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Many modern computer and communication systems result in large, complex per-
formance models. The compositional approach offered by stochastic process algebra
constructs a model from submodels which are smaller and more easily understood.
This gives the model a clear component-based structure. In this paper we present
cases when this structure may be used to inform the solution of the model, leading
to an efficient solution based on a decomposition of the underlying Markov process.
The decomposition which we consider is time scale decomposition, based on Courtois’s
near complete decomposability. This work has been influenced by related work on
stochastic Petri nets: we will discuss the advantages and disadvantages of taking
such an approach to the development of techniques for stochastic process algebras.
Our technique is illustrated by an example based on a closed network of queues

with finite capacity in which blocking may occur.

1. INTRODUCTION

Like classical process algebras, stochastic process al-
gebras (SPA) model systems as an interaction of au-
tonomous agents or components who engage in actions.
Unlike classical process algebras, in general SPA actions
have an associated duration, which is characterised by
an exponentially distributed random variable. Recent
papers have shown the benefits of the structure within
SPA models for both model construction (Géotz et al.,
1993) and model simplification (Hillston, 1995). Un-
fortunately, however, these models suffer from prob-
lems of state space explosion. If SPA languages are
to fulfil their early promise as performance modelling
paradigms, efficient solution techniques must be found.

Given the clear component-based structure of the
models it is perhaps natural to consider decomposition
techniques. In particular, in this paper we look at the
application of time scale decomposition to models which
satisfy Courtois’s near complete decomposability prop-
erty (Courtois, 1977).

The rest of the paper is organised as follows. In Sec-
tion 2 we introduce the notation and definition of the
SPA which we will use in the remainder of the paper.
After a brief introduction to the time scale decompo-
sition approach to Markov process solution, Section 3
discusses the application of time scale decomposition to
SPA models. This technique is illustrated by the exam-
ple in Section 4. In Section 5 we explain the limitations
of our current technique and how we would like to ex-
tend it. In addition, we discuss the advantages and

disadvantages of basing SPA work on previous work on
stochastic Petri nets. Finally, we present some conclu-
sions and areas for future work in Section 6. Through-
out the paper we will work in the notation of TIPP;
however, the technique which we describe could be read-
ily adapted for other stochastic process algebras, such
as PEPA (Hillston, 1994).

2. NOTATION AND DEFINITIONS

In this section we present the notation which we will
use throughout the remainder of the paper. We also in-
troduce some definitions which will be useful in charac-
terising models susceptible to time scale decomposition
(TSD).

We assume a fixed set of action names Act := Com U
{7}, where 7 is a distinguished symbol for internal, in-
visible actions and Com is the set of visible activities
(communication actions). Each action can either be
exponentially distributed or passive. Exponentially dis-
tributed actions — denoted by the action’s name and
the rate (a, \) — happen instantaneously after a dura-
tion that is exponentially distributed with rate . Pas-
sive actions (usually denoted by (a,1)) describe recep-
tive behaviour, i.e. the behaviour of a component which
is waiting for a partner before completing the action.
Other SPA use different notations for passive actions.

2.1. Syntax

The syntax of TIPP (timed processes and performabil-
ity evaluation) is defined as follows (Hermanns & Ret-
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telbach, 1994):

DEFINITION 2.1. The set L of valid system descrip-
tions of TIPP is given by the following grammar, where
a € Act, \€ IR ; SC Com , X € Var, Var is a set
of process variables.

P == Stop | (a,\).P | P+ P |
PlsP | P\S | recX:P | X

In addition to the recursion operator rec, we will use
defining equations in order to model recursion. We as-
sume that there is a countable set of constants, whose
meaning is given by a defining equation such as A := P,
i.e. the constant A has the behaviour of the agent P.

DEFINITION 2.2. Sort(P) denotes the set of action
names corresponding to the actions which process P
may engage in:

Sort(Stop) = 0

Sort(( A).P) = {a}U Sort(P)
Sort(P | Q) = Sort(P)U Sort(Q)

Sort(rec X : P) = Sort(P)

Sort(P + Q) = Sort(P)U Sort(Q)

Sort(P\S) = Sort(P)\ S

This is termed the action sort of P.

Note that the set of actions which P will actually engage
in is a subset of Sort(P) because the synchronisation
may disable the execution of some actions.

2.2. Semantics and equivalences

The semantics of TIPP are given by a set of inference
rules: they are presented here in Figure 1 without com-
ment (Hermanns & Rettelbach, 1994). Using these rules
each model can be mapped onto a Markovian Labelled
Transition System (MLTS). This is transformed into the
state transition diagram of the underlying CTMC by re-
ducing parallel arcs and neglecting loops (G6tz et al.,
1993).

We can see from the semantic rule for parallel com-
position that passive actions may be defined as those
which are neutral with respect to this combinator. This
explains the use of ”1” here and the different notations
adopted by other SPA languages, reflecting their differ-
ent definitions of parallel composition.

DEFINITION 2.3. (REACHABILITY SET) The reach-
ability set ds(P) of a given process P is defined as:
ds(P)={P'e L|P—>*P'}

where P —* P’ denotes that the process state P’ is
derivable by applying a sequence of semantics rules to
the process P.

