Hairy Search Trees

C. H. A. KosTER AND TH. P. vAN DER WEIDE

Department of Information Systems, University of Nijmegen, Toernooiveld, NL-6525, ED Nijmegen,
The Netherlands
Email: {kees,tvdw}@cs.kun.nl

Random search trees have the property that their depth depends on the order in which they are built. They
have to be balanced in order to obtain a more efficient storage-and-retrieval data structure. Balancing a
search tree is time consuming. This explains the popularity of data structures which approximate a
balanced tree but have lower amortized balancing costs, such as AVL trees, Fibonacci trees and 2-3
trees. The algorithms for maintaining these data structures efficiently are complex and hard to derive.
This observation has led to insertion algorithms that perform local balancing around the newly inserted
node, without backtracking on the search path. This is also called a fringe heuristic. The resulting class of
trees is referred to as 1-locally balanced trees, in this note referred to as hairy trees. In this note a simple

analysis of their behaviour is provided.

Received February 24 1995, revised August 16 1995

1. HAIRY TREES

Locally balanced search trees have been invented and
analysed a long time ago [1, 2], but they have not become
as popular as unbalanced search trees or AVL-trees. In
this note, we show how to obtain a simple form of locally
balanced trees and to analyse their behaviour. These
hairy trees are a class of search trees, characterized by:

is hairy (f) =
Viodeve [V has single son s = s is leaf]

The intuition behind this condition is that it prevents
trees from having list-like substructures longer than two
nodes (‘bare twigs’). Some examples of hairy trees are
presented in Figure 1.

The class of hairy trees can be described by the
following recursive definition:

1. is hairy (¢)
2. If ¢ is a singleton tree and x some key value, then:
e is hairy (f)
e is hairy (Tree (x,1,€))
e is hairy (Tree (X, ¢,).
3. If t; and ¢, are both non-empty hairy trees and x is
some key value, then is hairy(Tree(x, t, #;)).

where € is the empty tree, and Tree (x,t?,2,) the
constructor of trees. We will also overload this con-
structor for singleton trees: Tree (x) = Tree (x, ¢, ¢€). The
above inductive definitions give us the opportunity to use
structural induction in reasoning about hairy trees.

Definition 1. The function single counts the number
of single-son nodes in a tree:

single (¢) =0
single (Tree (x,t,1)) =
if ti=eANty=€¢ then 0
elifty=eVty=¢€ then 1
else single (1)
+ single (#,)

Definition 2. The number of leaves of a tree is defined
by:

leaves (¢) =0
leaves (Tree (x)) =1
leaves (Tree (x,,1;)) =
leaves (#;) + leaves () if ;) # eV, # €

The following property is easily proved by structural
induction:

Lemma 1.
is hairy (f) = 0 < single () < leaves (?)

Definition 3. The number of keys in a tree is defined
by:
nkeys (€) =0
nkeys (Tree (x,1;,%,)) = 1 + nkeys (¢;) + nkeys (2,)

Definition 4. The number of external nodes of a tree is
defined by:
ext (e) =1

ext (Tree (x,1;,1,)) = ext (1)) + ext ()
LemMMma 2.

nkeys (¢) + 1 = ext (¢) = single (¢) + 2 x leaves (¢)

Our goal in introducing hairy trees is to reduce the ratio
between the number of single-son nodes and the number
of external nodes in a search tree. This ratio will be
denoted as A(z).

LEMMA 3.

is hairy () = 0< A(r) < §

Both bounds are sharp. This lemma is easily proved
using the two previous lemmas.

THE COMPUTER JOURNAL,

VoL. 38, No. 8, 1995

20z Iudy 0 U0 1sonB AQ 67ZGEE/L69/8/8E/I0IME/|UIWOS /WO dNO"OILUSPEDE//:SARY WOl PEPEOJUMOC

692 C. H. A. KosTER AND TH. P. VAN DER WEIDE

FIGURE 1. Two hairy trees and a non-hairy one.

In general, hairy trees are not balanced. In the worst
case, a hairy tree of n elements has depth [(n + 1)/2] (see
Figure 2).

2. INSERTION IN HAIRY SEARCH TREES

We present' the operation enterh for inserting a key into
a search tree, which maintains the search tree as a hairy
tree by restructuring it whenever a node is inserted at the
end of a twig. Its structure follows the case-distinction in
the definition of is hairy.

PROC enterh (TREE VAR t, EL CONST e):

{ is hairy search tree (t) }

IF is empty (t) THEN t := tree (e)

ELIFe < t.key THEN enter left

ELIF t. key <e THEN enter right

FI

{is hairy search tree (t), is in (e, t)}
ENDPROC enterh;

with the refinements:

enter left:

IF is empty (t.left)

THEN extend left

ELIF is empty (t.right)

THEN
IF e < t.left.key
THEN enter left left
ELIF t.left.key <e
THEN enter left right
FI

ELSE enterh (t.left, e)

FI.

enter right:

IF is empty (t.right)

THEN extend right

ELIF is empty (t.left)

THEN
IF e < t.right.key
THEN enter right left
ELIF t.right.key <e
THEN enter right right
FI

"The programming language used is Elan [3], an educational
algorithmic language. (Obtainable from ftp://ftp.cs.kun/nl/pub/

elan.)

du -1

FIGURE 2. The worst hairy tree.

