Atoms and Lists
By P. M. Woodward and D. P. Jenkins

This article describes the recent work, on list processing, of J. McCarthy at MIT in a form which
will, it is hoped, be intelligible to the non-specialist.

Introduction

In the past the main purpose of a digital computer has
been to do arithmetic: apart from the program, the items
of information in store were numbers. A machine,
however, has no means of knowing whether stored items
are numbers or not. They are numbers only to the extent
that we treat them as numbers by performing arithmetic
operations on them. Now that computers are being
increasingly applied to non-numerical problems, we have
to consider whether any changes are needed either in
machine design or in programming methods. If the
items to be processed are not numbers, operations like
floating-point multiplication are inappropriate. What
are the basic operations for non-numerical work? What
are the best ways of arranging the information in store?
There is little enough to go on, and at first we would
seem to be lost in vagueness. The purpose of this
article is to describe the recent work of McCarthy (1960),
whose programming system called LISP seems to answer
some of our questions. McCarthy’s answer may not be
the only one, but it is a major step in the right direction.

Atoms and Lists

If the items of information are not numbers, they may
be yes’s and no’s, points or lines, names of people,
algebraic symbols, elements of a group, musical notes or
anything. McCarthy originally called them ‘“‘objects,”
but has changed this to atoms. An atom is any irre-
ducible item of information, or any item which the
programmer wants to treat as irreducible. In algebraic
work, which is one of the obvious applications for LISP,
typical atoms might be X, 4+, COS, 7 or (. So far,
generality is complete. We now have to ask ourselves
what we want to do with our atoms, to which we can
only say that we want to be able to group and re-group
them in any way we please. For example, integer
arithmetic is merely a grouping and re-grouping of the
atoms 0 to 9. Removal of brackets in algebra, formal
differentiation, sorting, and so on, can all be included
in this broad statement. Before we can get really started,
however, it is necessary to decide on a structure for a
group of atoms, and it will be this structure which will
determine the character and degree of generality of the
mathematics. LISP is based on list structures. A list
is defined as an ordered array of atoms or lists, separated
by commas and enclosed in brackets. For example,

x = (A, B, O) (D
is a list, where A, B, and C are atoms. So too is
y = (A, (B, O), D, (E, F)), G, H) (2)

47

It is the recurrence of the term “’list” in the definition of
a list which gives these arrays their special character.

Atoms need not be restricted to single block letters,
and a useful plan is to allow any succession of capitals
or digits. Thus, SIN, COS, PLUS, A3, and 27 would
all be allowed as atoms.

S-Language and Meta-Language

In ordinary mathematical work, we are accustomed to
the use of two distinct languages which work at different
levels of reality: namely arithmetic and algebra. There
is never any confusion, because we use a different
alphabet for each. We know that 23 is a number and
that x, being a letter, is an “‘unknown quantity” which
stands for a number. In LISP, there is need for a similar
distinction, so we reserve upper case for atoms and
lower case for symbols which stand for atoms or lists.
The letter x on the left-hand side of (1) is standing for
a list, and we can say that x in this example has the
value (A, B, C). Once this has been said, it is important
to realize that no further evaluation is possible. Whilst
letters like x have the same generality as algebraic
variables, standing for different things in different
problems, letters like A, B, and C do not stand for any-
thing, and are already quite particular. When writing
actual atoms or lists in upper-case letters, we are using
what McCarthy has called S-language, and expressions
like A or (A, B, C) are called S-expressions. This term
is short for Symbolic Expressions—an unfortunate
description in view of the dictionary definition of a
symbol as something which stands for something else,
but one which is intended to emphasize that LISP is
entirely concerned with the manipulation of abstract
entities.

The language of x and yp is called M-language or
meta-language, and it must be extended to provide a
notation for functions of lists. A function of a list has as
its value another list, or perhaps an isolated atom. In
other words, the evaluation of a function of an S-
expression gives another S-expression. Later in this
article, for example, we discuss the function ff[x] which
represents the operation of finding the first atom in any
list x. In meta-language, all letters are printed in lower
case, brackets are square and semi-colons are used as
separators, to avoid overlapping with the set of characters
employed in S-expressions.

