Book reviews

DAVID SKILLIKORN

Foundations of Parallel Programming. Cambridge Uni-
versity Press. 1994. ISBN 0-521-45511-1. £25.00. 197 pp.
hardbound.

While this book contains, as the word ‘foundations’ in
the title may suggest, much of interest to theoreticians, it
aims nevertheless to provide a methodology which can
be used to develop efficient parallel programs and,
moreover, to do this in a context independent of
particular hardware architectures. One of the main
claims of the book is that it is possible to decouple
parallel software from parallel hardware so that the
software can be moved from one parallel architecture to
another.

Based on categorical data types which provide a
structured way to search for algorithms and structured
programs to implement them, the key idea is that of
distributing computation over a data structure so that
calculations can be carried out on the components of the
structure in parallel. This is done by the use of
homomorphisms over the structured type constructors:

h(a > b) = h(a) ® h(b)

If such a homomorphism can be found, 4 can be
distributed over a structure built by using the <
constructor and 4 can then be executed in parallel at all
the leaves of the data structure. As well as developing a
general theory based on these ideas, the book looks at
how they apply to particular data types such as lists, trees
and arrays.

The categorical data type model also facilitates the
development of formal methods for traditional software
engineering purposes such as reasoning about complex-
ity, correctness and cost measures. Two chapters are
devoted to software development by transformation
using equational reasoning. One of the main advantages
of the categorical data type approach over traditional
abstract data types is claimed to be that the former
guarantees that the set of transformation rules derived by
the method is complete.

As well as the development of categorical data types
described above, the book contains useful chapters on
other approaches to parallel software, to the main
parallel styles of machines and to their architectures,
and to development of a cost calculus for lists. An
appendix gives a brief historical background.

The book is by no means a lightweight read but careful
study and rereading is rewarding. As the author readily
admits, much of the material is still at a research stage,
but there is also plenty in the way of software
methodology which is immediately useful.

A. DAvVIE
University of St Andrews

IAN PARBERRY
Circuit Complexity and Neural Networks. The MIT Press.
1994. ISBN 0-262-16148-6. £40.50. 270 pp. hardbound.

This book is aimed at researchers and practitioners
working in the area of Artificial Neural Networks, one of
its primary purposes being to consider this model within
the framework of classical computational complexity
theory. The opening chapter introduces the ideas under-
lying computation by neural networks and discusses the
issue of scalability: quantifying how the complexity of a
neural network increases with respect to increases in the
size of the problem being solved. Chapter 2 reviews
classical models of computation and computational
complexity theory. In this chapter the use of Boolean
combinational circuits as the vehicle for comparing
neural network complexity with an established model of
decision problem complexity is justified and a lucid
discussion of the problems of uniform and non-uniform
models is presented. Having established the foundations
for the comparative study the remaining chapters
describe increasingly sophisticated circuit models—
alternating circuits, threshold circuits, probabilistic
models, Boltzmann machines—and relate these to the
issue of scalability in the neural network model.

This book is of interest not only to those working in
the field of neural networks but should also be found to
be of value to researchers in the area of computational
complexity theory in general and the complexity theory
of Boolean circuits in particular. In the latter area,
Chapters 5-7 of the book provide a valuable summary of
recent results in an important subfield of Boolean
complexity theory. While a certain degree of mathe-
matical awareness is required, the results and ideas
presented are clearly described and easily accessible.

PauL E. DuNNE
University of Liverpool

RanDY M. KApPLAN
Constructing Language Processors for Little Languages.
John Wiley. 1994. ISBN 0-471-59754-6. £41.50. 452 pp.

softbound.

This book takes a refreshingly new look at the problem
of developing software and provides a neat, formal,
proven solution. Language processing technology is
often left to the world of systems programming to the
extent that the application world would like to have none
of it. Contrary to the popular opinion, it can make a
world of difference even in developing large applications
due to its sound mathematical basis. Technologies like
parsing and lexical analysis, to name but a few, have
proven tools available which make the task of a

THE COMPUTER JOURNAL,

VoL. 38, No.9, 1995

20z Iudy 60 U0 1s9nB AQ 0629/ L1 /6/8E/9101ME/|UlWO0/WOo"dNO"OILSPEDE//:SARY WOl PEPEOIUMO(



748 Book REVIEWS

programmer very easy. In language processing, we define
the process to be a sequence of phases with each phase
being catered to by a tool specifically designed for that
phase. Such a clear separation of issues along with tool
based development leads to the following advantages:

e Assurance of quality.
o Increased productivity.
e Increased opportunities for reuse.

