Solution of Systems of Ordinary and Partial Differential
Equations by Quasi-Diagonal Matrices

By M. A. Cayless

Methods of solving some rather complicated systems of ordinary and partial differential equations

are described, including cases when some of them have eigenvalues or are non-linear.

The

equations are expressed in finite-difference form as ‘‘quasi-diagonal’’ matrix equations, and
subroutines for solving these on the Ferranti Pegasus computer are described, including cases

involving latent roots.

used are of much wider utility.

1. Introduction

In the theory of gas discharges, the need arises for
solving systems of simultaneous ordinary or partial
differential equations with closed boundary conditions,
some of which have eigenvalues. The coefficients of
these equations are often quite complicated functions,
and often some of the equations are non-linear. Some
examples will be found in Cayless (1960) and in Section 5
of the present paper.

We have solved a variety of systems of this type by
finite differences, expressing the differential equations in
terms of ‘‘quasi-diagonal” matrix equations, and have
written subroutines for the Ferranti Pegasus computer
for solving these, including cases where there are latent
roots. These are primarily intended for incorporation
in long special-purpose programs for evaluating the
characteristics of gas discharges. For this reason we
have used the most compact methods we could devise,
even at the expense of operating speed, to leave the
maximum space for the main program and the large
amount of data usually involved.

Although devised primarily for this application, these
subroutines are of a quite general nature, and can be
used to obtain solutions to a wide variety of equations
expressible in this manner.

2. Quasi-Diagonal Matrices

The finite-difference approximation to many systems
of linear ordinary differential equations with closed
boundary conditions can be arranged in the form of a
square matrix in which the only non-zero elements are
along the principal diagonal, or its neighbouring “‘side-
diagonals” (see, for example, N.P.L., 1957, or Fox, 1957).
In the case of a single second-order equation with the
lowest-order difference approximation, there will be
one non-zero side diagonal on each side of the principal
diagonal thus:

Ay = b (1)
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The examples given are from the theory of gas discharges, but the methods

where A has the form

ap dp
ajy 4z dp;
a3y 433 A3y

)

the remaining elements being zero. For a fourth-order
equation, there will be two side diagonals on each side
of the principal diagonal, and so on. Such matrices
may be termed quasi-diagonal matrices, and they enable
equations such as (1) to be handled very compactly: in
a computer, only the non-zero elements need be stored,
together with the elements of the vector b.

A system of simultaneous differential equations can
similarly be arranged in terms of a quasi-diagonal
matrix by suitably ordering the variables and equations.
For example, two simultaneous second-order equations
with dependent variables y and z yield the following
form

[ X X X T 01 v ] [ c; ]
X X X X z d,
X X X X X ¥, c,
X X X X X L | | d 3)
XX X XX 3 c;

(compare this with Fox, 1957, p. 61: the form given
there is not quasi-diagonal).

The finite-difference approximations to partial dif-
ferential equations can be easily arranged in terms of
quasi-diagonal matrices by taking the grid points in a
systematic manner. For the two-dimensional second-
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order equation corresponding to (1), within a rectangular
boundary the matrix has the form

X X X
X X X X
X X X X
XXX X
X <
X X X X
X X X X X ©))
X X X X X

The number of side-diagonals is equal to the number of
grid points in a row within the boundary, and there are
correspondingly more in the cases of higher-degree
equations and higher-order differences. If the boundary
is irregular, the outermost non-zero elements will move
from diagonal to diagonal, but the matrix can still be
written in quasi-diagonal form, with the furthest non-
zero side diagonal in a position corresponding to the
longest row of grid points, taking advantage of any
symmetry, of course.

Boundary conditions of the general form py 4 gy = r
are readily included, the only type presenting any diffi-
culty being in the case of curved boundaries when g = 0:
Appendix 1 shows that these also can be arranged to
yield quasi-diagonal matrices. Periodic boundary con-
ditions cannot generally be arranged in this way: for
an example, see Fox, 1957, p. 93.

There is no restriction to Cartesian coordinates, and
curvilinear systems are frequently more appropriate.
If the coefficients are at all complicated, the computer
can be readily programmed to construct its own matrix,
as in Example 2 of Section 5. Equations involving
eigenvalues are considered in Section 4.

