Book REVIEwWS 749

abduction are qualitatively different in that they are not
necessarily a consequence of the given facts. Each
deductive inference, by contrast, is a logical consequence
of the facts. Thus abductive conclusions are ampliative
and not guaranteed.

The book is an edited collection of material covering
research in the Laboratory for Artificial Intelligence
Research (LAIR) at Ohio State University. It begins with
a very good first chapter which characterizes abduction
in general and describes its relation to other kinds of
inference and reasoning. It also gives several simple
examples that explain exactly when abduction is
warranted and how it is used in a variety of situations.
For anyone wanting to know more about abduction, this
is definitely the place to start.

The authors take great pains to distinguish abduction
from other forms of inference such as deduction and
induction, which they do very well. Abduction, however,
is perhaps better regarded as a process of constructing
explanations which can call upon various other forms of
inference as necessary. In this sense, the definition of
abduction is distinct from its implementation, for while
the task is well-defined in terms of inputs and outputs,
there are no prescribed rules for implementing it.

This is excellently demonstrated by the following
chapters which describe several successive generations of
abduction programs. The second chapter sets out the
principles which guide the development of these abduc-
tion systems. First, it situates the work in the view of
artificial intelligence which is concerned with the causal
mechanisms that produce intelligent behaviour. Second,
it introduces a generic task approach to building
intelligent systems in which problem solving is function-
ally decomposed into small distinct units which are
invoked according to the knowledge available and the
current activity. This generic task approach is used as a
basis for the construction of the systems detailed next.

Chapter 3 describes the first abduction machines
developed at LAIR, RED-1 and RED-2, for identifying
red-cell antibodies. On the basis of the experience gained
through these systems, a programming tool named
PEIRCE, described in Chapter 4, was built to enable
easy construction of more flexible abductive systems,
some examples of which are described in Chapter S.
Most of the remaining chapters are concerned with
increasingly more sophisticated abduction machines,
some conceptual and some implemented. These span
systems for diagnosing mixed clinical diseases and
human-gait disorders and, at the end of the book,
abductive systems for perception and language under-
standing.

This succession of machines is punctuated in Chapter
7 by an analysis of computational complexity, with the
conclusion that abduction is inherently intractable. In
the subsequent chapters, therefore, the notion of abduc-
tion as inference to the best explanation is refined to one
of finding an explanation for as much as can be
confidently and practically explained. This is a reasonable

restriction to impose and one which offers good results in
most situations, in a way similar to human capabilities.

In its approach of presenting what amounts to an
historical record of research in abduction at LAIR, the
book succeeds in conveying a very real sense of the
progress that has been made. It integrates discussion of
the broader concerns of abductive reasoning with
descriptions of programs designed to explore those
issues. Though the initial work was focused in the
domain of medical diagnosis, more recent work has
investigated the use of abduction in other areas such as
speech understanding and perception, demonstrating its
applicability in a number of domains.

Overall, the book provides a very good account of
abduction, from the excellent introductory chapter
through to the detailed descriptions of the programs
developed. There are, however, two minor criticisms to
be made. First, the book is made up of some previously
published papers and some new writing by several
different authors, but sewn together into a new whole
by the editors. Mostly this works, but there are occasions
when the seams show within chapters, causing some
impediment to the flow in an otherwise well-tailored
piece. Second, while some related work on abduction is
explicitly discussed and compared with that reported in
this book, other work in different domains is only briefly
alluded to, and it would have been illustrative to have
had further and more varied examples of abduction
systems in other domains. Nevertheless, this book is a
valuable work which draws together many diverse
threads from different disciplines and shows how the
richness of abductive reasoning can be captured effec-
tively in computer programs.

M. Luck
University of Warwick

Percy MEeTT, DAVID CROWE AND PETER STRAIN-CLARK
Specification and Design of Concurrent Systems.
McGraw-Hill Book Company. 1994. ISBN 0-07-
707966-3. £21.95. 299 pp. softbound.

This book on system specification, written by faculty in
the Computing Department of The Open University,
takes the reader through the whole process of specifica-
tion and design through the various steps. Starting with
an informal English-like specification of the problem, the
authors proceed to a semi-formal notation (accompanied
usually by a diagram) from which a formal specification
in the language of Communicating Sequential Processes
(CSP) is obtained and the system then coded in
OCCAM. Naturally all these formal and semi-formal
notations need to be accompanied by copious amounts
of detailed explanation. The authors have clearly spent a
lot of time teaching and documenting this material.
The book is, appropriately enough, divided into four
parts. The design method and process analysis constitute
the first part. The other parts are devoted to CSP,

THE COMPUTER JOURNAL,

VoL. 38, No.9, 1995

20z Mdy 60 uo }sanb Aq 9£0€9€/612/6/8€/2191He/|UlW0o/W 0o dNo"dlWapede//:sdRy Wolj papeojumo(



750 Book REVIEWS

obtaining OCCAM programs from CSP and case
studies. Sensibly enough, the equational theory of CSP
is explained intuitively, without frightening the reader
with mathematics. All important concepts are well
illustrated by a number of small solved examples.

