Book REVIEWS 751

2. Although several case studies are presented in the
book, these are all of fairly small systems and it is not
clear how easily the method employed could be
adapted to work on large systems.

3. The specification language presented does not contain
a construct analogous to what is known as a module,
package or class in a programming language.

The book contains a large number of exercises, but
neither are answers included nor is an instructor’s
manual available. Because of this it is unlikely that
many people will think of using it as a textbook.

Having said all that, this book contains the first steps
of a mathematical research programme whose develop-
ment I will follow with interest. My main criticism of the
book is not with its content, but with its manner of
presentation. It is sloppy. It would have been a much
better book had it been properly copy-edited and proof-
read. I do not have space to list all the mistakes I found,
but I will mention a sample of them:

e Set comprehensions are incorrectly typeset through-
out the book. A thin amount of space should be added
just after the opening brace and just before the closing
one of each set comprehension.

e From the table of contents you would not know that
the book contains an index and a bibliography.

o The three appendices repeat many definitions and
propositions contained in the text. This is useful, but
each definition and proposition so repeated is
relabelled as well. For example, definition 1.3 on
p. 18 becomes A.11 on p. 358. This is confusing—as is
the fact that formula (x) on p. 18 has become (m) on
p- 358 and the labels of the 11 following formulas
have changed as well.

e I learnt that the book makes use of previously
published material when I came across the words
‘this paper’ on p. 37. Usually such information is
conveyed in the preface or the acknowledgements.

e Sometimes ‘formulae’ is used as the plural of
‘formula’ and sometimes ‘formulas’.

e On p. 64 a relation is defined as being well-founded
if and only if it is transitive and progressively finite,
whereas on p. 356 a well-founded relation is defined
as one whose inverse is transitive and progressively
finite.

e Sometimes angle brackets are used to represent
ordered pairs and sometimes parentheses. If there is
a difference between these, it is not explained.

e The notation for the power of a relation is used from
p.- 9 onwards, but is only defined on p. 63.

Some of these may seem fairly minor mistakes, but this
book contains so many of them that they constitute a
major problem in that the task of understanding the
material being presented is much harder than it should
be.

ANTONI DILLER
University of Birmingham

Davip A. WaTT

Programming Language Processors. Prentice-Hall Inter-
national. 1993. ISBN 0-13-720129-X. £19.95. 452 pp.
softbound.

Amongst books on compilers in this series that include
extensive case studies, I like this one most—and this
despite the fact that its case studies present a compiler for
a toy source language generating code for a hypothetical
target machine, as well as an interpreter for the same
source. The main reason for this bias is its integration
of formal semantics and semantic preservation in its
discussion on programming language processors (PLPs).
Most text books on compilers are remiss on this
account.

For best appreciation, this book has to be read in
the context of its predecessors by the same author:
Programming Language Concepts and Paradigms and
Programming Language Syntax and Semantics. From
concepts to definitions, and from there to the design and
implementation concerns, is a progress which empathizes
with the programming process. Even if the reader takes
the direct path to this book, as this reviewer did, Chapter
1 introduces in brief the three-fold concerns in the
definition of programming languages: context-free
syntax, contextual staticsemantics, and dynamic
behavioural-semantics. The author’s choices of defini-
tional mechanisms are EBNF for concrete syntax,
procedural mechanisms to decorate abstract syntax
trees for contextual semantic-information and Mosses’
Action-Semantics for behavioural-semantics of pro-
grams. With these as the foundation, the discussion on
PLPs commences.

Chapter 2 discusses translators, compilers and inter-
preters as important examples of programming language
processors. It uses tombstone diagrams, a refinement of
T-diagrams, to describe lucidly the nature of PLPs as
programs. It also discusses portability and bootstrapping
of compilers in clear terms, something usually missing
from introductory books.

Chapter 3 introduces the overall separation of
technical concerns in compiler design, which governs
the structure of subsequent chapters. Chapter 4 deals
with syntax analysis, Chapter S with contextual analysis,
and Chapters 6 and 7 deal with run-time storage-
organisation and code-generation respectively. Chapters
4, 5, 6 and 8 on interpretation can be used to understand
the construction of interpreters. The appendices collect
definitions and code for the case studies. All chapters
contain exercises at three levels of difficulty, ranging
from quiz questions to complete projects. An appendix
also gives the author’s answers to some of the exercises.

To this reviewer, these exercises, as well as the detailed
use of action-semantics and semantic equations to
express semantic-equivalence concerns when designing
run-time storage-organisation and code-generation pat-
terns, are the most valuable part of the book. There are
simple arguments for asserting the correctness of

THE COMPUTER JOURNAL,

Vor. 38, No.9, 1995

20z Iudy 0 U0 1sonB Aq Z2L0£9€/1.G./6/8E/3101ME/|UlWOS/WO0"dNO"OILSPEDE//:SARY WOl PAPEOIUMO(



752 Book REVIEWS

generated code and its execution environment. The
correctness of syntax analysis and contextual analysis is
less formal and is principally achieved by pointing to
structural similarities between corresponding definitions
and compiler-phase-code as a reason to believe its
correctness. This part of the specification of compilation
has a procedural flavour.

