Compiling Techniques for Algebraic Expressions

By Harry D. Huskey

This paper describes a method of translating algebraic formulae into a computer program in a

single pass.

1. Introduction

Various algebraic and algorithmic languages have been
proposed as a means to communicate with high-speed
digital computers. There has been some discussion of
techniques of processing algebraic statements. The
following paper presents a method of translating from
algebraic formulas into computer commands in a single
pass, processing the formula from left to right. The
system takes into account parenthesis, subscripted
variables, and real functions of a single real variable.
Extensions to functions of several variables (or pro-
cedures) are clearly possible.

In order to present the technique it is necessary first
to present an object computer language which will be
the output language of the system. The items named in
the formulas will be denoted by single letters of the
alphabet. Extensions to multi-symbol names and to
numbers are obviously possible.

Next, the specifications of the input language will be
given. In order to describe the translation process from
the input language to the output, or object language, a
list of terms and symbols will be defined, and the language
used to describe the translation process will be presented.
Finally, the actual translation algorithm will be given.

2. Object Language

The commands in the object language will have the
structure of operation code and address.

The address is an integer, a, in the range 0 < a < 9999
say, depending on the size of the memory. The object
computer considered here is of the simplest kind. More
efficient object programs may be obtained by similar
techniques on computers with more facilities.

Table 1 gives the operation codes of the object lan-
guage. This is a partial list of commands for a digital
stored-program computer. Only those commands
needed are given; for example, input and output com-
mands, or transfer of control commands, are not given.
The arithmetic commands are designed to work in a
floating-point number system. Note that there are two
kinds of division.

The accumulator index command causes the contents
of the accumulator to be rounded to the nearest integer
and the result added to the address of the next following
command. Thus, the accumulator can play the role of
an index register.

10

The DO and RETURN (RE) commands provide for
the use of subroutines or functions. A DO command
implies that when the specified task is completed the
computation is to continue at the current location. For
example, if a function symbol appears in the middle of
a formula (which implies that the function has been
defined somewhere else) the DO command provides a
means of transferring control to the subroutine which
defines the function. After the function is computed
the computation will continue processing the current
formula. In order to accommodate functions of func-
tions with multiple arguments, etc., an entry is made in
a return list for each DO operation. When compiling

Table 1
Object Computer Command List

Floating-point Commands

CA Clear and Add
AD Add

CS Clear and Subtract
SU Subtract

(@) — (A)

(A) + (a) — (A)
—(a) — (A)
(A) — (a) —(A)

MU Multiply (A) X (a) — (A)
DI Divide (A)[(a) — (A)
ID Inverse Divide (a)[(A) — (A)
ST Store (A) — (a)

NE Negate —(A) — (A)

Index Command

(A) added to address
of next command.

DO and RETURN Commands
DO Do (function, sub-

Al Accumulator Index

If the command is in loca-

routine or tion L then L + 1 is
procedure) stored in first free space

of the return list, and

control is transferred to a.

RE Return a is added to the last

entry in the return list

and control is transferred

to the resulting location.

This last entry is deleted

from the return list.
Note: See Table 3 for symbols and abbreviations.

$202 14dy 61 U0 1senb Aq £2G6//01L/L/p/8101e/|ulwoo/wod dno-ojwapeoe//:sdpy wolj papeojumoq

Compiling Techniques

(translating) a formula which defines a function, a
RETURN command is added to the object program at
the conclusion of the defining program.

The effect of the DO and RETURN commands is
given in detail in Table 2. For example, for DO com-
mands the number in the command counter (CC) is
increased by unity and stored in the memory location
specified by the contents of the return counter (RC).
The number in the return counter is then increased by
unity, and the address a of the current command (in the
command register, CR) is transferred to the command
counter.

3. The Input Language

The items involved in the process will be named using
single letters from the alphabet, and will be referred to
as variables. 1f X and Y are any variables, then X (Y)
denotes a variable and, depending upon context, may
mean the subscripted quantity X, (implying that Y is
integral valued or, if not, that the nearest integer to Y
is to be used), or it may mean the function X of the
variable Y. However, to simplify this presentation,
subscripted quantities will be denoted as X[Y].