Since only the quasi-diagonal elements are stored in
the computer, very much larger systems can be handled
than with a general-purpose scheme for solving any set
of simultaneous equations. The solutions are also
obtained very much more quickly.

3. Method of Solution

The subroutines we have written for solving equations
of this form use direct Gaussian elimination. The ele-
ments of the non-zero diagonals [including intermediate
zero diagonals, such as those in (4)] of the matrix are
stored by rows, together with the right-hand sides
(provision is made for a number of vectors, since this is
easily arranged). Pivotal condensation is then used,
about each diagonal element in turn, to reduce the
elements below it to zero, starting with a,;, until the
matrix is reduced to upper triangular quasi-diagonal
form, with unit diagonal elements. Back-substitution
then proceeds by the same process, working from the
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last diagonal element, until the matrix is reduced to the
unit matrix. The solution now occupies the locations
which originally contained the right-hand side vectors;
no drum storage space is required other than that
occupied by the original elements of the matrix and
vectors.

There are various versions of this procedure in use
[see, for example, Livesley (1960), and Deuce News
(1959), p. 25], and variations are given by Karlquist
(1952), Cornock (1954), and Wilson (1959). In its
present form the method would become inaccurate if
any of the pivotal elements became very small, and fail
altogether if one became zero. This eventuality is usually
catered for by using row interchanges (see Wilkinson,
1954), but this requires additional storage space and
working time in the case of quasi-diagonal matrices.
Fortunately it is unnecessary with matrices which are
dominated by their diagonals, or which are positive
definite, and the matrices arising in practice from
differential equations are commonly of this form. In
fact, during the present work, in which some hundreds
of equations have been solved, no case has been found
in which trouble has arisen in this way [compare with
the experience of Livesley (1960), p. 38].

The subroutines are very compact; the Pegasus form,
working in floating point throughout, occupies 10
Pegasus main store blocks (160 orders) plus the usual
floating-point routine (3 blocks); since the latter is
invariably needed elsewhere in the computation, we have
preferred to make use of it (program space being very
limited), rather than include a specially adapted floating-
point routine, which would be rather faster.

For the same reason, we have preferred to use the
program in its present simple form, rather than to use
any more elaborate version, or one of the iterative
methods which can deal with very large matrices at
very high speeds [see, for example, Deuce News, No. 45
(1959), p. 3], but which we have not been able to com-
press into such a small program space in any general
form. (See Appendix 3, however, for a suggested
improvement.)

For a matrix of n equations, r side diagonals on each
side, and s right-hand side vectors, most of the time is
used in evaluating about ra(r + 2s + 2) operations of
the form aj; =a; — a;;—pa;_p;. On Pegasus this
involves a floating-point multiplication and subtraction,
and 4 single word drum transfers. These take an
average of about 14, 18 and 4 x 8 msec respectively, a
total of 64 msec per operation. n(r + s) division
operations are needed in reducing the pivotal elements
to unity, each involving 2 drum transfers and averaging
about 18 4+ 2 X 8 = 34 msec. Allowing another few
milliseconds for the remaining operations, this gives a
total time of approximately (n/30)[r(2r + 4s 4+ 5) + s]
seconds, which agrees reasonably well with the times
taken in practice.

In the case of partial differential equations it is
obviously advantageous to take the grid points in the
order that gives the minimum number of side diagonals.
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A very much faster version has been written for the
Ferranti Mercury computer, in which operations are
carried out one whole row at a time in the fast store.

In the case of ordinary differential equations, the
solutions can be improved by using the method of the
“difference correction”; this is calculated using the same
quasi-diagonal matrix equations with new right-hand
sides [Fox (1957), p. 35]. A similar method might be
possible for partial differential equations, but we have
not tried this.

4. Eigenvalue Equations

If we have a differential equation (ordinary or partial)
which, together with its boundary conditions, is homo-
geneous, then it will possess eigenvalues, and the finite-
difference equations will be singular. In many cases the
finite difference equations have the form

Ax = Ax 5)

where A4 is a quasi-diagonal matrix and A a constant.
If A is of order n there will, in general, be n solutions
Xy, X, . ..corresponding to the n latent roots A, A, . . .
of the determinantal equation.

|4 — M| =0, (6)

where 7 is the unit matrix (NPL, 1957).