The book introduces the concept of and the need for a
little language. (I can hardly agree more!) This starts with
just the basic concepts necessary for designing one’s own
language and suggests possible scenarios for taking this
course of action. One of the highlights of the book is the
way it explains the construction of a language processor
for such a little language, the operative word being
construction. It then gives a brief account of lexical
analysis, syntax analysis and interpretation. It keeps
away from the algorithms and discussions thereof.
Wherever possible, a C implementation is provided,
which urges the reader to go ahead and try using it. The
book stops short of providing everything in code form
and makes references to already existing tools. Most of
the concepts introduced are explained through a (not so)
little language IML. Implementations of a lexical
analyser and parser for IML are provided in C. My
only complaint would be that Lex and YACC specifica-
tions would have sufficed. Perhaps the author decided to
be platform-independent.

The book is well-written and is easy to comprehend.
Chapter 0 is an introduction and presents the author’s
viewpoint. Chapter 1 introduces the concept of a little
language. Chapter 2 states the principles of language
design. Chapters 3 and 4 provide the theoretical back-
ground for lexical analysis and parsing. Chapter 5
outlines the architecture of a typical language processor.
Chapter 6 discusses the data structures used for
implementing a language processor. Chapter 7 presents
an implementation of a lexical analyser and a parser.
Chapter 8 describes Lex and YACC. Chapters 9 and 10
discuss related issues such as interpretation, compilation
and debugging.

Having myself have devised such little languages and
engineered their processors in fields not necessarily close
to language processing, the book comes as a re-
affirmation of values in programming which have
meant a lot to me.

VINAY KULKARNI
Tata Research Development and Design Centre
Pune, India

TiM BieNz AND RicHARD COHN

Portable Document Format Reference Manual. Addison-
Wesley. 1993. ISBN 0-201-62628-4. £20.95. 214 pp.
softbound.

The PDF is Adobe’s standard for multiple format

documents, based on the PostScript typesetting language
and designed to give even more machine independence
than PostScript. It includes all the features of Level 2
PostScript, together with support for document organi-
zation as pages within a tree, annotations and hypertext
support. The book defines these extensions to the
language and the ways in which they are stored in the
PDF files, as well as giving a basic introduction to
PostScript.

The PostScript introduction is possibly not as detailed
as it could be, but the book is not intended to teach the
language and anyone wishing to learn PDF from scratch
will probably need a PostScript textbook too.

The sections of the book on PDF itself are, of course,
very detailed. The language extensions are very complex
and the book discusses each of them to a level sufficient
for anyone to write interpreters for the format or to
produce documents in the format.

The initial chapters introduce the terminology and
techniques used, followed by chapters discussing the
main components of the format such as the page tree and
how it is built. The chapters on optimizing PDF files are
in themselves very useful since most of the techniques
apply to PostScript programming in general. These
chapters take up the last section of the book.

The appendices are up to Adobe’s usual standard, and
include the canonical ‘Hello World’ in PDF and another
PDF example showing the updating of sections of a file.
There is also a discussion of PDF’s limitations (such as
the file size not exceeding 10 Gbytes) and the limitations
imposed by the devices the file may appear on.

The index is possibly not as large as one would have
hoped, but seems to have everything needed in it,
arranged in a usable fashion.

K. Lucas
University of Warwick

JoHN R. JosePHSON AND SusAN G. JoseP:iSON (eds)
Abductive Inference. Cambridge University Press. 1994.
ISBN 0-521-43461 £30.00. 306 pp. hardbound.

Sherlock Holmes was wrong— his success was due not to
logically valid deduction, but instead to abduction, a
fallible but critical inference procedure. That he was not
able to classify correctly the technique he used merely
serves to illustrate how %ttle known and how poorly
represented abductive inference is in the literature. In this
book, the authors forcefully argue for the centrality and
pervasiveness of abductive reasoning in both science and
everyday life, and describe their efforts to develop a series
of computer programs capable of such reasoning.
Abduction is most appropriately described as inference
to the best explanation. That is, given a set of data, the
task of abduction is to construct hypotheses that account
for or explain that data. It is often assumed that
abduction is just deduction in reverse, and though this
has some truth to it, the explanations that arise from

THE COMPUTER JOURNAL,

Vor. 38, No.9, 1995

20z Iudy 60 U0 1s9nB AQ 0629/ L1 /6/8E/9101ME/|UlWO0/WOo"dNO"OILSPEDE//:SARY WOl PEPEOIUMO(