Various notions of bisimulation equivalence have been
defined for TIPP. In the context of this paper a pure

<> (a’/\)P a,\, € P
p arw, a, A\, w P,
(+1) P+Q e w o
Q a,\, w Q,
+r
< > Py Q a,\, +r.w QI
a, A\, w ’
(i) Pt (a ¢S)
P|sQ ———— P'||sQ
a,\, w ’
(Il N (ag )
P|sQ ———— P||sQ’
p 227, a,\, v Pl Q a, [, w Ql
(In PSVNCR" (a€S)
PlsQ ) pllsQf
p v a,\, w P
<\yes> P\a T, W Pl\a
p brw, b, w P!
(\no) o (a#b)
P\a —— P'\a
(rec) P{(recX : P)/)Si :’\ “ P
recX : P—— P

FIGURE 1. Operational semantics of TIPP

functional bisimulation equivalence will be of some im-
portance. This relation will be denoted by ~p (Her-
manns & Rettelbach, 1994). Additionally, a form of
weak bisimulation with respect to the functional be-
haviour will be necessary. We adopt Milner’s weak
bisimulation which is denoted by =~ (Milner, 1989).

2.3. Analysis of the underlying CTMC

Let Q € IR™*™ denote the infinitesimal generator ma-
trix of the CTMC underlying the MLTS of a given
TIPP-process, where n is the number of reachable
states. In general, for performance analysis, the fol-
lowing linear equation system has to be solved:

n
IIQ =0 subject to Zﬂ(z) =1 (1)
=1
where the unknown row vector II is the steady state
probability distribution of the underlying CTMC. Each
entry in IT corresponds to a state/process in the MLTS.
II(1) is the probability for the initial process P. The
values in this steady state probability distribution vec-
tor may be used to compute high-level performance or
dependability measures.

Unfortunately SPA models suffer from problems of
state space explosion and solving the equations (1)
may exceed the capabilities of contemporary computers.
This suggests the use of decompositional approaches
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for finding II. In this case we replace the solution of
the single system of equations (1) by a set of solutions
of simpler (sub)systems. This set of solutions is then
combined using an aggregated version of the original
system. This is the so-called decomposition/aggregation
approach to the solution of CTMC, introduced in (Si-
mon & Ando, 1961).

More formally, decomposition/aggregation (in the se-
quel referred to as D/A) involves four steps:

Decomposition Partition the state space of the sys-
tem into k aggregates. Various criteria may be ap-
plied to determine which states constitute one parti-
tion.

Analyse aggregates separately Consider each ag-
gregate as a separate system: disregard transitions
between aggregates and construct the matrix Q; ; as
the generator of the smaller CTMC, considering only
transitions within the aggregate i. Compute its so-
lution IT}. Repeat for each partition i € {1,...,k}.

Construct and solve the aggregate CTMC
Represent each aggregate as a single state and com-
pute the transition rates between these states using

Qagg(iaj) = (H;Q[i,j]) -1
where ()|; ;) are the transitions from partition ¢ to
partition j. Then, solve II,44Q.gy = 0 subject to
k .
Yoic1 Magg(i) = 1.
Disaggregate the final result

The approximate steady state probability distribu-
tion IT is computed as

II = (Hagg(i)H;)Ll

The quality of this approximation depends upon the
structure of the original matrix and the partition cho-
sen. Consequently classes of matrices, and correspond-
ing Markov processes, which give rise to exact or good
approximate solutions have been studied extensively.
For example, a completely decomposable matrix consists
of stochastic blocks down the principal diagonal and ze-
roes everywhere else. The aggregates can be solved sep-
arately as in the D/A approach and the solution will be
exact*. However, a completely decomposable matrix
cannot result from a SPA model with a single initial
process.

A nearly completely decomposable matrix is one in
which the blocks down the leading diagonal have ele-
ments which are at least an order of magnitude larger
than any element outside these blocks (Courtois, 1977).
Again each block represents a separate subsystem, and
although they do interact (entries in the off-diagonal
blocks) their internal transitions occur much more fre-
quently. Such systems are known to have good approx-
imate, or even exact, solutions when solved using D/A
based on the block structure. This is the so-called time

*There is no aggregate CTMC in this case as there are no
transitions between aggregates.

scale decomposition—aggregates are formed by group-
ing states which can be reached quickly relative to the
transition rates to states in other blocks.

It is not very difficult to apply decomposition of the
state space after a complete reachability analysis has
been applied. Most of the iterative D/A algorithms
require the storage of the complete state space in any
case. However, if the decomposition can be applied at
the syntactic level or at least during reachability anal-
ysis, the storage complexity of the numerical solution
will be greatly reduced. The main problem is to find
a partitioning scheme which can be applied at the syn-
tactic level, and to generate one representative of each
equivalence class.

In order to obtain reasonable results with TSD we
will need to identify those models which satisfy the
NCD property. In Section 3 we discuss a solution to
this problem for a class of TIPP models which exhibit
a particular structure. This structure, although restric-
tive, can be readily checked from the definition of the
model. Once such a model has been identified the time
scale decomposition can be carried out automatically
without the need to ever construct and store the whole
state space. This is the major contribution of this pa-
per.

2.4. Static TIPP models

We are interested in those TIPP models which give rise
to ergodic Markov processes, and in particular those
which have a time scale decomposition which coincides
with the component structure of the model. This paper
identifies a class of models which satisfy those condi-
tions. Initially we restrict the class of models we con-
sider to ensure ergodicity.

For a model to be ergodic it must be able to repeat
any behaviour which it carries out; this means that af-
ter every choice it must be possible to return to the
agent and make the choice again, possibly with a differ-
ent outcome. Consequently we consider models which
are constructed at the highest level as the synchronisa-
tion of agents which are constructed using prefix and
choice. For technical reasons in this paper we do not
allow hiding to be included in a model. Also, because
we want the component structure of the model to be
static during evolution we only allow recursion over the
lower level components, not over parallel combinations
of components.