The finite-difference approximation is usually a good
one for those solutions corresponding to the smaller
roots, but gets poorer as the largest root is approached.
Fortunately, in many physical problems, it is usually the
roots of smaller modulus which are of interest, partic-
ularly that of smallest modulus, the “‘gravest” root: in
many cases, including those cited below, only this last
has any physical significance.

There are many methods known for extracting latent
roots and vectors [see, for example, NPL (1957), and
Wilkinson (1958) and (1960)]. The iterative methods
described by Fox (1957), pp. 167-9, are well-suited for
use with quasi-diagonal matrices, and we have found
the following procedure particularly compact and satis-
factory for finding the smaller roots and their vectors.
We consider only cases where the roots are real and
distinct; this is fortunately so in many practical appli-
cations arising from differential equations.

If a latent vector x is known approximately, then an
approximation to the corresponding root is determined by

> a;;x;x;
=t T ™
X.x 2 x?

1

This method has the advantage that if the matrix is
symmetric, then, according to Rayleigh’s principle, the
value of A, so determined is a much better approxi-
mation to its true value than is x.

To find the vector corresponding to the smallest root,
we first note that any arbitrary vector y can be expanded
in terms of the complete set of latent vectors x;, thus

Yy = E xiXj,y (8)
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where the «; are constants and the x; satisfy

Ax; = dix;, 9
where the A; are the corresponding latent roots. Thus
A7y =X oA x; = Z A Moy, (10)

1

where r is a positive integer.
Hence the iteration

Yno1 = Iyn (1)
will converge, to within an arbitrary factor, to the
latent vector x, corresponding to the smallest latent root
A, (provided y is such that o, % 0: this is easily
arranged).

Thus x; can be found by repeatedly dividing the
quasi-diagonal matrix 4 into almost any arbitrary vector
», using the program described in Section 3. Once a
reasonably good approximation has been obtained, the
following procedure provides a highly effective accelera-
ting device.

Supposing a constant p is subtracted from each
diagonal of A4, then from (9)

(A4 — phx; = (X — p)x;,
and corresponding to (10) we obtain

(A —ph) "y = X (A — p)~ ax,.

(12)

(13)

Clearly, if p is a good enough approximation to any
root A, then the iteration

Y1 — (A - pl) Iyn (14)

will converge to x; (again, provided «; # 0). Once a
reasonable approximation is known for x;, we use
thereafter the value A, obtained from (7) for p; recalcu-
lating A;, after each iteration (14) very rapid con-
vergence to the root is obtained. The convergence of
these procedures is discussed by Ostrowski (1958-9).

To obtain the smallest root, if nothing is known, one
or two straightforward iterations (11) are used, starting
from the l-vector. A, is then calculated by (7) and the
above procedure followed. If a good guess can be
made of the vector the initial stages may be omitted.
Alternatively, if a good guess can be made of the value
of the root, the procedure may be started from this,
using any suitable starting vector.

Roots higher than the smallest can be obtained by
using the iteration (14) directly if a good enough guess
can be made to either the vector or the root. A bad
guess may lead to the prccess converging to a neigh-
bouring root; this is readily detected by the form of
the vector in many physical problems. We have found
in practice that it is very easy to avoid this kind of
occurrence, and that the first few roots can readily be
determined in this way when the general behaviour of
the roots and vectors are known from the physical
nature of the problem. Usually from 3 to 6 iterations
have been found sufficient to obtain convergence to 6
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or 7 significant figures. Occasionally a very large matrix
has required 7 or 8 iterations.

Some caution is necessary in using the acceleration
procedure since it would fail if the latent root should
happen to be exact. This is easily avoided by using a
slightly different value for p if (7) should give too
accurate an approximation to the exact root, and
provision is made in the routine, for arranging this.
We have only had to do this once, however, with
matrices of any size.

The whole process would fail if the starting vector
used were defective in the latent vector sought (i.e. if
the appropriate «; were zero, or very small), and another
vector would have to be chosen. This is conceivable,
but very unlikely, and easily avoided; it has never
happened in our experience.