Variables and arithmetic symbols may be used to
make up expressions according to the following rules:

3.1 Expressions
1. If E and F are expressions and R is an arithmetic

operator -+, —, ., or [, then ERF is an expression,
provided that the first symbol of F is not “+4”
Or 56777‘

2. If E is an expression then (F) is also an expression.

3. If E is an expression and its first symbol is not an
arithmetic operator, then --E and —E are expres-
sions.

4. Any variable, subscripted variable, or function is
an expression. (Here function is limited to a real
function of a single real variable.)

3.2 Statements

A computation is defined by a sequence of statements.
If V is a variable and FE is an expression (not a variable)
and p a punctuation symbol, then V' = Ep and E = Vp
are statements defining the value of V. These are read
as: “V is replaced by (the value of) E”” and ““(the value
of) E replaces V', respectively. If E is also a variable,
then the right replaces the left. Functions are defined
as follows: F(X) = Ep or E = F(X)p, where E is an
expression (usually involving X') which defines the value
of F for each X. Definitions of functions are also
called statements.

4. The Descriptive Language

The input language may be extended so as to provide
an efficient means of specifying the translation process.
Thus, the descriptive language includes the concepts of
variables, expressions, and statements as described in
the section on input language.

11

Table 2
Subroutine Transfers
DO: (CC) + 1 - ((RQC)), (RC) + I - (RC), a - (CCO).
RE: ((RC)) + a — (CC), (RC) — 1 — (RO).

Note: (CC) denotes the item whose name is ““CC”’, or the con-
tents of register CC.

4.1 Names

Variables are names. Furthermore, letters of the
alphabet and digits may be concatenated to form other
names.

If Sis a statement, N a name, and p a punctuation
symbol (comma, semi-colon, or period), S may be given
the name N by writing “N:Sp”.

4.2 Indices

The range of an index 7 used with subscripted variables
may be specified by writing / = E(F)Gp, where E, F,
and G are expressions. [= E(F)Gp means that [is
to take on the values of E, E + F, E + 2F, .., E + kF,

where E+kF<G<E-+(k+1)F,
or E+(k-+1)F<G<E-+KF.
4.3 Braces
If S; are statements for i = 1(1)n, then {S, S5, ..., S,;}

is a statement. If statements S involve subscripted
variables with subscript 7 they may be executed for all
the specified values of I by writing {S}/ = E(F)Gp (see
Section 4.2).

4.4 Integers

A concatenation of digits may be used like variables
with the usual meaning.

4.5 Arithmetic Statements

In the descriptive language arithmetic statements will
take the form “E — Vp” instead of “E = Vp” as in
the input language. This illustrates the independence
of the two and the versatility of the algorithm.

4.6 Imperative Statements

The statement “ABC”, is an instruction to “DO” or
“EXECUTE” the statement named ABC. The range
or scope of such a “DO” instruction is from the specified
name to the first period, with the body of the “sub-
routine” being enclosed in braces.

The statement “4BC™ has the effect of a transfer of
control. The execution moves to the statement labelled
ABC and continues there with no a priori expectation of
return to whatever follows the period of “4BC”.

4.7 Decision Statements

If E is an expression, R a relational symbol <, <,
=, >, > or #, Vis a variable, T, U, X, W are state-
ments, and p is a punctuation symbol (comma, semi-

$202 14dy 61 U0 1senb Aq £2G6//01L/L/p/8101e/|ulwoo/wod dno-ojwapeoe//:sdpy wolj papeojumoq

Compiling Techniques

colon, or period), then ERV? Tp Up Xp Wp . . . is a
decision statement. If the relation R is true, statements
T, X, ... etc., will be executed. If the relation is false,
statements U, X, W, etc., will be executed. That is, if
true, the statement between the question mark and the
first punctuation is executed, otherwise the statement
between the first p and the next p will be executed. In
either case continuation is with statement X.

S. Auxiliary Features of the Translator

In order to translate formulas into an object program
it is necessary to get the symbols which comprise the
formulas into the computer, and the generated com-
mands must either be stored somewhere in the memory
or recorded (on paper tape, cards, or magnetic tape) for
subsequent loading into the computer at running time.
The precise structure of these auxiliary programs is not
pertinent to this presentation; such routines will there-
fore be presented with a minimum of detail.

