)yUI-rzaUZ gz> with

— = {(X,e)|3j:VkZ2j: Xpx—re A
X1 NEy =Xk A XZUka}

O
It now follows that | |, I'; indeed is a lL.u.b. of the chain
rdare ...

Example 6.8 As an example of the seman-
tics of a recursive process definition, consider P :=
(u) a; ((F) b; P+ (G) c; (H) d; P). L is the empty
bundle event structure. Fp(Ll) is depicted in Fig-
ure 8(a). By repeated substitution we obtain the event
structure depicted in Figure 8(b). O

(b)

FIGURE 8. Example semantics for process definition.

6.4. Appropriate Distributions

We conclude that the desired properties of the class of
distribution functions that is of interest to us are that
it should be closed under product and have an iden-
tity element for product. An interesting class of distri-
bution functions that satisfy these constraints are the
phase-type (PH-) distributions. PH-distributions can
be considered as matrix generalisations of exponential
distributions and are well-suited for numerical compu-
tation. They are used in many probabilistic models
that have matrix-geometric solutions, have a richly de-
veloped theory (Neuts, 1981; Neuts, 1989), and include

frequently used distributions such as hyper- and hypo-
exponential, Erlang, and Cox distributions. An intro-
duction to PH-distributions and a review of the main
results that are of interest to our work (such as the
computation of the product of two PH-distributions) is
given in Appendix A.

Another interesting class of distribution functions
that is closed under product is introduced in (Sahner &
Trivedi, 1987). Here, the product of distribution func-
tions of ‘exponential polynomial form’

F(z) = Zaixk"ebﬂ for x > 0.

for k; a natural and a;,b; real or complex numbers, is
used to model the concurrent execution of groups of
tasks. Coxian, exponential, Erlang, and mixtures of
exponential distributions also fall into this class of dis-
tributions. The applicability of such distributions in the
context of our work is for further study.

7. CONCLUDING REMARKS

In this paper we have made an investigation of stochas-
tic extensions of a process algebra in a causality-based
setting. We presented a simple event structure model
restricted to exponential distributions and a more gen-
eral one involving PH-distributions. The simple seman-
tic model is shown to be compatible with the stan-
dard operational semantics of (ordinary) process alge-
bras like LOTOS and CSP and to closely resemble ex-
isting stochastic extensions of interleaved models like
MTIPP, B-MPA, D-MPA and a preliminary version of
PEPA.

The model involving PH-distributions evolved from
a straightforward generalisation of earlier work of the
authors in a deterministic timed setting (Katoen et al.,
1995; Brinksma et al., 1994). This results in associating
distributions to events and bundles. It would be inter-
esting to investigate under which conditions it would be
possible to simplify this model and avoid, for instance,
distributions being linked with events (e.g. by avoiding
timing constraints on initial events).

To our knowledge only a few process algebras exist
supporting a much wider class of distribution functions
than exponential ones. (Ajmone Marsan et al., 1994)
define a stochastic extension of LOTOS in which ran-
dom variables with arbitrary density functions specify
the time lapse between actions. Once an action becomes
enabled an experiment is carried out, the outcome of
which represents the actual delay of the action. The
main limitation of this proposal is that all stochastic
timing constraints must be specified at ‘top level’, thus
reducing compositionality and avoiding the issue of how
to combine local density functions in case of synchro-
nisation. (Gotz et al., 1993b) discuss a generalisation
of MTIPP which supports arbitrary distribution func-
tions. In order to associate the appropriate distribution
function to actions in the interleaved semantic model,
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they introduce the notion of ‘start references’. Such
references are used to keep track of residual lifetimes of
stochastic variables. In our model a similar notion is
not needed.

Though this paper provides the first basic ingredi-
ents to study the (semi-) automated development of
performance models out of system specifications in a
true concurrent setting, there are a number of issues
to be settled. To mention a few, we did not yet ad-
dress the issue of how to obtain a performance model
from an event structure representation while exploit-
ing the explicit parallelism present in the semantics.
Some examples of how this could be done starting from
an event structure with deterministic times and proba-
bilistic choices can be found in (Brinksma et al., 1994;
Katoen et al., 1994). It has to be investigated how this
approach carries over to the stochastic case. A compar-
ison with Petri nets is also considered to be useful. The
relationship of bundle event structures with Petri nets
has been studied by (Boudol & Castellani, 1991) and
it would be interesting to extend this study to (non-
exponential) stochastic Petri nets.
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APPENDIX

PH-DISTRIBUTIONS

Intuitively, a PH-distribution is characterised by the
time until absorption in a finite-state continuous-time
Markov process with a single absorbing state. Consider
a continuous time Markov chain (cf. Figure 9) with tran-
sient states {1,...,m} and absorbing state m+1, ini-
tial probability vector (a, am+1) with al + amy1 = 1,
and (infinitesimal) generator matrix

T 1°
where T is a square matrix of order m such that
T(i,i) < 0 and T(i,5) = 0(i # j). The row sums
of Q equal zero, i.e. T1 +T° = 0.