A program in LISP can always be thought of as a
problem in function evaluation. A general process is
described in meta-language by defining a function of
one or more lists; particular values for these lists are
then given in S-language, and the job of the program is

$202Z YoJel\ g uo 3senb Aq 8161/ /L Iv/e191Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Atoms and Lists

to evaluate the function and give an answer in S-language.
It will immediately be seen that we have here an exact
parallel with autocoded numerical work, where the
general process is described in algebra, particular starting
values are given numerically, and the final answer is also
numerical.

Machine Format

To achieve a programming system, we have to decide
how lists can be stored in a computer so as to preserve
their nesting structure. Here there appears to be con-
siderable choice, and room for experiment. McCarthy’s
arrangement is fundamental to LISP and is illustrated
in Fig. 1 for the lists (1) and (2) above. Each oblong
represents a word in the computer store, partitioned
down the middle. A box drawn empty contains the
address of the word to which its outgoing arrow is
pointing. All other boxes can be supposed to contain
the atoms written in them, though actually they contain
the addresses of these atoms. A box with a diagonal line
contains the special atom NIL which marks the end of
a list.

To illustrate more fully this way of storing lists, the
following is a possible allocation of three stores for the
list (A, B, C) shown in Fig. 1(a):

5) C NIL
16) A 28
28) B 5

The first column gives the address of the stored com-
puter word, the second and third give the items stored
in the two halves of that word. The addresses 5, 16,
and 28 are here chosen quite arbitrarily to show that all
notions of sequential storage have gone by the board.
Reference to the above list is, of course, via store 16
where the list starts, and the computer must be made to
keep a note of this number. Any list processing scheme
must, however, disguise all these details of storage
allocation from the user.

One reason for abandoning sequential addressing of
data is that it is unsuitable for branched lists such as the
one shown in Fig. [(h). Another is that lists are variable
and unpredictable in length, unlike the numbers, vectors,

(@)

A B C

(b)
AL I e (1 I g 1 %4

(Bl
\
5[] E[—F

Fig. 1.—Machine format for lists. The capital letters are
atoms

48

_’A

B[{1

Fig. 2.—Sharing of a sub-list

or matrices in ordinary computer work. The organiza-
tion required to store branching lists of varying length
sequentially would be far greater than is required in
LISP, which merely seizes on any vacant store which
comes to hand. More will be said of this later, but it is
important to realize that the concept of almost random
storage is really one of the main ideas behind LISP:
it is what makes the partitioning of every word into
halves necessary.

To give a further example, we show below a possible
arrangement for storing the list y shown in Fig. 1(b).
To avoid needless confusion to the reader, we have here
replaced the haphazard addressing which would occur
in a machine by an orderly arrangement. The addresses
I to Il can be thought of as standing for any eleven
different integers.

1) A 2

2) 5 3

3) G 4

4) H NIL
5) 8 6

6) D 7

7) 10 NIL
8) B 9

9) C NIL
10) E 11
1) F NIL

The particular way in which the linking of elements is
done in LISP is, at first sight, rather restrictive. For
example, it is easy to trace through a list from head to
tail, but very difficult to do the reverse. In fact, this
turns out to cause surprisingly little embarrassment and
does not in any way impair logical generality. (LISP is
a “‘universal” system, capable of computing anything
computable.) In one major respect, the lack of back-
ward address references is a real virtue, since it enables
two lists to share a common sub-list. For example,
the lists

(A, (B, €)) and ((B, C), (B, C))

can be represented as in Fig. 2, which shows a double
economy.

$202Z YoJel\ g uo 3senb Aq 8161/ /L Iv/e191Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Atoms and Lists

Dot Notation

When we want a really direct notation for machine
format, we can either use boxes as above or—more
conveniently—an expanded form of the comma and
bracket notation, using dots.