This leads us to formally define the syntax of static
TIPP expressions in terms of sequential components Q
and model components P:

Q | PlsP
(,7).Q | Q+Q | rec X:Q | X | Stop

P =
Q ==

DEFINITION 2.4. Let Lseq C L be the set of all
sequential processes. Then, the set of static processes
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with n components is defined as follows:
Ly, ={Pe L| P=P | P, - Pn
AP € Lr, AT ki=n}

pa’r‘
for arbitrary S; C Com where L, = Lseq.

In general the “states” of a TIPP model are the syntac-
tic forms that it will exhibit during its evolution. For
static models the number of sequential components, and
the general structure of the syntactic terms, will be the
same in all states of the system. Thus we can consider
an alternative representation of the state, as a tuple
of states, representing the current state of each of the
sequential components.

DEFINITION 2.5. (STATE VECTOR) Let P be a
static component comprising sequential components
Q1,Q2,...Qk. Then astate vector of the model compo-
nent P as derivative P; is the vector (Q1,,Qa,,- .., Qk,)
where Qk,,1 < k < K is the current derivative of Q
n Pi~

DEFINITION 2.6. (REDUNDANCY) A sequen-
tial component Qi is said to be redundant within the
state vector representation of a static component P if
Qk is a sequential component of P and for all deriva-
tives P; of P, given the current derivatives of the other

sequential components Q;,,j # k, the current derivative
of Qk, Qk, can be inferred.

If a sequential component is shown to be redundant
within the state vector, a reduced state vector may be
formed in which the derivatives of this component have
been eliminated.

It will sometimes be convenient to be able to define
whether a given sequential component occurs within a
static agent: the partial order, <, over components,
captures the notion of being a subcomponent:

DEFINITION 2.7. (SUBCOMPONENTS)

I.R<P if R€ ds(P)

2 R<P+@Q if R<PVR<Q
3. R<P|lsQ i R<PVR=<Q
4.R< A if A=PAR<P

The interface of a sequential component within a static
model is then defined to be the union of all the cooper-
ation sets whose scope includes the component R.

DEFINITION 2.8. (INTERFACE) For any sequential
component R within a model component C (i.e. R < C)
the interface of R within C, denoted I(C :: R), is the
set of action types on which R is required to cooperate:

1.LI(R:R)=90

( ZI(P:R)UZ(Q:=R) UL
if R<PAR<Q
I(P:R)UL
2.I(P|,Q:: R) = { if R<PARHQ
I(Q:R) U L
if R<QARHP
0 otherwise.

Note that the interface of a component may be larger
than the action sort of the component. Sometimes we
will be interested in only the subset of the interface over
which a component is active; this is termed the active
interface.

DEFINITION 2.9. (ACTIVE INTERFACE) The active
interface of a sequential component R within a model
C, denoted T5(C :: R), is the set of actions within the
interface of R which R can engage in:

ZA(C :: R)=I(C :: R)Nn Sort(R)

3. TIME SCALE DECOMPOSITION OF SPA
MODELS

Time scale decomposition is one of the most widely
practised decomposition techniques. As explained ear-
lier, it is based on decomposing a CTMC so that short
term equilibrium is reached within single partitions,
and partition changes occur only rarely as the process
approaches its long term equilibrium (Simon & Ando,
1961).

The practical application of TSD requires a priori
knowledge of the structure of the state space, since the
complete state space is often too large to permit an ef-
ficient decomposition. Instead an approach is needed
which allows aggregates to be formed without first con-
structing the whole state space. High level formalisms,
such as Queueing Networks, GSPNs, SANs, or SPAs
provide a means to do this systematically and a large
body of work has already been published on this prob-
lem in the context of Queueing Networks and Stochastic
Petri Nets, e.g. (Ammar & Islam, 1989; Blakemore &
Tripathi, 1993; Conway & Georganas, 1989; Courtois,
1977; Couvillion et al., 1991). The inspiration for this
paper was the TSD algorithm of Blakemore and Tri-
pathi, which we briefly outline below.

3.1. Previous work on TSD algorithms for SPN
models

In (Ammar & Islam, 1989) the authors propose a
method for applying TSD to SPN models. This involves
classifying the SPN transitions as either slow or fast ac-
cording to some threshold firing rate. Slow transitions
are temporarily removed from the model, and fast sub-
nets are evaluated for various different initial markings.
These markings are found via an aggregated SPN which
includes one place for each disconnected fast subnet, as
well as the slow transitions. Some technical details of
the approach are difficult to formalise and therefore re-
strict the potential for automation.

In a more recent paper (Blakemore & Tripathi, 1993),
an alternative approach with the particular aim of au-
tomating TSD for SPN is examined. In particular the
authors show that classifying the transitions as fast and
slow is not sufficient to specify the desired decomposi-
tion. They adopt an alternative approach in which a
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marking dependent integer valued function @ is used to
partition the reachability graph. @ defines an equiva-
lence relation over the state space—those states which
have the same value under @ fall within the same parti-
tion. It is assumed that @ can be expressed as a linear
combination of the number of tokens in each place, with
integer coeflicients, i.e. it is characterised by a vector A.
It is the modeller’s responsibility to provide ¢ or A.