5.1 Input and Select Next Symbol (SNS) Routine

It will be assumed that a program exists which will
load a statement into the computer memory.

The select next symbol (SNS) routine replaces NS
(next symbol) by the next following symbol in the
formula. If the formula is referred to as the symbol
list (SL) and a symbol counter (SC) specifies which

symbol is currently under consideration, then the
select next symbol routine could be written as
“SNS : {SL(SC) — NS, SC + 1 — SC}.". That is, the

symbol in the symbol list at SC replaces NS (next sym-
bol), and the symbol counter (SC) is increased by unity.
In most computers this routine would be more com-
plicated than indicated above, in order to allow the
packing of several symbols into a computer word.

5.2 Output

Whenever a command is generated it will be recorded
in the object program (OP) at ““location” CC (command
counter). This “recording” may be a simple storage of
the command in a portion of the computer memory at
a location corresponding to CC. In practice this may
be a punching of the command on to tape or cards.
If T denotes the command, this recording process may
be written “*“NC(T) : {T — OP(CC), CC + | - CC..”,
where NC stands for “next command in the object
program’.

5.3 Distribution on Symbol Pairs

The translation routine considers pairs of symbols in
the compiling process. One of these symbols is called
the next symbol (NS) which is found by the SNS routine
discussed above. The other symbol is either the present
symbol (PS) or the present operator (PO).

If the portion of the formula currently under con-
sideration is

..+al...

12

3

and that which precedes the “—" has just been pro-
cessed, then NS is “+”. In the course of processing
the above portion, NS will be successively “a” and *“[™.
PS will successively be “+ and *“‘a”, and PO will be
*“—+7. The changes are caused by the advance routine
(ADV) and the operand advance routine (OADV).
After processing a pair of successive operators (such as
4 and | in the above example), the OADV routine
comes into action.

OADV: 0 — 4, NS — PO, ADV.
ADV: NS —- PS, SNS, PSNS.

OADV sets the address ““A4™ to zero, and transfers NS
to be PO, then enters the advance routine (ADV). The
advance routine transfers NS to PS, finds the next
symbol (NS) by *‘doing™ the select next symbol routine
(SNS). Then there is a transfer to one of 81 *“‘generators”™
(see Table 7) depending upon the symbol pair. This
distribution is accomplished by the PSNS routine. One
way of doing this is to look up in a code list (CL) a digit
from 0 to 8, called the distribution constant, which
corresponds to the row in which the symbol occurs in
Table 7. Assume the column headed *“+— — " is separated
into two columns; then this routine could appear as
“PSNS: 9 x CL(NS) + CL(PS) + 1 -~ T, T.”, where,
for example, CL(-+) = 4, CL(a) = 0, and CL(/) = 7.

6. Memory Organization in the Object Computer

The commands of the object program will be placed in
the first part of the memory, starting at location zero,
and space for data and variables is assigned at the end
of the memory, working backwards.

Thus, the command counter (CC) starts at zero and
increases by unity for each command in the object
program. A memory address (MA) starts at the maxi-
mum address for the memory (9999) and always denotes
the ““next available memory location™. As each variable
occurs for the first time, the next available memory
location (MA) will be entered in the name list (NL) at
the position which corresponds to the symbol, and MA
will be reduced by unity.

7. Flags, Lists, and Subroutines

The meaning of symbols used in the Compiler specifica-
tion are given in Table 3. In the translation the present
system generates two lists while compiling: name list (NL)
and the temporary command list (TL). The commands
of the object program are recorded (punched) as they
are generated. The object program deals with three
“lists”: the data memory, working storage, and the
object program itself. The indices MA (memory
address), WA (working address), and CC (command
counter) refer to items in these respective lists.