In dot notation, the list

(A, B,C)
becomes
(A.(B. (C. NIL))

The dot is a precise representation of the bar which
subdivides the two halves of a box in box-notation. It
connects two atoms or lists and only two. As a further
example, the list (2) shown in Fig. 1(b) becomes

(A.(((B.(C.NIL)).(D.((E.(F.NIL)).NIL))).
(G.(H.NIL))))

It will immediately be obvious that the comma notation
is more compact than this literal representation of
machine format. Dot notation is, however, helpful for
understanding LISP properly, and moreover it does
not force the use of NIL. For example,

(A.B)

is a perfectly acceptable list which cannot be expressed
in comma notation.

Dot notation and comma notation can be mixed
without ambiguity, and this brings out their differences.
In pure dot notation, round brackets are used to enclose
every connected pair of atoms or lists, and are only
used in this way. Thus (A) would be meaningless. In
comma notation, on the other hand, (A) is a list with
one element, and is (A.NIL) in dot notation. Since
the elements of lists can be atoms or /ists, it follows that
((A)) or (((A))) are allowed expressions, and their
machine format is shown in Fig. 3. As an example of
mixed notation, we could have the S-expression

((A.B), C, D, E)
which means

((A.B).(C.(D.(E.NIL))))

shown also in machine format in Fig. 4. The pre-
occupation with notation may seem burdensome, but
we must remember that notation is, so to speak, the
title of the paper.

The Primitives

We are now equipped to start operating on lists in
meta-language. Just as the whole of algebra can be
built up from a few primitive operations on numbers
(like addition), so we can build up a complete informa-
tion-processing scheme for list structures from half a
dozen basic operations. These have the strange sounding
names

atom, eq, car, cdr, cons and cond.

Each of these can be regarded as a function (like sin or

E

49

Al/]

[
A

Fig. 3.—(A) and ((A)) and (((A))) in machine format

AL

log), whose arguments are placed in meta-linguistic
square brackets. Where there is more than one argu-
ment to a function, semi-colons are used as separators.

atom [x] is a Boolean function (i.e. logical proposition)
whose value is either true or false. The atoms T
and F are used for the answer, which is T if x is an
atom and F if it is not.

eq[x;y] is also Boolean. Its value is T if x and y are
equal atoms, F if x and y are different atoms, and
undefined if x or y are molecular.

car[(x.y)] is the first member of the dotted pair: x.
Here x and y may be atomic or molecular, i.e. any
S-expressions.

cdr[(x.y)] is the second of the pair: y. Again x and y
are any S-expressions.

cons[x:y] has the value (x.y) where x and y are any
S-expressions.

cond[[p,:e];[pyies]; etc] is the all-important con-
ditional function. Here the arguments must be
written in pairs. The p’s are logical propositions,
which may (like eq above) be defined or undefined.
If defined, they must evaluate to T or F, whereas
the e’s stand for any S-expressions. The value of
cond is found by reading the arguments from left to
right and taking the e which follows the first p whose
value is T. If no p is true, or if an undefined p is
encountered before a true p, the value of cond is
undefined. A shorthand notation for cond is

[Py — ey py— ey etc.]
with the function name left out.

The Boolean functions atom and eq can be used as
propositions in cond functions, and these in turn can

—{ | €] =] +EV]

Fig. 4.—List which cannot be represented in pure comma-
notation

$202Z YoJel\ g uo 3senb Aq 8161/ /L Iv/e191Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Atoms and Lists

supply us with more Boolean functions. Car and cdr
are used for splitting a list into pieces, and cons is used
for constructing new lists from given pieces. From
these six functions, all computing operations can be
built up.

It should be pointed out that the choice of names for
functions is quite arbitrary, and whilst most of the above
are obvious abbreviations, car and cdr are hardly likely
to appeal in the long run. (They were chosen by
McCarthy because of their significance in relation to a
particular computer.) The present writers have used
“fore” and “‘aft’” for lecture purposes, without seriously
proposing their adoption. LISP programmers soon find
their literary imaginations heavily taxed in the search
for more and more function names as a library of routines
is built up.

A Simple LISP Program

An elementary problem in programming will help to
clarify these ideas. Take the following:

“Given any S-expression x, find the first atom occurring
in it.”