However, the authors seem to have got carried away
by the lucidity of their own diagrams and explanations—
so much so that they have also given in-line solutions to
all their exercises. Where, then, is the distinction between
an example and an exercise? The exercises and review
questions are unfortunately not challenging enough for
an ‘intelligent’ reader. (The review questions, by the way,
are those for which the reader will have to go to the end
of the part before getting at the answer.)

The major design examples in the book are a telephone
network and an image-processing example. For some
obscure reason the Towers of Hanoi problem has been
studied—perhaps as an afterthought.

S. ARuN-KUMAR
Indian Institute of Technology
New Delhi

DANIEL PIERRE BOVET AND PIERLUIGI CRESCENZI
Introduction to the Theory of Complexity. Prentice-Hall.
1994. ISBN 0-13-915380-2. £29.95. 282 pp. hardbound.

This book by Bovet and Crescenzi is among the first
dedicated to the theory of computational complexity.
The main goal of this theory is the introduction of
natural complexity classes composed of problems that
have similar computational complexities and the study of
the relations among these complexity classes. Computa-
tional complexity is closely related to the theory of
algorithms. Less emphasis is given, however, to the exact
complexity of specific computational problems and
much more to the relations between various problems.

The book is composed of four main parts. The first
part (Chapters 1-3) includes the necessary mathematical
preliminaries. The second part (Chapters 4-8) intro-
duces and studies the most significant complexity classes,
most notably the classes P, NP, LOGSPACE and
PSPACE. The third part (Chapters 9 and 10) deals
with probabilistic algorithms and their corresponding
complexity classes. The last part (Chapters 11 and 12)
deals with parallel algorithms and parallel complexity
classes. The table of contents of the book can be
obtained, using the World Wide Web, from http://
dsi.uniromal.it/“piluc/comp_book.html.

The book is mainly suited for advanced under-
graduates, and a course on computational complexity
can be easily taught using it. Some of the material can
also be covered in graduate courses.

The first two parts of the book roughly cover the
material contained in the classical book Computers and
Intractability, A Guide to the Theory of NP-Completeness
by Garey and Johnson. The third and fourth parts
contain much more recent material, most of which was

not in existence when the book by Garey and Johnson
was written. It is especially nice to find sections on the
fascinating and recently introduced subjects of inter-
active proof systems and probabilistic checkable proofs.

The approach used by the authors in the book is, as
they say, ‘partly algorithmic and partly structuralistic’.
Therefore the book nicely complements the books
Structural Complexity I and Structural Complexity II
by Balcazar, Diaz and Gabarré. Another recently
published book on computational complexity theory is
the voluminous Computational Complexity by Papadimi-
triou, which covers more material than the book under
review.

The proofs given in the book are usually easy to
follow. The text is written in a pleasant informal way,
with remarks like ‘yes, all this is very similar to
alternating Turing machines’ and ‘Whoever at the
beginning of this chapter thought ‘interactive proofs
are just another strange model of computation’ should
now be convinced that, as usual, science is full of
surprises’.

A nice feature of the book is the abundance of
exercises at the end of each chapter. Beware, however, of
Exercise 4.10! A glossary of terms and notations would
have been a useful addition.

URrI1 ZwICK
Tel Aviv University

ALI MiLL, JULES DESHARNAIS AND FATMA MILI
Computer Program Construction. Oxford University Press.
1994. ISBN 0-19-509236-8. £42.50. 379 pp. hardbound.

A binary, homogeneous relation is a set of ordered pairs
whose components are drawn from the same set S. This
book explains how such a relation can be used to specify
a computer program. Because the elements of S can
themselves be highly complicated data structures, this
allows a very large class of systems to be specified.

The authors also show how this kind of specification
can be refined into a program written in a high-level,
imperative programming language. This is a task that
cannot be fully automated—a fact that the authors are
well aware of. They do, however, present a number of
heuristics that are often useful in practice. These
heuristics do not depend on any specific properties of
the elements of S. They only require the relation in
question to have certain general properties. The method
of constructing programs that the book describes is,
thus, elegant and based on a well-known mathematical
theory.

It is unlikely, however, that in its present form the
method described could be used on real-world problems.
There are several reasons for this:

1. The specification method only deals with state-
transformations and no account is given of how to
handle input-output features.

THE COMPUTER JOURNAL,

VoL. 38, No.9, 1995

20z Mdy 60 uo }sanb Aq 9£0€9€/612/6/8€/2191He/|UlW0o/W 0o dNo"dlWapede//:sdRy Wolj papeojumo(