The development and use of the name list is not an
essential part of the discussion given in this paper. It is
sufficient to assume that the name of each item men-
tioned is entered in this list, as well as an associated
memory address and other information characterizing

$202 14dy 61 U0 1senb Aq £2G6//01L/L/p/8101e/|ulwoo/wod dno-ojwapeoe//:sdpy wolj papeojumoq

Compiling Techniques

Table 3
Symbols and Abbreviations

ABBREVIATION‘ DESCRIPTION . DEFINED IN ;EABBREVIATION DESCRIPTION DEFINED IN
1 |
a Object Computer Address ’ Sec. 2 NAM Name Routine Sec. 7
A Address { Sec. 5.3 ' NC Next Command Routine Sec. 5.2
AC . Accumulator Flag Sec. 9 “NE” Negate Command Table 1
“AD" | Add Command | Table 1 | NL Name List Sec. 7
ADD ' Add Routine | Table 6 NP Name Position Sec. 7
ADR ‘ Address Routine | Table 6 NS Next Symbol Sec. 5.1
ADV ' Advance Routine | Table 6 OADV Operator Advance Routine | Sec. 5.3
“ALY Accumulator-Index Com- . Table 1 (0) Object Program Sec. 5.2
. mand l‘ Iz ' Punctuation symbol Sec. 4.1
Braces | Statement Parenthesis | Sec. 4.3 || period Imperative Statement Sec. 4.6
“CA™” i Clear Add Command Table 1 PO Present Operator Sec. 5.3
CAD Clear Add Routine Table 6 . PS Present Symbol Sec. 5.3
CAST Clear Add—Store Routine | Table 6 PSNS Present Symbol—Next Sec. 5.3
CcC Command Counter Sec. 2 or5.2 | Symbol Routine
CD ‘ Conditional Add Routine | Table 6 | RC Return Counter Sec. 2
CG . Command Generator ‘ Table 6 | “RE” Return Command Table 1
CL Code List Sec. 5.3 'S | Sign Flag Sec. 9
Comma Imperative Statement Sec. 4.6 | SC Symbol Count Sec. 5.1
CR Command Register Sec. 2 ; SF Subscript Flag Sec. 11
“CS” Clear Subtract Command Table 1 | SL Symbol List Sec. 5.1
“DI” Divide Command Table | . SNS i Select Next Symbol Sec. 5.1
“DO” Subroutine Execution Com- ‘ Sec. 2 U STORE | Store Routine Table 6
mand | T | Compiler Temporary Table 6
ERR Error Routine | Sec. 9 | Storage
FUN Function Routine i Table 6 TC Temporary Command Table 6
GO TO | Imperative Statement Sec. 4.6 Routine
“1D” Inverse Divide Command Table 1 . TCNC Temporary Command— Table 6
Indices Indices Sec. 4.2 * Next Command Routine
INIT Initialize Routine Table 6 | TL Temporary List Sec. 7
KN Name List Limit Sec. 7 | TST Temporary Store Routine Table 6
L Level Sec. 8 I U Compiler Temporary Storage | Table 6
MA Memory Address Sec. 6 | WA Object Program Table 6
“MU” Multiply Command | Table 1 ‘ Working Address
MUID Multiply—Inverse Divide Table 6 | ZADV Zero Advance Routine Table 6
Routine

the item. Each entry in NL uses four memory locations.
The procedure for looking up an item A in this list, NL,
might be

NAM: {KN — K, NAMI: NL(K) = 4?
{NL(K + 1) - 4, K — NP.},
{K —4—-K=>0? NAMI,,:};
KN -+ 4 — KN — NP, 4 — NL(KN),
MA — NL(KN -+ 1) - 4, MA — | - MA}.

where KN corresponds to the last entry in the name list,
NP is the ““name place,” that is, the location in the name

13

list of the last name considered. The portion of NAM
preceding the *“;” checks to see if the name is already
in the list; the rest of the routine enters the name in the
list. The first and third periods represent two exits to
the routine. The braces enclosing the statements of the
NAM routine indicate that it is a subroutine and is to
be entered with a DO instruction.

Generally, the translation proceeds paying attention
to only three symbols, NS, PS, and PO (sometimes PO
and PS refer to the same symbol). Sometimes more
attention must be paid to context. The compiler prepares

$202 14dy 61 U0 1senb Aq £2G6//01L/L/p/8101e/|ulwoo/wod dno-ojwapeoe//:sdpy wolj papeojumoq

Compiling Techniques

for such situations by noting the occurrence of certain
events and setting flags. The flags used are listed in
Table 4.

Depending upon symbol pairs (PS and NS, or PO
and NS) the compiler calls into operation certain sub-
routines. These subroutines are listed in Table 6.
Some of these are “generators” and produce commands
in the temporary list or in the object program (see
“ADD,” for example), whereas others keep records or
transfer data (TCNC).