T(3,7) (¢ # j) can be interpreted as the rate at which
the current state changes from transient state i to tran-

sient state j. Stated otherwise, starting from state ¢
it takes an exponentially distributed time with mean
1/T(i, ) to reach state j. T°(i) is the rate at which the
system can move from transient state ¢ to the absorbing
state, state m+1. —T(4,1) is the total rate of departure
from state i, or, equivalently, the residence time in state
i is exponentially distributed with rate —1/T(4,7). In
general, the transition rates may depend on the time at
which a system is considered. In this paper we confine
ourselves to Markov chains whose behaviour is invariant
to time-shifts. That is, at any time the rate to go from
one state to another is the same. Such processes are
often referred to as time-homogeneous Markov chains.

The probability distribution F(z) of the time until
absorption in state m + 1 is now given by *

F(z)=1 -—geTzl ,

for £ > 0, and F(z) = 0, for z < 0. The pair (¢, T) is
called a representation of F. The corresponding proba-
bility density function equals

F'(z) = g_eTzT_O ,

for z > 0, and F'(z) = 0, for x < 0. The moments p;
of F(x) are finite and given by

pi = (—=1)%Y(aT™'1) fori =1,2,...

The first moment of a stochastic variable corresponds to
its expectation, and the difference between the second
moment and the square of the first moment corresponds
to its variance.

Note the resemblance of the expressions for F(z),
F'(z) and p; to the corresponding expressions for ex-
ponential distributions. In fact, for m=1 we obtain
the results for regular exponential distribution. PH-
distributions can thus be considered as matriz general-
isations of the exponential distributions, which makes
them suitable for numeric computations.

Definition 7.1 A continuous distribution function F
on [0,00) is called of phase-type (PH-distribution) iff it
is the distribution of time to absorption in a continuous-
time Markov chain as defined above. O

Example 7.2 Example PH-distributions are the ex-
ponential, Erlang, hyper- and hypo-exponential, and
Coxian distributions. Important to note is that these
well-known (PH-type) distributions are acyclic while
the definition of PH-type distributions also allows for
cyclic Markov chains. Figure 10 illustrates an (a) expo-
nential distribution with rate A, (b) a 3-stage hyper-
exponential distribution with rates \;, (c) a 2-stage
hypo-exponential distribution with rates A;, and (d)

*For square matrix T of order m, eI is defined by el —
2 3
I, + Tz + Tz%T + ng—! + ..., where I, denotes the identity
k
matrix of order m and T'”fc—! is matrix T* with each element

multiplied by Ik—’: .
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FIGURE 10. Some example PH-distributions.
a 3-phase Coxian distribution. Representations of (b)

and (d) are a4y = (p1,p2,p3) With pi+pe+ps = 1,
Q(d) = (1,0,0), and

-—)\1 0 0 —)\1 )\11)1 0
0 —-Xx O , 0 =X Jopo
0 0 —=Xs 0 0 —A3
for T () and T 4), respectively. O

If U and V are statistically independent stochastic vari-
ables with PH-distributions G and H respectively, then
the distribution F' of W = max(U,V) is equal to the
product of G and H and is again a PH-distribution.
The product of two PH-distributions is calculated as
follows (Neuts, 1981, Chapter 2).

Theorem 7.3 Let PH-distributions G, H have repre-
sentations (o, T) and (3, S) of orders m and n, respec-
tively. Then F(z) = G(z)H(zx) is a PH-distribution
with representation (y,L) of order mn + m + n given
by

¥ = (@®B,Bn+19, am+18) and
T, +L,®S 1,85 T°®I,
L = 0 T 0
0 0 S

O
® denotes the tensor (or Kronecker) product and is de-
fined below. Note that T® I, + I, ® S is sometimes
also referred to as the tensor sum of T and S, denoted
T®S. T @S represents the generator matrix of a
Markov process which is the cartesian product of the
Markov processes represented by T and S. Tensor al-
gebra is extensively discussed in (Davio, 1981). The
PH-distribution consisting only of the absorbing state
is the identity under product.

Definition 7.4  The tensor (or Kronecker) product
of two matrices A and B of orders r; X ¢; and r2 X cg,
respectively, is defined as C = A ® B with C of order
179 X c1¢o and

C((t1-1)r2 + @2, (j1—1)c2 + j2) = A(41,51)B(i2, J2)

where 0 < iy < 7, 0 < jir < ¢ (k=1,2). a

The resulting matrix C can be considered as consisting
of r1c; blocks each having dimension 79 X cg, that is,
the dimension of B:

A(1,1)B  A(1,2)B A(l,¢;)B

C=

A(T‘l,l)B A(r1,2)B A(’l"l,Cl)B

The maximum of two PH-distributions is exemplified in
the following example.

Example 7.5 Exponential distributions G and H
with rates A and p have representations ((1), (—A)) and
((1), (—p)), respectively. The maximum F of these dis-
tributions has representation (v,L) with v = (1,0,0)
and

—Atp) A
L= 0 -2 0
0 0 —u

As a second example let G be an exponential distri-

(a) (b)
FIGURE 11. Maximum of a 1- and 2-stage hyperexponential
distribution.

bution with rate A and H a 2-stage hyperexponential
distribution with rates p; and pe, and initial proba-
bilities p;,pe with p1+p2 = 1 (cf. Figure 11(a) and
(b)). The maximum F has representation (y,L) with
y= (p17p2707070) and

=(A+p1) 0 B1o A 0
0 —~(A+p2) w2 0 A
L= 0 0 -2 0 0
0 0 0 —m 0
0 0 0 0 —p

The corresponding Markov process is depicted in Fig-
ure 11(c). |
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