First, let us make up a function name for the operation
which finds the first atom in x, say ff[x]. A LISP
program for ff[x] is merely a formula which expresses
Jff in terms of previously defined functions. The formula
can be recursive: it is permitted that ff should occur on
both sides of the equation. Thus,

JIx] = latom[x] — x; T — ff[car[x]]]

is a LISP program for evaluating ff[x].
means

In words, it

If x is an atom, the value oi ff[x] is x.
Otherwise the answer is ff[car[x]].

The use of T needs explaining. There are two pro-
positions in the cond function on the right, viz.

(1) atom[x]
2T

Since atom [x] is a function of x, it cannot be evaluated
until x has been evaluated or specified in S-language.
(This is like saying we cannot compute sin x until x is
given numerically.) But it happens in this problem that
if atom [x] has the value F, we want to evaluate ff[car[x]]
whatever the value of x. The second proposition in the
cond is therefore a known quantity (like a number) and
can be written directly in S-language as T. This will
ensure that the second proposition is always accepted
when the first is rejected. The program for ff thus
employs a mixture of meta-language and S-language,
analogous to that of letters and numbers in algebra.

The way in which the program actually works can be
followed by means of an evaluation, say for

x = (((C.NIL). (B.NIL)).NIL)

Clearly ff[x] is here C. We arrive at this result by first
checking that x is not just an isolated atom. If it were,

50

(@)

'

[T1—B1
7

x would be the answer. But if not, we look at car[x],
which is the first box in Fig. 5(a). This is (in full)

((C.NIL). (B.NIL))

as shown in Fig. 5(b). Again apply ff. Again the
expression is not an atom, so we take the car again:

(C.NIL)

as in Fig. 5(c). Again we apply ff, again the expression
is not an atom, so take the car of it which is

C

Taking ff once more, we find at last that the argument
is an atom, and our formula tells us that, when this
happens, the atom is the answer. In more involved
recursions, it is necessary not only to “‘unwind” the
recursion to its end, but also to wind it up again before
the answer can be obtained. This is a distinction which
need not trouble us in an introduction to the subject,
but needs attention by the programmer who wants to
avoid lengthy cycles of computation on the machine.

It should be noticed that recursive definitions are the
only way of achieving loops in the pure form of LISP,
and that a LISP program is all rolled into one equation.
The beginner finds that a new mode of thought is
necessary in this kind of programming, a mode which in
certain types of work may be the most natural.

(b) (©

| B/

<

Fig. 5.—Steps in the evaluation of ff, see text

Cl/]

How LISP Programs are run

A machine must obey its own code. If a foreign code
is to be imposed on it, it must at some stage be trans-
lated into the engineered code of the machine. This can
be done either through the agency of a translation
program which converts the whole program into machine
code before the actual problem starts, or it can be done
by means of a translation or “‘interpretation” of each
foreign instruction as and when it is encountered during
actual running. The differences between the two methods
show up in various ways. With preliminary translation,
the stored program during actual running of the problem
is in machine code. All foreign code has by this time
been disposed of. With running interpretation, the
program is stored in the foreign code throughout the
problem. The machine is never allowed to obey the
foreign instructions (since they would not be under-
stood), but obeys instead a cycle of machine instructions

$202Z YoJel\ g uo 3senb Aq 8161/ /L Iv/e191Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Atoms and Lists

which are independent of the particular problem.
These examine each foreign instruction in turn, as though
it were an item of data, and the form of the foreign
instruction acts like a key which brings into play an
appropriate prefabricated sequence of machine instruc-
tions. All possible required sequences are stored inside
the interpreter program. The simplest way to make a
computer accept a problem in LISP is to provide an
interpreter for the particular machine which is going to
be used. This has been done on the IBM 704 at MIT,
and it has now also been done by one of us (D. P. J.) on
TREAC at the Royal Radar Establishment; though too
recently to report detailed experience of actual problems.

To run a program, the LISP interpreter and special
input and print routines must first be supplied to the
computer. The problem can then be fed in from a tape
bearing the LISP program and its data. For example,
the information on the problem tape might be

“Evaluate ff[x] = [atom[x] — x; T — ff[car[x]]]
for x = (((C.NIL).(B.NIL)).NIL)”

as discussed in the previous section, and the printed
answer which should ultimately appear would be C.
In fact, problem tapes are not prepared as above, but
are first converted into S-language. It is here that many
readers of McCarthy’s paper become confused and
give up.