8. Level

In order to control the priority of the various opera-
tions occurring in the formula, a level record, called L,
is maintained. This may change as successive symbols
of the formula are considered. The changes in L are
given in Table 5 for consecutive pairs of operational

symbols. The numbers in parentheses indicate the
Table 4
Flags
NAME VALUES MEANING
AC 0 The commands now in the
object program are such that
no partial result is in the
accumulator.
Accumulator 1 Accumulator contains partial
Flag result.
S +2 Use “+” and “—"" as is in
formula.
Sign Flag —2 | Exchange “~+” for “—"" and
5‘_” fOr 6‘+’$.
Table 5

Change in Level for Pairs of OP Codes

IR AR

=p — 0 1 2 3 0
+ — —1 0 1) 0
x<f (=2) | (=D 0 (1 | (=D
) 1 (=3 | =2 | -1 0 2
(I 0 0 1 (2 0

14

OADV \

Fig. 1.—General structure of the Translator

change in L which occurs after the generation of any
commands for that pair of OP codes. Otherwise, the
change in L occurs before the generation of commands.

9, General Structure of the Translator

The general structure of the translator is shown in
Fig. 1. Depending upon PS and NS, or PO and NS, the
PSNS distributor selects one of 81 generators (see
Table 7). These generators make use of selected sub-
routines (Table 6) and via ADV (advance) or ADR
(address) returns to PSNS for another distribution.

Certain pairs of symbols are called “illegal” and cause
entry to the error routine (ERR). This routine causes
a HALT, perhaps printing out PS and NS for diagnostic
purposes.

In general, commands will be generated in the tem-
porary list (TL) as long as L increases and the accumu-
lator flag AC is “0”. Whenever L decreases, commands
are transferred from TL to OP until the level of com-
mands in TL is less than the current level L. Each
command in TL has stored with it the level (L), sign (8),
and arithmetic working address (WA) in effect at the
time that it was generated. The accumulator flag AC is
“1” whenever execution of commands currently in the
object program, OP, would leave a result in the accumu-
lator. The flag S indicates a minus symbol which effects
the sign of subsequent operations.

10. Examples

Two examples are given in Tables 8 and 9 to show
how the translation takes place. The values of L, S,
and WA are listed as they are during the generation of
commands for that PO and NS. The details of address

¥202 Iudy 61 uo 1senb Aq £2G66.€/01/1/v/2101e/|ulwoo/wod dnoolwapede//:sdpy woly papeojumo(q

Compiling Techniques

Table 6

Subroutines

NAME

ROUTINE

Add

ADD: {A? {S <0? “SU” T, “AD” —T; CG(T).},,..

Conditional Add

CD(T): {AC #0? CG(T) . CAD.}.

Address ADR: NAM, PO — PS, PSNS.
Advance ADV: NS — PS, SNS, PSNS.
Clear Add CAD: {AC = 0? ADD. {S <0? “CS” —=T, “CA” —T; CG(T).}}.

Clear Add—Store

CAST: PO = “="7 “ST” - T, {AC #0? “ST” — T, “CA” — T}, CG(T)}.

Command Generator

CG(T): {A+T—T, SF+£0? {“Al” U, TC(U), 0 >SF},, AC =0?
NC, TCL.

Error ERR: ----

Function FUN: {A = 0? FUNCTION DEFINITION?
(ST + A —T, TC(T)}, {S <0? {“NE” — T, TC(T)},;
“DO” +~ A —T, TC(T),},,}.

Initialize INIT: {0 -~ A — AC, 2 —S}.

Level L(T): {L+T—L}.

Multiply—Inverse Divide

MUID: {AC = 0? “MU” - T, “ID” — T, CG(T).}.

Name

NAM: ----

Next Command

NC(T): {T # 0? {T — OP(CC), CC + 1 > CC},,).

Operator Advance

OADV: 0 — A, NS — PO, ADV.

Present Symbol—Next Symbol

PSNS: 9 CL(PS) + CL(NS) - 1 > T, T.

Select Next Symbol

SNS: ----

Store

STORE: {“ST” - T, CG(T)..