Retargetable code-generation is one of the important
advances in compilation by-passed in this discussion on
compilation. Even at the introductory level, it is
important to include this idea because it needs a
conscious shift from the source-language centered view
of the compilation process. Whilst the importance of the
source-language-centered view cannot be denied in the
analysis of source programs, it is not a good method for
perceiving locality in generated target code, causing
many redundancies. Choosing well-conceived hypothe-
tical machines whose architecture intrinsically supports
the architectural aspects of the source language is fine for
devising bootstrapping compilers. In this special circum-
stance, code generation is comfortably couched within
the folds of a recursive-descent parser. Even some simple
optimizations such as avoiding redundant LOAD/
STORE operations, folding of constant expressions, or
even jump-chain elimination can be cleanly expressed,
despite the fact that these aspects of generated code cross
syntatic boundaries that are procedurally encapsulated
in a recursive descent parser. (On another track, table-
driven approaches are far better at error-handling and
repair than the control-flow based methods of handling
analysis through recursive-descent, common to many
books in this series.)

This approach does, however, hide the real-life
problems of devising good code generators for real-life
target machines. Typical code generation concerns that
are hidden by such a treatment are the following:
language architecture mapping through reservation of
registers and use of memory system architecture, data
storage layout and anticipated accesses mapped onto
effective address computation mechanisms in the
instruction set architecture, uses of registers and a
(simulated) stack for managing temporary intermediate
values during computation, and global resource manage-
ment.

Good retargetable-code-generation methods make it
possible to formulate cleanly most of these problems by
focusing on the description of the target machine. The
use of generic code-generation algorithms make it
possible to teach code generation cleanly without
hiding real-life issues. They even allow the formulation
and solution of local-optimality of coding, a step in the
direction of quantitative issues underlying the discipline
of programming dictated by good engineering concerns,
over and above the important semantic concerns central
to this book. It also systematizes an insight into the
supposedly arcane practices of assembly language
programmers of bygone days.

In moving towards some formalization as a basis for

development of compilers, this book is a step forward.
Nevertheless, the book continues the hand-crafting
tradition of programming, a stumbling block to pro-
grammer productivity. Over 30 years of compiler-
compiler research have uncovered some gems which
overcome some of the productivity bottlenecks in a
manner that is simultaneously elegant and efficient,
rendering parts of compiler construction to be a tool-
based program construction activity. Ignoring these
developments is not progress. Waiting for the ultimate
means of specification methods from which program
construction code could be derived is not engineering
pragmatism. Programming is also an engineering dis-
cipline, not only a formal and mathematical area of
study. Compiler construction exists because it is an
exercise in engineering a desirable virtual computer. For
all these reasons, correctness concerns notwithstanding,
teaching about programming language processors pro-
vides a test-bed for evolving an engineering discipline for
programs and programming. It is a responsibility which
cannot be passed by.

Today’s computer science and software engineering
students are bred on workstation and personal computer
culture. They are fully conversant with program
development tools (sometimes to the chagrin of an
older generation of teachers who learnt their trade on
punched-card machines, as in the case of this reviewer).
The transition to tool-based approaches should not be
difficult. Moreover, tool-based approaches facilitate
portability in the same way as the author’s hypothetical
computers and their (small) interpreters do.

Finally, some personal notes. It is time to move on
from Pascal. Even Wirth has. In sticking to languages
which can be cleanly dealt with, the gap between the
well-understood-and-taught and practitioner’s reality
becomes emphasized. Defining good abstract machines
is a good way of capturing the essence of different
paradigms of program organisation and computation.
Several already exist, such as FAM and WAM for
functional and logic programming. (FAM is perhaps
dated; there must be similar developments underlying
Haskell or Gofer.) The ObjVLisp’s Object Model
gives a good handle on working with inheritance.
Modula-2’s machine-oriented approach to concurrency
through co-routines is another mechanistic handle.
These good and clean ideas at the abstract machine
level are needed when considering implementation
through compilation. The trilogy approach of the
author provides a good divide-and-conquer strategy for
finding unity in this diversity. This has been the
experience of the reviewer in experimenting with teach-
ing programming languages and their processors over
the past 20 years, though not in this explicit form in the
initial 5 years.

KEesav V. Nori
Tata Research Development and Design Centre
Pune, India

THE COMPUTER JOURNAL,

VoL. 38, No.9, 1995

20z Iudy 0 U0 1sonB Aq Z2L0£9€/1.G./6/8E/3101ME/|UlWOS/WO0"dNO"OILSPEDE//:SARY WOl PAPEOIUMO(