On the hypothetical tape shown above, the program
is written in meta-language and the data for the problem
(the value of x) is written in S-language, ready to be
stored as a list as described earlier. But when we come
to decide on the best way to store the program in the
machine, we find that it too can perfectly well be stored
in list form, just like the data. Since S-language is
specially designed for list structures, we might as well
convert the program into S-language and use the same
input routine both for the program and the data. The
details of how this is done are irrelevant: it is sufficient
to say that we end up with a tape employing only capital
letters and numerals, round brackets, commas, and dots.
(Function names such as car are treated as atoms, and
car is therefore punched on tape as the atom CAR.)
Languages which can be expressed in the same form as
the data upon which they operate are known as proto-
syntactic, and LISP is of this type.

The program and data are not the only lists which
must be present in the machine store. The result
obtained by evaluating a LISP problem is only a
re-grouping of the input atoms, and the letter sequences
used for these atoms, which differ from problem to
problem, are made up by the user. It follows that these
names must be retained in store (unlike the input symbols
in an algebraic autocode) throughout the problem. In
LISP this is done by linking all atoms together on an
“atom list” which is made up of “property lists,” one
for each atom. Each property list contains information
like the sequence of letters used at input and output, and,
where the atom is a function name, some reference

51

either to a sequence of machine instructions for evaluating
the function, or to a list defining the function in LISP
symbols. Other lists, used as working space by the
interpreter, get formed and discarded during the evalua-
tion of an expression.

The Interpreter

It may be of interest to describe the operation of the
interpreter, at least in outline, since it may suggest
extensions in the logical design of computers to be used
mainly in list working. The evaluation of a LISP
expression is basically the evaluation of a complicated
function of arguments. To evaluate any function, the
interpreter first examines the property list of the atom
representing it. If the function is defined by a machine-
language subroutine, these instructions are obeyed, and
they control re-entry to the main interpreter whenever it
is necessary to evaluate an argument of the function.
Since, however, most functions will be defined by other
LISP expressions, it is more probable that the property
list will refer the interpreter to a definition as something
more to be interpreted. After noting the position of this
definition, the interpreter evaluates the arguments of
the function noting the results on a “parameter list.”
It can then return to evaluate the functions in the
definition, a situation only one stage removed from that
at the start of the problem and involving the same process
of examining property lists and evaluating arguments—
which may now depend on expressions stored in the
parameter list as well as on the original arguments. So
far, we have glossed over the evaluation of the individual
arguments. In the general case each of these will be a
function of arguments to be evaluated by the process
already described, leading to private extensions of the
parameter list which can be lopped off when the answer
has been found. It may well be asked how an answer is
ultimately found; in the end, it comes to evaluating a
function represented by a machine program when all its
arguments have also been evaluated.

The whole situation is like a treasure hunt in which
many of the clues are only handed over after successfully
completing sub-treasure hunts starting from the points
where the clues are kept. Of course, any clue in a sub-
treasure hunt may require yet another hunt. ... Clearly
it could become difficult to remember where to go after
completing one of the internal treasure hunts. One way
of dealing with this would be to make a note of each
new starting point on top of an in-tray on beginning a
hunt, removing the top item of the tray, which gives the
reporting point, at the end of a hunt. A similar device
is used by the interpreter to keep track of its wanderings,
but, true to type, its in-tray need not be sequential but
can take the form of a list, usually called a “‘push-down
list.”” This push-down list plays an important part in
the operation of the interpreter, enabling it to overcome
its embarrassing property of being a recursive routine,
that is one which can use itself as a subroutine. It is
fundamental that this worry should not be handed on
to a user writing programs in LISP, itself a recursive

$202Z YoJel\ g uo 3senb Aq 8161/ /L Iv/e191Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Atoms and Lists

Tab

857

Lol 0T 2 B[& -5 e[7 B[3]

Fig. 6.—Stored form of list for an integer, using rab

language, and this is much easier to do by interpreting
a LISP program rather than by translating it into
machine code and trying to forecast the recursions that
can occur without carrying out the problem.