From this point the algorithm can proceed automat-
ically. Transitions which change the value of & are
termed cross transitions and these are initially disabled.
This means that only the part of the state space corre-
sponding to the current value of @ needs to be stored at
any time. Considering each of the cross transitions in
turn a list of possible other aggregates is formed before
details of the state space are removed. No aggregated
SPN is constructed but using the information about
the aggregates and the cross transitions the aggregated
CTMC is formed and solved.

Both approaches require that the subnets considered
separately give rise to irreducible Markov chains, or
chains which have a particular form of absorbing states.
We will impose similar restrictions on the SPA method.

3.2. TSD algorithm for SPA models

The algorithm for TSD in SPA models which we present
was influenced most strongly by that of Blakemore and
Tripathi in one important way—the decomposition is
carried out structurally and not at the CTMC level nor
directly in terms of fast and slow actions. As explained
above this avoids the need to store the complete state
space at once. However, unlike their algorithm, ours
does not require any input from the modeller, and can
be applied completely automatically. In the SPN case
it was necessary to manually define the function &, via
the vector A. In the SPA model we can take advantage
of the compositional structure to identify states which
are equivalent in the time scale sense.

There are several ways to decompose a process term
in the context of TSD. The approach we take is to iden-
tify which actions are slow and restrict the model so that
it can no longer carry out these actions. This is simply
achieved by synchronising the model with the Stop pro-
cess over the set of all such slow actions. However this
is not sufficient if we are to automate the algorithm—
we still need a method to characterise when a state will
belong to a particular aggregate of the model. It is for
this purpose that Blakemore and Tripathi use the func-
tion @. Our solution is more straightforward but relies
on a further restriction on the class of models that we
consider.

8.2.1. Fast-Slow processes

We assume that our process P € L7, is comprised

of the sequential components P;. Moreover we assume

that there is some value ¢, t € IR, such that all ac-
tions with activity rate r, r < t, will be classed as slow
actions, while actions with activity rate r, r > ¢, will
be classed as fast actions. Let slow(P) C Sort(P) de-
note the set of all slow actions in the model P and
slow(P) = Sort(P) — slow(P). We assume that these
sets are well-defined, i.e. that no action exhibits both
fast and slow instantiations in the same model. If nec-
essary an action can be renamed to distinguish these
different cases. This is shown in an example in Section
5.2.

Based on this classification of actions we classify the
time scale behaviour of the subprocesses P;. P; is a
slow subprocess if it enables only slow actions; P; is a
fast subprocess if it enables only fast or passive actions;
all other subprocesses are hybrid subprocesses. For the
initial explanation of the algorithm we consider models
P e L7, which consist of only fast and slow subpro-
cesses with at least one P; being a slow subprocess. We
will call such models fast-slow processes. The case of
models which include hybrid subprocesses will be dis-
cussed in Section 3.3.

3.2.2. The algorithm

We consider models P, comprising of fast sequential
processes Fi, Fy, ..., Fy and slow sequential processes
S1,89,...,5p, i.e. in state vector representation P =
(F1,...,Fx,S1,...,50). The aggregates we produce are
based on sequences of fast activities which may occur
between slow activities. This is achieved, as suggested
above, by considering P synchronised with the Stop
process over slow(P). Thus each aggregate will be a
set of state vectors which all exhibit the same deriva-
tives for each of the slow sequential processes, although
the derivatives exhibited by the fast sequential processes
may vary:

A[Sl ,,,,, Sy) E{(F{,...,F,;,S{,‘..,Sé) | S; ESl,-”,SéESg}

Using the definition of P to establish the first ag-
gregate, we use the standard SOS rules to find all the
reachable states of P |, Stop. To find further ag-
gregates, we apply the expansion law to each state in
this aggregate in turn, adding it to the list of aggregates
if the partial state vector (S7, ..., S}) differs from those
already in the list. This allows us to find other aggre-
gates and construct the aggregated CTMC. We repeat
this process until no new aggregates are added to the
list and all aggregates have been expanded. Note that
no aggregated SPA model is constructed, only the ag-
gregated CTMC.

We are now ready to present the algorithm applying
TSD to SPA models. The structure of the algorithm de-
picted in Figure 2 closely resembles the structure of the
algorithm in (Blakemore & Tripathi, 1993). It is impor-
tant to note that we must assume that each aggregate
contains a single recurrence class. This ensures that a
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— PHASE I. analyse each aggregate in isolation

1)
2) U :={Pstart} — set of representatives for unexplored aggregates
3) V=90 — set of explored aggregate indices

4) while Y # 0 loop

5) P,ep := head(U)

6) i := index(Prep) — indez of current aggregate

7 U:=U—{Prep}

8) V:=VUu{i}

9)  R:= Prep |l,puryStop  — disable cross actions

Qi := CTMC derived from ds(R)
compute I1;Q; = 0 subject to 3. IT;(j) = 1

— for each state in the current aggregate
foreach P |, Stop € ds(R)
foreach (a, A, P’) € expand(P)
i’ = index(P’)
if 7/ = ¢ then continue
end if

— for all successor states of P
— P’ is in the same aggregate

— a leads to a new aggregate

19 if Qagg(3,7) =0A7 ¢V then

20 U:=UU{P'} — add representative for new aggregate
22 Qagg(i,1') := Qagg(¢,1") + AII;(P)

23 end loop

24 end loop

25)  free storage for ds(R), Q;

26) end loop

27

28) — PHASE II. analyse the aggregate CTMC

29) compute [IoggQagg = 08.t. 3 [agg(j) =1

)
)
)
)
)
)
)
)
)
)
)
21) end if
)
)
)
)
)
)
)
)
)
)

31
32) foreach i € V loop
33) Hi = HiHagg(i)
34) end loop

— for each aggregate i

— PHASE III. compute final result via disaggregation

FIGURE 2. SPA time scale decomposition algorithm

single process representative of each aggregate will be
sufficient. This implicit assumption of the algorithm is
discussed in more detail in Section 5.