The Pegasus subroutine for carrying out these pro-
cedures operates in floating point throughout, and
occupies 21 Pegasus blocks of sixteen orders, in addition
to the quasi-diagonal “division” subroutine described
in Section 3, and the standard print subroutine. Since
these are usually needed elsewhere in the program, the
subroutine is very compact. For flexibility, the sub-
routine is arranged so that the various procedures out-
lined above can be selected at will by handswitch settings,
but, in use, automatic operation can be arranged by
including suitable convergence limits. The current
approximations to the root and (if required) the vector
are printed after each iteration, the latter being nor-
malized so that its maximum element is unity at each
stage. To use the subroutine it is simply necessary to
specify the size and location of the matrix and vector
and (if needed) a starting approximation to the latent
root. If no starting vector is specified, a unit vector is
assumed.

5. Examples of Solutions

These programs were written principally for solving
equations arising in the theory of gas discharges, and
the following examples are given to illustrate how they
have been used in this field. We have made no attempt
to justify the existence and uniqueness of solutions on
mathematical grounds, but have made sure that solutions
must exist on physical grounds provided the equations
are correctly formulated. This is no guarantee that the
correct solution will be obtained (the method might fail
for one of the reasons mentioned in Sections 3 and 4,
for example), but in practice this seems rather unusual,
and in the several hundred solutions that have been
obtained by these methods in the last two years, we have
not had a single case in which the required solution has
not been reached when the problem was properly
specified. For the derivation of these equations, together
with further examples of solutions obtained, see Cayless
(1960).

Example 1

In certain gas discharges in mixtures of metal vapours
and rare gases, in tubes of any given cross-sectional
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shape, the equations governing the density of ions and
excited atoms are either

Vix +Ax =0 (15)
or Vix + Axy =0

Vp 4+ x=0 } (16)
with x = 0, v = 0 on the wall of the tube. In these x

is proportional to the ion density and is to be determined
to within an arbitrary factor, and » is proportional to
the density of excited atoms. The eigenvalue A deter-
mines the mean electron energy. Equation (15) applies
when ionization occurs by the collision of electrons with
unexcited atoms, and equation (16) when by collision
with the excited atoms whose density is determined by y.
Since x is a density, it is essentially positive everywhere,
and this leads to the smallest eigenvalue only having
any physical significance.

An example of solutions of these equations for the
boundary shape shown is illustrated in Fig. 1, x being
normalized to have a maximum value of 100. The
equations (16) were solved by a program which used
the latent root subroutine. The input matrix was
assembled by hand and the vector ) was put equal to
the unit vector. The program divided the matrix row
by row by the elements of y, and then evaluated the

REFLECTION
PLANE

LATENT ROOTS
(15) 3-801x10°®
(16) 2-272 x107®

Fig. 1.—Solution of equations (15) and (16) within the boundary
shown. Upper figures: values of x for equation (15).
Lower figures: values of x and y for equation (16). Both
solutions normalized to x,,,, = 100
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smallest latent root and vector of the resulting matrix.
A new vector y was then obtained by dividing the
vector x by the original matrix in accordance with the
second equation. The procedure was then repeated
until it converged. Four iterations were used to obtain
the first latent vector x, the acceleration procedure being
applied after the first. Subsequently only one iteration
of the latent root procedure, with the acceleration pro-
cedure, was needed between each recalculation of .
Convergence was obtained to 5 significant figures on
the 6th recalculation of y, giving a total number of
15 matrix divisions, taking about 3 minutes each. The
whole computation, including monitoring, input, and
output, took under an hour. The solution of (15),
which could have been obtained by a straightforward
application of the latent root routine is, in fact, given
by the first stage of the above calculation.

These equations have been solved for a large number
of different boundary shapes by this program. In those
cases where (15) possessed an analytical solution, the
numerical solutions agreed to within 19 with a grid of
about 6 X 6 points over the sector of symmetry.

Example 2

In this example the equations are 5 simultaneous
ordinary differential equations in polar coordinates
with rather complicated coefficients, the first of which
has eigenvalues. They arise in a rather more detailed
study of gas discharges in tubes of circular cross-section
and are as follows:

d?n; 1 dn .
D”(Cl\pi - ;) Fp) -+ %z).,-nyn,- = 0, (} # I), (17)

d’n, 1 dn,
x( (I'pz T P d7> WL %(Zy.\'ny - Z.\'yn,\-)ni - 07
(»## x);

X=p,qrs;y=pqrs,gi(z,=0);

D., D, n, constant;

n; = kinj, ny = k.n, at p = R, k;, k, being positive
constants;

n; = njg at p = 0.