It will have been noticed that no reference has been
made to storage addresses in writing LISP expressions.
In this, LISP resembles an ordinary algebraic autocode,
but the two differ in that LISP does not require the user
to say how many stores are to be reserved for data.
Indeed from the above description it will be clear that
it is nearly impossible to make any such estimate. At
all stages of a LISP calculation, not only at input, the
interpreter must be able to allocate stores to results
obtained by cons operations, which generate new lists.
To do this, all unused stores are linked together in a
simple list called the ““free list” from which they are
removed when needed. When the free list is exhausted,
there may still be storage space available from lists once
formed as intermediate results but now discarded, like
the familiar working spaces of ordinary programming.
Such stores are recovered by a special part of the LISP
interpreter called, in the U.S.A., the “‘garbage collector.”
This traces all lists in current use (the atom list, parameter
list, push-down list and the expression being evaluated),
adding to a new free list any stores which cannot be
reached via an active list.

A Further Example

To show what a more complicated LISP program
might look like, McCarthy gives as his example a
program for algebraic differentiation. This turns out
to be remarkably easy to write in LISP, and has been
run on TREAC. The fact that it was possible to use
McCarthy’s program as published (in addition to a
different local version) demonstrates the value of a
machine-independent language. *

As a further example, we give now a program for
finding the sum of two positive integers. Clearly this is
not a practical use of LISP, but it illustrates how the
basic rules of integer arithmetic can be expressed. The
program works for numbers with any number of digits,
and in any scale of notation. The latter is determined

* The fact that TREAC took 5 seconds to prove that dx/dx = 1
should not be taken too seriously, since the size of high-speed store
necessitates continual transferring of information to and from a
magnetic drum.

52

solely by the list for rab. It will be noticed that the
program is not all embodied in a single equation, as
implied earlier, for LISP input can be arranged to allow
for separate defining equations for functions or lists
appearing in the main equation, in this instance the one
which has sum on the left.

sum([x; y] = [null[y] — x: T — inc[x; y; tab]]
inc[x: y; bl = [eq[caar| y]; car[b]] —
cons[car[x]; sum[cdr[x]; cdr[y]11:
T — inc[step[x]; y; cdr[b]]]
step[x] = [null[x] — cons[cdr[tab]; NIL];
nulllcdar[x]] — cons[tab; step[cdr[x]]]:
T — cons[cdar[x]; cdr[x]]]
tab = (0,1,2,3,4,5,6,7,8,9)
Some words of explanation are needed before this
program can be followed. First, there are some func-
tions hitherto undefined, caar, cdar and null. Since these
functions are of general use, they can be incorporated in
the LISP interpreter for use by all programs. (The other

new functions in this example, sum, inc and step are,
of course, defined by the program itself.)

caar[1 is short for car[car[]]

cdar[] is short for cdr[car[1]

etc.

null[x] is a built-in Boolean function whose value is

T if x is the atom NIL, but otherwise F.

Secondly, it is necessary to describe the structure adopted
for the lists x and y which represent the numbers to be
added. The natural way of representing the integer 857
would be by the list (8, 5, 7), but for arithmetic opera-
tions it is more convenient to store it with the order of
the digits reversed and to use sublists of rab for each of
the digits. Thus 857 is represented in the machine by
the list
((7,8,9),(5,6,7,8,9), (8,9)

which is more clearly understood from Fig. 6. The tab
list contains the basic notion of counting and gives the
successor digit to each digit in whatever scale is used for
arithmetic, here decimal. After this, the next stage is to