Analogously to the SPN work the algorithm is di-
vided into three phases. In phase I all aggregates are
analysed in isolation and the generator matrix Qqq44 of
the aggregate CTMC is constructed. Phase II analy-
ses the aggregate CTMC and phase III carries out the
disaggregation to compute the steady state probability
distribution over the whole model.

The function index that is being used in the above
algorithm extracts the partial state vector character-
ising an aggregate from a given static component. It
returns an unambiguous index for the aggregate, that
is needed in order to define the aggregate matrix Qaqg.
The function expand applied to a process P returns a
list of tuples (a, A, P') containing the action names, ac-
tion rates, and successor states of P. Finally, in line 22

we denote with II;(P) the probability of state P within
the aggregate 1.

3.3. Decomposition of hybrid subprocesses

So far we have excluded models which include hybrid
subprocesses. Recall that these are sequential processes
which can perform fast and slow activities, or passive
and slow activities, or fast, slow and passive activities.
First we will discuss why such subprocesses present a
problem to the algorithm, before going on to discuss
how this problem can be overcome.

Consider a model P = (Fi,...,F,H,S1,...,50)
where H is a hybrid subprocess. If we consider H to be
a fast subprocess an aggregate A[s;,..., s;) may become
blocked by the synchronisation with Stop over slow or
passive activities in H. In contrast if we consider H to
be a slow subprocess the mechanism of synchronising
with Stop over slow activities will not necessarily pre-
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572 J. HILLSTON AND V. MERTSIOTAKIS

vent H from changing derivative, thus making it impos-
sible to easily detect when we have changed aggregate,

say from A[H,S1,...,Sg] to A[H’,Sl,.‘.,Sz] by H (fEt—*r) H'.
One solution to this problem would be to combine
Sort(H) with slow(P) to form the set of activities syn-
chronised with Stop. However this has the effect that
transitions within the aggregate CTMC are not neces-
sarily larger than the transitions within a single aggre-
gate. Alternatively, in (Herzog & Mertsiotakis, 1994)
the special case of hybrid subprocesses in which fast
actions do not change the current derivative of H is
treated in detail. Below we propose a more general so-
lution.

Suppose that each hybrid subprocess is replaced by
two subprocesses, one fast and one slow. The fast sub-
process is formed by making the original subprocess
passive with respect to its slow activities; otherwise the
structure of this subprocess remains unchanged. The
slow subprocess mirrors the behaviour of the original
subprocess with respect to its slow activities but disre-
gards any fast or passive activities. When we consider
these two subprocesses synchronised over the set of slow
activities it will be isomorphic to the original subpro-
cess. Note the new slow subprocess will be redundant
in the sense of Definition 2.4. The following algorithmic
skeleton implements this approach:

1. Let H € Leq be a hybrid subprocess in P € L3,

2. Find a process Hr which is isomorphic to H except
that all actions in slow(H) are now passive.

3. Find a process Hs ~ H\slow(H) where = is Milner’s
weak bisimulation; assign the rates of activities in H
to the corresponding activities in Hg.

4. Form P’ by removing H and replacing it by

HF ||,y Hs; increment n.

5. Repeat until there is no remaining hybrid subpro-
cess.

4. MODELLING STUDIES

In order to evaluate the efficiency and the applicability
of our implementation of TSD we applied this technique
to several models. The latter aspect is discussed in the
next section. Here, the first aspect of our studies, the
efficiency, is discussed based on experiments we made on
a simple model of a LAN that is well known from many
textbooks on performance evaluation. We describe a
network of workstations and resources connected via a
single bus (see Fig. 3).

The specifications of the various model components look
as follows:

1—-7 1-7 1—-7 1—-7
- 4 4 4
Workstations )
(fast)
1—-m
Bus @—<
Resource @ ™
(slow) )
FIGURE 3. Structure of the model
Wo = (wWin,(1—m)/4).W;
W; = (w'ma (1 - 77)/4) i+1 + (wout, /\)-Wi—l
Wi = (wout, ) W1
RO = (Tzny 71') Rl
R; = (TM’H ) i+1 + (Touta N)-Ri—l
R, = (Touta ) R,
By = (wouh ) B, + (Tout, 1) B,
B; = (wouta ) i+1 + (Touty 1)'Bz+1 +
(wzna ) i—-1 + (rznv ) B,
B, = (wzna ) m—1 T (Tzna ) Br-1

The complete specification is comprised by

(Ro |Wa || Wy || W2 || W) By

’l{win'wout’rianout}

We analysed this model with both, exact numerical
analysis as well as TSD. Exact analysis was based on
complete reachability analysis and subsequent numer-
ical solution of the balance equations using a Gaufl-
Seidel iteration scheme. Our TSD implementation re-
lies mainly on the algorithm sketched in Fig. 2 using
the same GauB-Seidel method to solve the huge single
aggregates. Smaller aggregates as well as the aggregate
matrix are solved with LU-factorization. We assume
that the resource component is the only slow one.