ELSE enterh (t.right, e)
FI.

extend left:
t.left := tree (e).

enter left left:
t : =tree (t.left.key, tree (e), tree (t.key)).

enter left right:
t : =tree (e, t.left, tree (t.key)).

extend right:
t.right := tree (e).

enter right right:
t :=tree (t.right.key, tree (t.key),
tree(e)).

enter right left:
t :=tree (e, tree (t.key), t. right).

The correctness of this algorithm is easy to prove, since it
closely follows the inductive structure of the definition of
is hairy. The implementation may be further optimized
by transformational techniques (unfolding, specializa-
tion and elimination of recursion).

3. EFFICIENCY OF HAIRY TREES

We analyse the efficiency of hairy trees in terms of the
cost of a random successful search (S,) in a tree with n
keys, and the cost of a random unsuccessful search (U,).
Let I, be the average internal path length of all hairy
trees with n keys (see [4]), so S, = I,/n. Furthermore, let

©

FIGURE 3. Addition via single-son node.

THE COMPUTER JOURNAL,

Vor. 38, No. 8, 1995

20z Iudy 0 U0 1sonB AQ 67ZGEE/L69/8/8E/I0IME/|UIWOS /WO dNO"OILUSPEDE//:SARY WOl PEPEOJUMOC

HAIRY SEARCH TREES 693

FIGURE 4. After addition.

A, be the average ratio between the number of single-son
nodes and the number of external nodes in hairy trees
with n keys. Then we have:

Lo.,=15+(U,+1) =24, (1)

as obviously the internal path length is augmented with
U, + 1 by the insertion of a new key, and occasionally
diminished by a restructing. A restructuring is performed
if and only if we start from (up to symmetry) the
situation of Figure 3, which is transformed by insertion
of a node at its end into the one of the cases in Figure 4.
After restructuring we have Figure 5.

In both cases the internal path length decreases by 1 as
a result of restructuring. The probability of this situation
to occur in tree ¢ is:

2 x single (¢)

ext (1) =240
From equation (1) we derive:
n—1
I, =) (Up+1-24y))
k=0

The following relation is well known:

5= (1+;00) -1
n

and can be rewritten as
IL=(n+1)U,—n (3)
Combining (2) and (3) yields

n—1

(n+ 1)U, => (U +2-24y)
k=0

This is transformed into a recurrence relation by
computing (n+ 1)U, —nU,_, =U,_1+2-2A,_,,
leading to:

2
U, — U, =m(1 -4,)

)

FIGURE S. After restructuring.

and thus:

n—1
1
=2y —(1-A

Next we consider A,. Let o, be the average number of
single-son nodes in a hairy tree. When a new node is
inserted via a search path through a single-son node,
then the number of single-son nodes will be decremented
by 1. As such a search path contains three external nodes,
the probability of this event to occur equals 30, /(n + 1).
If the search path does not contain a single-son node,
then the number of single-son nodes will be incremented
by 1. This event has a probability 1 —30,/(n+1).
Combining these results leads to the following recurrence
relation:

30, (n+1)-30,
n+1 n+1

From this recurrence relation we derive og = 1, and
therefore 0, = (n+1)/7 forn > 6. As A, =0,/(n+ 1),
we conclude:

A, =1 forn>6
Lemma 4.

U,=8U; ~1.1883...% logn

where Uy = 25720 1/(k+2) ~ 1.3863...%logn
—0.8456. .. is the average cost of an unsuccessful search
in a random binary tree. The result of this analysis is
summarized in Table 1 (see [2, 4]).

4. CONCLUSIONS

The analysis of the complexity of hairy trees turns out to
be particularly simple. Their efficiency lies about halfway
between random search trees and AVL trees. Consider-
ing the simplicity of their implementation, it is surprising
that this class of partially balance trees is not used widely
in practice.

TABLE 1. Comparing methods

Random search tree

Expected search time 1.386...% log (n)

Worst case depth n

Hairy tree AVL tree Balanced tree
1.188... .2 log (n) 1.012...%log (n) log(n)
"’2” 1.440.. . *log () 2log (n)

THE COMPUTER JOURNAL,

Vor. 38, No.8, 1995

20z Iudy 0 U0 1sonB Aq 67ZGEE/L69/8/8E/BI0IME/|UIWOS/WOS"dNO"IWBPEE//:SARY WOl Papeojumod

694 C.H. A. KoSTER AND TH. P. VAN DER WEIDE

ACKNOWLEDGEMENTS

We wish to thank Jan van Leeuwen for his interest and
advice. We also wish to thank the anonymous referees
for their valuable comments which led to an improve-
ment of the paper.

REFERENCES
[1] Poblete, P. V. and Munro, J. I. (1985) The analysis of a

fringe heuristic for binary search trees, J. Algorithms, 6,
335-350.

[2] Gonnet, G. H. (1983) Handbook of Algorithms and Data
Structures. International Computer Science Services.

[3] Koster, C. H. A. (1987) Top-Down Programming with Elan.
Ellis Horwood.

[4] Knuth, D. E. (1973) The Art of Computer Programming,
Volume 3: Fundamental Algorithms. Addison-Wesley.

[5] Walker, A. and Wood, D. (1976) Locally balanced binary
trees, Comp. J., 19, 322-325.

THE COMPUTER JOURNAL,

Vor. 38, No. 8, 1995

20z Iudy 0 U0 1sonB Aq 67ZGEE/L69/8/8E/BI0IME/|UIWOS/WOS"dNO"IWBPEE//:SARY WOl Papeojumod