(18)

The quantities n are densities, as in Example 1, and the
quantities D are diffusion coeflicients. The coefficients
z,, are transition rates between the various states of
excitation specified by the suffices p, ¢, r, s, g, i, and are
integrals of the form

z, = au’l? Jo;xy(x)(x + xo) exp [— bu(x + xo)]dx, (19)

where: a, b and x, are constants; the f,,(x) are empirical
functions (excitation cross-sections, x being the energy
above the threshold x,) available in tabular form; and
u is a constant, related to the mean electron energy,
which has to be determined.

In this case the program is entirely self-contained; it
calculates the coefficients, and assembles the matrices
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and vectors in the form required by the subroutines,
automatically. Starting with an assumed value of u, it
calculates the required coefficients z,, by Simpson’s
rule, and assembles the appropriate matrix for solving
the 4 equations (18) simultaneously (in the manner
described in Section 3), for the functions n,. These last
are then used to formulate the matrix for solving equa-
tion (17), the finite-difference equations for which are
arranged in the form

Iinis—q -+ (kg — Mg + mgn; ooy =0,(s =1ton—1),
(20)

in such a way that the latent root A must be equal to 1
for the solution to be that of (17). The smallest root A
is then extracted by the latent root routine (as in Example
1, the other roots have no physical significance). This
normally differs from unity, and a procedure of inverse
interpolation is then used to find another value of u
which yields a value of A closer to unity after the next
iteration. The whole process is repeated until con-
vergence is obtained. With the radius R divided into
16 intervals, one whole cycle takes about 6 minutes
(the integrals taking about 2 min, the simultaneous
equations 24 min and the latent root about 1 min), and
convergence is obtained to within 5 significant figures
in 3 or 4 cycles, if the initial guess for « is within about
109%. (The actual program carries on from this point
to evaluate the complete characteristics of the discharge
from the solution so obtained.)

Example 3

In this example there are two simultaneous partial
differential equations, the first of which has eigenvalues,
and the second of which is non linear. If, in a gas
discharge of the type described by equation (15), the
gas temperature varies appreciably over the cross-
section, then the single equation (15) is modified, and
supplemented by a thermal-conductivity equation, giving
a pair of simultaneous equations which reduce (see
Appendix 2) to

TA(T)V2n + A =0 Q1)
ain

) 22

Te(T) (22)

with n = 0, T = T,(+ 0) on the boundary.

In these equations, n, T and T, are proportional to
the ion density, gas temperature, and wall temperature,
respectively, the last being either a constant, or varying
slowly from point to point on the wall; f(T) and g(T)
are proportional to the effective diffusion coefficient of
the ions, and to the thermal conductivity of the gas,
respectively, at temperature 7, and a is a constant. In
most of the cases evaluated,

AT) = T2 and ¢(T) = T3 1),
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¢ being a positive constant: obviously neither function
can be zero at any point.

These equations have been solved for various boun-
daries and values of the constants, by a program which
operates in the following way. The quasi-diagonal
matrix A representing the Laplacian operator in (21),
for the appropriate boundary, is read in. The same
matrix is used for the operator in (22), a vector V being
added to the right-hand sides of the finite-difference
equations; the elements of V are chosen to give the
correct boundary condition 7 = T,. This vector,
whose elements are zero at all the grid points except
those adjacent to the boundary, is also read in, together
with two vectors which are first approximations to n
and T (almost any physically reasonable values are
adequate for these). The program then operates as
follows:

(1) The elements of the vector representing f(7T) are
evaluated.

(2) The matrix A4 is multiplied row by row by the
elements of T. f(T).

(3) The resulting matrix is then used to evaluate the
smallest latent root A of (21), together with the
corresponding latent vector n. (As in the other
examples, only this root has any physical signi-
ficance.)

(4) The elements of the vector representing g(7') are
evaluated and used to form the right-hand side

Ao (22

Ta(ry © 2

(5) A new vector T is obtained by solving (22), using
the quasi-diagonal matrix division routine.

(6) Steps (4) and (5) are repeated, using the new
vector 7, until the process converges.