Since the TSD-algorithm needs additional computa-
tional overhead in order to avoid complete reachabil-
ity analysis, it is obvious that it will be slower for sys-
tems with well-balanced transition rates. To check up
to which point this holds, we varied the ratio between
fast and slow action rates and analysed a model with
both methods. The required runtimes dependent on the
logarithmic ratio between fast and slow transition rates
are shown in Fig. 4.

We can see clearly that the runtime of exact analysis
increases rapidly if the degree of coupling gets smaller
and after a value of 2 (fast action rates are 10? times
larger) TSD can outperform it already. This is due
to the fact that TSD is robust against loosely coupled
matrices, since the different aggregates to be solved are
within the same time range and therefore the number
of iterations can be kept small.

The other diagram in Fig. 4 compares the runtimes
for model solution dependent on the state space size.
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Efficiency of TSD dependent on coupling

18
L exact ———
16 Isp -
14
T 12}
E 0}
o
E 8t
£
5 6t
4t
2 L
-
0 1 1
1 2 3 4

logarithmic ratio between fast and slow action rates

Efficiency of TSD dependent on model size

60
exact ——
50+ TSD -
E ,"l
£ |
E
B 2+
10 1
0

4000 8000 12000 16000
Number of states

FIGURE 4. Comparison of runtimes

The presented runtimes include also the time needed
for state space exploration. We chose a degree of cou-
pling for which the runtime for each method is almost
the same and increased the state space size by adding
more jobs into the system. Up to a number of 14 jobs
(11376 states) the runtime for TSD remains lower than
that of exact analysis. However, this changes for larger
state spaces. The reason for this bad runtime behaviour
may have several sources, but the most important one
is probably that the examination for neighbouring ag-
gregates makes it necessary to expand a process state
twice. The first time with the disabling, the second time
without disabling.

5. DISCUSSION
5.1. Restrictions of the algorithm

In this section we discuss some of the problems which
may arise when TSD is applied to TIPP processes. Even
processes exhibiting the correct fast-slow structure may
reveal problems when the algorithm is applied. These
problems are due to an implicit assumption of the al-
gorithm that each aggregate will constitute a single re-
currence class. In other words, even when considered
in isolation, each aggregate remains strongly connected
when we consider only fast transitions. This restric-
tion results from the second decomposition/aggregation
step, where steady state analysis is applied to each ag-
gregate. If this condition is violated two types of prob-
lems can occur:

Reducible Aggregates: The state space of an aggre-
gate may be connected but contain transient states
and more than one recurrence class. In this situation
steady state analysis will not produce a unique solu-
tion. Depending on the representative of the equiv-
alence class which is chosen as the initial state for
reachability analysis, different solutions may be ob-
tained.

Undetected States: The state space of an aggre-
gate may be disconnected with separate recurrence
classes. In this case some states will remain com-
pletely undetected depending on which recurrence
class the representative of the equivalence class be-
longs to.

There are at least two possible solutions to these
problems. Firstly, if there is more than one slow process,
the decomposition scheme can be changed by regarding
one of the slow processes as a fast process. This will
have the effect of altering the structure of the aggre-
gates. Secondly, if this is not possible, or if it is in-
effectual, the aggregates must be arbitrarily joined, or
split into smaller pieces. This latter approach would be
difficult to automate. However an even larger problem
would be to recognise the problem of reducible aggre-
gates when it occurs: the algorithm will select a sin-
gle representative of the equivalence class and solve the
aggregate on the basis of that representative. It will
have no way of recognising that a different representa-
tive could have given rise to a different answer. Being
able to identify from the form of the fast subprocesses
that all aggregates will be strongly connected and limit-
ing the application of the algorithm to these cases would
be a more feasible solution.

The following simple example shows a model which
exhibits the fast-slow structure but which will have un-
detected states if the algorithm is applied directly.

Example:
Proc (arrival, \).Busy + (fail,1).Proc
Proc := (repair,1).Proc
Busy := (service,u).Proc + (fail,1).Busy’
Busy' := (repair,1).Busy
Up := (fail,6).Down
Down := (repair,().Up
System := Proc H{m,,repm}Up

THE COMPUTER JOURNAL,

VoL. 38, No. 7, 1995

202z Iudy 60 U0 1s9nB Aq 09.00+/99G/L/8E/B101ME/|UlWO0/WOo"dNO"dIWSPEE//:SARY WOl Papeojumod



574 J. HILLSTON AND V. MERTSIOTAKIS

Let us suppose that 8,3 << A, u. Consequently, Up
is the only slow subprocess and we can decompose ac-
cording to which state of Up is current. Accordingly,
we would get two aggregates since the process Up has
got only two states (see Figure 5). However, we can
easily see that there are two process states correspond-
ing to the second aggregate (Down) but they are not
linked together. This means that applying TSD would
result in either Proc’ || , Down or Busy' || , Down going
undetected.

7 ‘2010498

.
\
fail, 8/

ré%)air, B

FIGURE 5. Example of a process with undetectable states

We can regard the first component (Proc) as a hy-
brid subprocess and we will now investigate the effect of
decomposing by this component, instead of Up. Using
the technique for handling hybrid processes by means
of dummy processes, as outlined in Section 3.3, we add
a redundant component ) in parallel with the original
process. @ should be behaviourally equivalent to the
original process and additionally it should be able to
partition the state space into the three partitions P1,
P2, and P3 (see Figure 5). On the first criterion the
following is a candidate for @

Qup (fall’ 1)'Qd0’u)’n + (faZl, 1)Q:iown
Qdo'um (Tepai'ﬁ 1)Qup
Qiown = (repair’;1).Qup

However, this fails on the second criterion since there is
no way to obtain three aggregates—it is impossible for
Q to recognise into which state it should switch.