$202Z YoJel\ g uo 3senb Aq 8161/ /L Iv/e191Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Atoms and Lists

be able to count with carries in a many-digit number, languages to ease the work of the logical programmer,
and this is the purpose of step. Finally, sum is found by whose problems are not at all arithmetical in nature.
introducing a working space whose initial value is tab LISP is one of the most mathematically appealing of
which, according to our convention, stands for zero, these experiments, though list structures play a central
and the loop using this is the function inc[x; y; b]. To part in many other systems, published and unpublished.
make full use of place notation, inc only adds one digit (See, for example, the references to papers by Newell
of y to x, so that it repeatedly calls in sum as well as et al., Perlis and Thornton, Windley, and Brooker and
itself, making a quite involved recursive loop. Those Morris.)
familiar with conventional programming might consider The particularly attractive feature of LISP is the way
the problems involved in using two subroutines in the in which, for the first time, a programming scheme has
way sum and inc are used here. been disguised as a formal mathematical language. The
) exceptionally heavy emphasis on recursion will, at first,

Discussion seem unnatural to the programmer accustomed to con-

Most readers who have persevered to this point with- ventional looping. Let a programmer attempt, however,
out omitting anything except the previous section will to write a machine code program for algebraic differentia-
no doubt be wondering what possible applications there tion and he will find that the mode of thought engendered
might be for yet another programming scheme which by sequential instructions runs counter to the manner in
looks, at first sight, as unnatural as some of the more which he naturally thinks about such procedures, which
unattractive machine codes. Is LISP an intricate novelty, is implicitly recursive. For instance, to differentiate a
or should it be taken seriously? As to immediate product xy with respect to ¢, one thinks
applications, the most obvious is the problem of com-
pilation, or autocode translation. It has been stated d = dy dx

: ; anclati —(xy) = x5 —y -
that the automatic formula-translation program for the dt dt dt
IBM 704 computer, known as FORTRAN, took about
twenty man-years to write in machine code. Our The act of differentiation recurs on the right-hand side
TREAC algebraic compiler (Pearcey et al., 1960) took and, furthermore, if x is itself a product, an automatic
about three man-years, but is much simpler. Apparently program should note that dx/dt can then be reduced by
what is lacking here is a suitable language in which to applying the same equation over again with different
write down the logical operations which the machine is parameters. All this is natural in LISP.
required to perform. It is not especially difficult to What applies to differentiation applies also to such
describe the translation process in words. It is virtually problems as algebraic simplification, which are closely
impossible in ordinary mathematical notation, and related to bracket manipulations required in autocode
experience has shown that it is extremely difficult in work. But beyond all the detail, it is perfectly clear
machine code, because the primitive operations of a that the tree-like forms of list structures are more suited
machine do not correspond to the larger units of ordinary to storage of certain types of data than the simple
logical thinking. Much experimenting is being done, linear lists which we normally handle in conventional
particularly in the U.S.A., in an attempt to invent new programming.
References

BROOKER, R. A., and Morris, D. (1960). ‘‘An Assembly Program for a Phrase Structure Language,” The Computer Journal,
Vol. 3, p. 168.

BROOKER, R. A., and Morris, D. (1961). *‘Some Proposals for the Realization of a Certain Assembly Program,” The Computer
Journal, Vol. 3, p. 220.

McCARTHY, J. (1960). “Recursive Functions of Symbolic Expressions and their Computation by Machine, Part 1, Com-
munications of the Assoc. Comp. Mach., Vol. 3, p. 184.

NEWELL, A., and SHAW, J. C. (1957). “Programming the Logic Theory Machine,” Proc. 1957 West. J.C.C., p. 230.

NEWELL, A., and TonGE, F. (1960). ““An Introduction to Information Processing Language V,” Conununications of the Assoc.

Comp. Mach., Vol. 3, p. 205.
PEARCEY, T., HIGGINS, S. N., and WoobwARD, P. M. (1960). “The Mark 5 System of Automatic Coding for TREAC,” Annual

Review in Automatic Programming, Vol. 1, p. 23.
PerLiS, A. J., and THOrRNTON, C. (1960). “‘Symbol Manipulation by Threaded Lists,” Communications of the Assoc. Comp.

Mach., Vol. 3, p. 195.
WINDLEY, P. F. (1960). “Trees, Forests and Rearranging.” The Computer Journal, Vol. 3, p. 84.

53

$202Z YoJel\ g uo 3senb Aq 8161/ /L Iv/e191Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