(7) The whole calculation is repeated from (1) until
final convergence is obtained.

vector, whose elements are V; —
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Appendix 1

Normal Gradient Boundary Conditions on Curved Boundaries

Finite-difference approximations involving conditions and vo — Vi == clky + ki)
of the type v, = av + ¢ on curved boundaries, where y, I
is the normal gradient, have been extensively discussed and hence vo = clky + ki) -+ Iz(h”"“" < h,v,).

by Fox (1947; 1950). In the case of second-order
equations, with only first-order differences, the equations
can still be expressed in terms of quasi-diagonal matrices
as follows.

When a = 0, the method illustrated by Fig. 2(a) is

This equation provides the boundary condition without
destroying the quasi-diagonal arrangement, although
sometimes an extra side-diagonal is introduced.

When a + 0, a method involving slightly more work,
such as that illustrated by Fig. 2(b), is necessary. The
function is calculated for points such as y, on the
boundary, again using interpolated values at internal
points, giving, in the notation of Fig. 2(b)

Wi

¥y — ¥ = k(ay, + o),

N
a

which leads to

1
11(17”' y T By — ke

Ho
B ke
@ (b) *
Fig. 2.—Methods for dealing with normal gradient boundary This likewise provides the boundary condition with-
conditions out adding more than an extra side-diagonal to the
Finite difference grid points e. matrix.
Additional and interpolated points o. These methods are most satisfactory when the cur-
) ) ) vature of the solution is small near the boundary; this
simplest. The function p is calculated at an external is fortunately the case with many applications. Obviously
grid point y, from an interpolated value at an internal higher orders of interpolation could be used if necessary.
point such as y; on the same normal, by using the We have never had occasion to consider the related
boundary condition. In the notation of Fig. 2(a) this problem for equations of higher order than the second,
gives but similar methods are probably possible. [The
o ,l(h L hoy) biharmonic equation can be dealt with in a simpler
Yoo peYe 7 Rade way (Allen, 1954; Fox, 1947).]
Appendix 2
Derivation of Equations (21) and (22)
In the notation of Cayless (1960) the diffusion equation thermal conductivity. (n,, n, and n, are the respective
for the electrons when ionization occurs in one stage is densities of the electrons, the metal vapour, and the
5 inert gas; z,; is the rate of ionization; D, is the ambipolar
D,N*n, + zgingn, = 0. diffusion coefficient, and z, is the rate of loss of energy
The thermal conductivity equation is :ilor;hse) electrons in elastic collisions with the rare gas
KV2T + z.nn, = 0, Now n, = Ap,T~'and n, = Ap,T ', where p, and p,
are the respective gas pressures (constant throughout the
where T is the absolute gas temperature and K the volume of the discharge), and 4 is a constant. Further,
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Solution of Differential Equations

the electron density n, is equal to the ion density n;
throughout, and the above equations become

TDHVZ}’I,' + Azgipuni =0

and TKN2T + Az.p.n; = O.

Suitably scaled, these are equations (21) and (22)
respectively. In many practical cases

1
D, occ T2 and K oc T3 i C)

T+ ¢

(Sutherland’s Relation), giving the forms of f(7) and
g(T) quoted.

Appendix 3

Improved Procedure for Repeated Matrix Division

It has been pointed out to the author that if, in the
elimination of the matrix elements below the diagonal,
the pivotal element, and those beneath it, at any stage,
are not actually altered in the computer, and if none of
the elements are altered during the back-substitution
process, there is some time saving by avoiding unneces-
sary drum transfers. Furthermore, if subsequently a
new right-hand side should turn up, the new equations
can be solved by the resulting matrix without making
any alterations to its elements, the elimination operations
being applied to the right-hand side only, a process
requiring only a fraction (about 2ras plus ns divisions
in the notation of Section 3) of the number of operations
required by the complete elimination.

The elements of this matrix are, in fact, those of the
lower and upper triangular factors of the original matrix
[see, for example, Fox (1957)], in their respective posi-
tions, the diagonal elements of the latter being unity,
and not stored.

We have not, in fact, used this procedure, but it
would considerably speed programs, such as that of
Example 3 of Section 5, when the same matrix is used
repeatedly with successive right-hand sides. Other
uses would be in the latent-root routine (when used
without the acceleration process) or when calculating
the “difference correction.”
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