For this model the only way to make it suitable for
the algorithm is to rename one of the fail actions in
Proc and modify Up accordingly:

Up = (fail,6).Down + (fail',8).Down’
Down := (repair,).Up
Down' := (repair’,B3).Up

With this modification the model can be decomposed
successfully. Unfortunately such a solution cannot, in
general, be applied automatically.

In the following subsection we consider a class of
models in which it is possible to assess automatically

whether the problems of reducible aggregates and un-
detected states are likely to occur.

5.2. Gordon-Newell processes

We consider a class of processes that was motivated by
the class of Gordon-Newell queueing networks (GNQN)
(Gordon & Newell, 1967). The main characteristics
of these networks are: no external arrivals, no depar-
tures, exponential services with state dependent ser-
vice rates, FIFO queueing discipline, state independent
routing, and one customer class. In general, GNQNs
are assumed to be non-blocking (networks with block-
ing are referred as GNQN/B) and exhibit a product
form distribution in equilibrium. When efficient solu-
tion techniques exist for such models decompositional
approaches do not need to be considered. Although
work is progressing on identifying SPA models with
product form solution (Sereno, 1995; Harrison & Hill-
ston, 1995) efficient algorithms to solve such models are
yet to be established. Here we aim to demonstrate the
type of structural reasoning which may be used on mod-
els to determine when aggregates will fulfil the single
recurrence class assumption.

Before we introduce a class of processes exhibiting
a state space structure similar to that of GNQN/B we
have to define what is a Birth-Death process, since these
processes will be the main building blocks of Gordon-
Newell Processes (GNP).

DEFINITION 5.1. A process P € Lgeq is called a
Birth-Death Process (BDP), iff

1. (3k,1)(P\Sort(P) ~r Q%) where

(1, 1).Q,,, k=0
Q=4 (n1.Q, k=1
(Ta 1)'Q§c—1 + (7', 1)‘Q;c+1 else

2. (3R C ds(P)xds(P)) (3Arv C Sort(P)) (Va € Arv)
(P25 P = PRP)
3. (Vd € Sort(P)\Arv) (P —= P’ = P'R P)

We remind the reader that the equivalence relation ~pg
denotes a functional bisimulation equivalence (see Sec-
tion 2.2). The action set Arv denotes actions that can
be interpreted as arrivals. Consequently, the relation
R defined on the states of a BDP is nothing else than a
successor relation on the states of a BDP. Consider the
following specification of a simple buffer as an example:

QO = (p’1)~Ql
Qi = (,1).Qiz1 + (¢,1).Qi1
Qn = (Qa A)-Qn—l

The process Q); receives customers via action p and de-
livers them through action g with rate A. This is a BDP
with

Arv = {p}, R ={(Qo,Q1),(Q1,Q2),.--,(Qn-1,Qn)}
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In order to describe precisely conditions that have to
be fulfilled by a parallel composition of several BDPs to
yield a GNP, we need the following definitions that cap-
ture the relationship between different sequential com-
ponents within a parallel process. The set of actions on
which two components interact is defined as:

DEFINITION 5.2. (COMMON INTERFACE) For any
sequential components @, R within a model component
C (i.e. @ < C AR < C) the common interface of @ and
R within C, denoted I(C :: Q, R), is the set of action
types on which Q is required to cooperate with R:

1. I(S Q,R) 20 ZfSE [:seq

(P, : Q,R)
if QAP ANRHAP,
(P :: Q,R)
I, Py = Q.R) = i Q4P AR 4P
(P, = Q,R)U
I(P, = Q,R) U L
{ otherwise.

As with the interface from definition 2.8, the common
interface may also contain actions that are bound by
other sequential components, as the following simple
example demonstrates:

Example:
P = (P | P) ”{a)(Pa | Ps)
P, := (a,)).Stop
P, := (b,A).Stop

According to the definition, the common interface of P,
and P, is

I(P:: P,,P,) ={a}
even though P, can never participate on action a. That
is why we have to build the intersection with the action
sorts of the affected components:

DEFINITION 5.3. (COMMON ACTIVE INTERFACE)
Z4(C = Q,R) =I(C :: Q,R) N Sort(Q) N Sort(R)

Now we are ready to define Gordon-Newell Processes.
We do not present necessary and sufficient conditions to
yield a model class that is equivalent to Gordon-Newell
queueing networks. However, it should be possible to
translate such queueing networks into SPA-models that
fall in this class.

DEFINITION 5.4. A process P € Ly, is a Gordon-
Newell Process (GNP), iff

1. (Vi)(1 <i < n)(P; is a BDP)

2. (Vi)(1 <i < n)(Sort(P;) CIA(P :: P))

3. (Vi,5,k)(i < j<k=TZa(P: PPN
IA(P i Pj,Pk) ﬂIA(P i Pk,Pi) =@)

The first condition is obvious. The second condition
ensures that no ” customers” arrive from outside or leave
the represented network, while the latter condition en-
sures that not more than two processes change their

state at once. The following simple example shows a
specification of a typical GNP (see Figure 6).