Temporary Store

TST(T): {AC #0? {“ST” + WA —U, NC(U), T + WA =T, TC(T),
WA + 1 —> WA, 0> AC,},.}.

Temporary Command

TC(T): {T — TL(TI), L — TL(TI + 1), S — TL(TI - 2), WA — TL(TI - 3),
TI + 4 — TI.

Temporary Command—Next
Command

TCNC: {TI —4 —TI, —1 < TI? {L < TL(TI + 3)? {TL(TI) > T, 1 — AC,
NC(T), TCNC.}, TL(TI + 2) =S, TL(TI + 3) > WA;:}, 2—S:
TI + 4 — TL).

Zero Advance

ZADV: 0 — T, TC(T), OADYV.

15

$202 14dy 61 U0 1senb Aq £2G6//01L/L/p/8101e/|ulwoo/wod dno-ojwapeoe//:sdpy wolj papeojumoq

Compiling Techniques

Table 7
PS-NS Table
| 1 |
PS ‘ { 1 1 1
i L P (w [)’] s T X / s >
L " ERR. ADR. ADR. ADR. ADR. ADR. | ADR. | ADR.
1 10 19 28 37 46 | 55 | 64 ‘ 73
p INIT, ERR. INIT, ERR. L(1), - L), L(2), | NS — “—=79
ADV. L(1), ADD, ' CG(MU), | CG(ID), | {CAD,TCNC},
FUN, ZADV j ZADV. ZADV. | STORE,
; L(2), j
" OADV. J |
2 11 20 129 38 47 1 56 65 74
G ADV. ERR. FUN, | CAD, ADD, L, L, ERR.
TC(0), | OADV. OADV. CG(MU), | CG(ID),
‘ L(2), w OADV. OADV.
% OADV. | ?
| 3 12 21 30 39 48 | 57 66 |75
), 1 ERR. L(—3), i ERR. L(—2), L(—2), L(—1D), L(—1), L L(-3),
(TCNC, OADV. TCNC, TCNC, TCNC, TCNC,
! 28, ‘ OADV. 28, 28, 28,
‘ OADV. ; OADV. OADV. OADV.
4 13 | 22 31 40 49 | 58 67 76
— ADV. L(—1), TST(AD), | CAD, ADD, L(1), LD, | L(—1D),
CAD, .~ FUN, OADV. OADV. TST(AD), | TST(AD), CAD,
TCNC, | TC(©0), CG(MU), | CG(ID), TCNC,
28, [L(2), OADV. OADV. | 28,
OADV. | OADV. | OADV.
|'S 14 23 32 41 50 | 59 68 77
— . ADV. L(—1), TST(AD), | S— —S, —S—8§, L(1), L(1), L(—1),
; ~S-—S, | —S--8, CAD, ADD, —S-—S, ~S -8, ~S-—8,
| CAD, | FUN, | OADV. —S -8, TST(AD), ~ TST(AD), | CAD,
TCNC, | TC(0), ‘ OADV. CG(MU), | CG(ID), TCNC,
1 28, L(2), OADV. OADV. | 2--8,
| OADV. OADV. . OADV.
) 15 24 33 42 51 | 60 69 78
x ADV. L(—-2), TST(MU), | CD(MU), | L(—1), CG(MU), \ MUID, L(-2),
CD(MU), | FUN, L(—1), CD(MU), | OADV. = OADV. | CD(MU),
TCNC, | TC(0), OADV. TCNC, | TCNC,
; 28, L L(D), OADV. | 28,
i OADV. | OADV. . OADV.
| 7 16 25 34 43 52 | 61 | 70 | 79
i |
/ ADV. L(—2), TST(ID), CD(D]), L(—1), CD(DI), | CD(DI), | L(—-2),
CD(DI), | FUN, | L(—1), CD(DI), TCNC, TCNC, CD(DI),
TCNC,] TC(0), | OADV. TCNC, 28, | 28, TCNC,
28, L(1), | OADV. OADV. i OADV. 28,
| OADV. OADV. ‘ OADV.
8 17 26 35 44 53 | 62 71 80
=, = ADV. CAST, L(1), ERR. L(1), L(2), L(2), | STORE,
TCNC, FUN, ADD, CG(MU), | CG(D), OADV.
28, TC(0), ZADV. ZADV. ZADV.
OADV. L(2),
| OADV. :
9 18 27 36 45 54 | 63 72 | 81
| |