System = Pl ooy (Qo I Ro)
Py = (pin,1).P
P = (Pin,1)-Piy1

+ (ana ) i-1 + (Tzn’)‘) P,
P, = (sz ) n—1 + (Tzn,)\) Pn_1
Qo = (¢in,0.5).Q1
Qi = (¢in,0.5).Qit1 + (Pin,1)-Qi-1
Qn = (pina )~Qn—1
RO = (’f’,n, 0. 5) R1
R; = (Pin,0.5).Riz1 + (Pin,V)-Ri—1
R, = (pm; ) n—1

This example shows a GNP with three subprocesses. It
should be emphasised that P delivers customers to
and R by performing the actions ¢;, and r;, respec-
tively, although using only one action would be suffi-
cient, too. This, however, would have as a consequence
that the model would not be analysable with TSD, since
decomposing by an arbitrary subprocess would disable
the insertion of customers to both, Q and R, regard-
less of on which subprocess we decomposed. The reason
for this is that our form of global disabling is not able
to deal with the case that one action is both fast and
slow. An alternative form of disabling, namely local
disabling by replacing @ or R with Stop would be a
solution. However, for the sake of simplicity we retain
the restriction that an action cannot be fast and slow.

‘W’

Din pin

Ho rE
5 ¢

FIGURE 6. GNP with 3 processes

5.3. Non-blocking Gordon-Newell processes

In the case of GNP without blocking it is possible to
characterise partitioning schemes that always fulfil the
single recurrence class assumption. For this we need a
more precise terminology for the structure of a GNP.

DEFINITION 5.5. The relation SG(P) C LseqX Lseq
(structure graph) for a given parallel process P € Ly,
is defined as follows:
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1. (S;,S;) € SG(P) iff TA(P::85:,8;)=A#0 A
2. (3a € A)(3s; € ds(S;))(3s; € ds(S;))

a,. ’ a,. ’ ’ ’
(8i — 8; A sj — 8 N s{Rsi A\ s;Rs’;)

According to the definition, the structure graph for the
example of the last subsection would be

SG(P) = {(Pn, Qo) (Pn, Ro), (Qo, Prn), (Ro, Pn)}

Now we are able to establish the notion of GNPs which
are most amenable to solution using TSD.

DEFINITION 5.6. A Gordon-Newell process P is S-
decomposable, iff AP, < P where Py is a slow subpro-
cess within P that fulfils the condition

{(Si,S;) € SG(P) | Si # P # S;}
is strongly connected.

From the above definitions we can deduce the following
proposition:

PROPOSITION 5.1. Be P an S-decomposable GNP
without blocking. Then, P may be analysed with TSD
guaranteeing that the single recurrence class assumption
s met.

Assuming that we decompose by a subprocess P; that
fulfils the above condition, for every aggregate the “fow
of customers” between the remaining subprocesses can-
not be prohibited by P; since there are connections to
bypass P;.

If we take a look at our simple example again, we
can see that it is indeed an S-decomposable process,
provided either u or v is clearly smaller than the other
rates. Both @ and R satisfy the condition defined in
Definition 5.6.

Unfortunately, the blocking case is much more diffi-
cult to handle. Although in many cases TSD works fine
also for GNP/B, it is not easy to generalise the above
proposition.

5.4. Adapting SPN techniques to SPA

The algorithm presented in Figure 2 is closely related
to that presented for SPN in (Blakemore & Tripathi,
1993). Indeed the work presented in this paper arose
from an attempt to adapt Blakemore and Tripathi’s
TSD technique for SPN to SPA. In this section we will
consider the merits of taking such an approach to the
development of techniques for SPA.

As pointed out in (Donatelli et al., 1995) there are
many similarities between SPN and SPA models, par-
ticularly with respect to the generation and solution of
the underlying CTMC. However, since SPN and GSPN
form a more mature paradigm there are many more effi-
cient algorithms available and it seems natural to follow
these established techniques, rather than develop new
ones for SPA models. While the current work endorses
this view to some extent, the authors would like to stress

that the benefits were derived from following the SPN
work in spirit rather than in detail.

The algorithm of Blakemore and Tripathi was reliant
on the function @ defined in terms of the vector A. As
explained in Section 3 this function is a linear combina-
tion of the number of tokens in each place in the net. In
the SPA model there is no corresponding quantifiable
information readily accessible in each state. Attempts
were made to use the derivatives of the sequential sub-
processes in a similar manner but this seemed to imply
that the modeller must have intimate knowledge of the
complete state space of the system.

The current solution, the identification of fast and
slow subprocesses, is attractive as it shows that the time
scale structure coincides with the physical structure of
the model. However it is quite removed from Blakemore
and Tripathi’s @. It would not be possible for a similar
approach to be taken in SPN models, as in that case no
physical structure is apparent within the model. Thus
we conclude that researchers should not try too hard to
identify similarities between the formalisms but rather
to capitalise upon their individual features.

6. CONCLUSION

We have presented an approach to Time Scale Decom-
position for a simple class of SPA models which can
be fully automated. Moreover, in Section 3.3 we have
suggested how this class can be extended to include all
models in the wider class £7,,. However, full develop-
ment of this procedure will rely on establishing formal
and efficient methods for finding the slow version, Hg,
of a hybrid subprocess H. This is one area for future
work. Another is to extend the considered class of mod-
els to include those which involve the hiding operator—
this will introduce the problem of decomposing over T
actions. Our decomposition algorithm currently relies
on synchronisation with the Stop process to disable slow
actions. Since 7 actions cannot be synchronised this ap-
proach would not be possible with such actions.

SPA models are prone to problems of state space ex-
plosion. However we have demonstrated that the com-
positional structure inherent in these models may be
successfully exploited to develop efficient solution tech-
niques which avoid these problems. Further work is
needed to develop a suite of such techniques and syn-
tactic characterisation of the SPA models susceptible to
them.
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