16

$202 14dy 61 U0 1senb Aq £2G6//01L/L/p/8101e/|ulwoo/wod dno-ojwapeoe//:sdpy wolj papeojumoq

Compiling Techniques

Table 8
Example 1

c=a—bx(cx(dt+exgx(a—>b+h xk+c...

i ‘ op | TL | COMMANDS GENERATED BY
PO NS | s AC i
i CcC ECOMMAND TI ‘COMMAND{ L ’ S \ WA iGENERATOR‘ SUBROUTINES
: :! 20 O!ST:jO 2!‘0%74'STORE
— | - ‘ ‘ 20 | 1 | ADa 1| 2 0 45 | ADD
— x| 20 ; 2 | MUb , 2 2 1o 60 CG(MU)
< 20 | 300 3 -2 0 25 ZADV
(| x| 2| o0 | 4| MUe |42 0 57 CG(MU)
SR 2 0 | 50 3 -2 |0 25 | zADV
| | |
(. 2 0 6 | SUd l 5 -2 10 39 1 ADD
L)%) ; 0 7 | MUe ‘ 6 -2 0 5 CG(MU)
%) 20 8 | csy 6 -2 0 34 | CAD
) / 21 0o csf o | 67 TCNC
1 MUe | l
2 | Sud | 3 ‘ |
1 3 MUc |
| | |
x| 2 4 | Dlg | | 62 CD(DI)
| :
o 2 0 5 | STo | 4 | MUO 4 | 2 0 | 25 TST(MU)
50 } s o2 ZADV
« | - 20 | 6| ADa | s 2 1| 3 | ADD
| | | | | i
— 2 0 7 1 ¢csh s 2 1 33 CAD
i | | |
) o+ 21 6 = CSb | | TCNC
| 7 | ADa | j 40
| § | MUO | 2 } | |
=) 21 9 | SUK | | 32 CAD
) 2 1 |10 | MUb | 2 . 8 | TONC
x o+ 2 I 11| MUK \ | 43 CD(MU)
| | 12 | ADa | 1 | | 43 TCNC
+ i > 1 13 | ADc 5 | | 14 | CAD
| | 14 | STz | 0 | 1 L 14 TCNC
17

$202 14dy 61 U0 1senb Aq £2G6//01L/L/p/8101e/|ulwoo/wod dno-ojwapeoe//:sdpy wolj papeojumoq

Compiling Techniques

generation are not shown; in fact, the variables a, b, etc.,
are left in the address positions, although, in practice,
actual memory locations may occur here. Another way
to state this is to point out that two PSNS distributions
are not shown for each PO and PS. That is, there is a
distribution on PS = *,” and NS = “z”, then one on
PS = “z” and NS = “=", and the third (shown) on
PS = PO = *,"” and NS = “=". On occasion zeros
are entered in the command position of the temporary
list in order to record the current sign (S). Some of
these are redundant and could be eliminated with some
complication in the logic.

11. Functions and Subscripted Variables

The use of the temporary list facilitates the processing
of functions and subscripted variables. Distinguishing
functions f(x) from subscripted variables a(i) is best
done by entering characterizing information in the name
list. However, brackets will be used to denote subscripts

as in a[i] and a subscript flag, SF, will control the
compiling process. Example 2 shows an object com-
puter program for a nested sequence of function and
subscript situation. The definition of functions is not
covered by the generators of Table 7.

12. Extensions

The only problem in extending these techniques to
functions of several variables (procedures) is that of
providing storage for the arguments. This may be done
by allotting space in the object program immediately
following the subroutine transfer (DO) command.

Note that the present system communicates with
subroutines by supplying the actual variables instead of
the names of variables, and that variables not in the list
of arguments are “universal” (that is, they have the
same meaning inside and outside the subroutine).
Certainly, in a practical application, the algorithm should
be extended so that subscripts are not universal.

Table 9
Example 2
+fla + bli + f(x)]) —
|
} op TL COMMANDS GENERATED BY
PO NS L | S AC S
CcC COMMAND TI COMMAND L S WA GENERATOR SUBROUTINES
ol 1 2 ! 1 | STWA ADWA | 1 23 TST(AD)
0 DO f 1 FUN
(|+« | 3 ADa | 3 39 ADD
0 CAb | 3 | 23 FUN
| | ALO | 3
[\ s | | ‘ ADi | 5 39 ADD
] s | - pOs | 5 23 FUN
() 7 } CCAx | 7 30 CAD
|
)] 5 1 31
] y 3 | & 31
y - I 2 CA«x | a9 TCNC
| 3 | Doy
| 4 | AD
| 5 | AL O
6 | CAb 1 ;
7 | ADa ‘ | !
| 8§ | DOf |
| 9 | ADWA |

18

$202 14dy 61 U0 1senb Aq £2G6//01L/L/p/8101e/|ulwoo/wod dno-ojwapeoe//:sdpy wolj papeojumoq

Compiling Techniques

Amsterdam and at Cambridge University in England.

13. Acknowledgements Part of the work was supported by the Bendix Cor-

Simple arithmetic compiling techniques are described poration. Rudimentary compilers to check the described
in Huskey, Halstead and McArthur (1960), and alternate algorithms were developed on the X-1 computer of
procedures are given in Samelson and Bauer (1960) and N.V. Electrologica, and on EDSAC 2 at Cambridge.
Backus et al. (1957). A final check was made on the Bendix G-15, and

Final organization of the material in this paper was Mr. W. H. Wattenburg discovered and removed a
done while the author was on sabbatical leave from the couple of errors while checking the algorithm on the
University of California at the Mathematical Centre in IBM 704 at the University of California.

References

Huskey, H. D., HaLsTEaD, M. H., and MCARTHUR, R. (1960). “NELIAC—A Dialect of ALGOL,” Communications of the

Assoc. for Computing Machinery, Vol. 3, No. 8, p. 463.

SAMELSON, K., and Bauer, F. L. (1960). ‘Sequential Formula Translation,” Communications of the Assoc. for Computing
Machinery, Vol. 3, No. 2, p. 76.

Backus, J. W., et al. (1957). “The Fortran Automatic Coding System,” Proc. Western Joint Computer Conf., Los Angeles,

p. 188.

IFIP CONGRESS 62

Call for Papers (8) Advanced Computer Techniques

e.g. logical design; logical elements; storage devices;
ultra high-speed computers; program tech-
niques; ALGOL.

(9) Education
e.g. selection and training of computer specialists;
training of non-specialists in the use of compu-
ters; information processing as a University
subject.

The International Federation of Information Pro-
cessing Societies (IFIPS) will hold a Congress in Munich,
Germany, from 27 August to 1 September 1962.

The Congress will cover all aspects of Information Pro-
cessing and Digital Computers including the following:

(1) Business Information Processing
e.g. data processing in commerce, industry, and
administration. (10) Miscellaneous Subjects
e.g. growth of the information processing field.
(2) Scientific Information Processing
e.g. numerical analysis; calculations in applied
mathematics, statistics, and engineering; data
reduction ; problems in operations research.

In each category it is planned to cover, where appro-
priate, the applications of digital computers, program-
ming, systems design, logical design, equipment, and
components.

Those wishing to offer papers are invited to send

(3) Real Time Information Processing
abstracts of 500-1,000 words to:

e.g. reservation systems; computer control; traffic

control; analog-digital conversion. M. V. Wilkes,
i) The British Computer Society,
(4) Storage and Retrieval of Information ¢/o University Mathematical Laboratory,
e.g. memory devices; library catalogues. Corn Exchange Street,
(5) Language Translation and Linguistic Analysis Cambridge,)
by 15 September 1961. These abstracts will be con-
(6) Digital Communication sidered by the international program committee of
e.g. encoding; decoding; error detecting and error IFIPS, and authors of selected abstracts will be invited
correcting codes for digital data transmission. to submit their complete papers (in French or English)
for consideration by the program committee in March
(7) Artificial Perception and Intelligence 1962.
e.g. pattern recognition; biological models; machine In addition to accepted papers, there will be invited
learning; automata theory. papers, symposia, and panel discussions.

19

$202 14dy 61 U0 1senb Aq £2G6//01L/L/p/8101e/|ulwoo/wod dno-ojwapeoe//:sdpy wolj papeojumoq

