Optimization Problems: Solution by an Analogue Computer

By A. W. O. Firth

Optimization problems in general are discussed, including the particular field of linear pro-
gramming, and the method of solving these problems (under constraints) rapidly and accurately
on an analogue computer is explained. The method of solution is explained purely from an
analytic point of view. A simple example is given to illustrate the process of optimization of a

second order function.

1. Introduction

Optimization problems involve either the minimization
or maximization of a given function of the n variables
Xy ...X, the minimization of a cost function or say the
maximization of a profit function. This function desig-
nated f(x,, X, ...x,) will be subject to certain con-
.ditions involving x|, X5, ...X,. The expression
f(xy, x5, . .. x,) may, of course, contain powers of the
X;. Such problems are familiar in many industries and
range from the optimization of the operation of a
complete chemical plant and its distribution organization,
to the optimization of an advertising campaign, with the
corresponding modification to the function to be
optimized f(x, x5 . . . X,).

Linear Programming is a particular example of an
optimization problem in which f(x, x5, ...x,) is a
linear function of x;...x, The best illustration of
this type of problem is probably the optimization of
transport costs; f(x,, x5, . . . x,,) is the cost function to
be minimized and is a linear function of the variables

Xy ...x, which themselves represent the quantities of
goods transported along the n different possible routes.
S(xy...x,)=cx; + x5 +...cpx,, Where ¢; .. . ¢,

are the costs associated with the n routes. The restric-
tions on x,...x, arise from the requirement and
availability conditions for the transportation of the goods.

Previous papers which have discussed the solution of
linear-programming problems by analogue computers
have all approached the explanation of the method of
solution by drawing analogies from particular dynamic
systems (Korn and Korn, 1956), or from geometric
n-spaces (Jackson, 1960; Pyne, 1956; Ablow and
Brigham, 1955). So far, the explanation of the analogue
computer solution has not been considered from an
analytic starting point. This paper has been written to
fill this gap and gives an analytic explanation of the
method of solution of optimization problems on an
analogue computer without the need for introducing
analogies. It is considered that this approach gives a
clearer understanding of the computer solution, and,
indeed, permits the easy extension of the method to
optimization of non-linear problems.

2. Problem

The general optimization problem (including linear
programming and other particular examples) may be
stated as follows.
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A given function f(x, ... x,), single valued and con-
tinuous over the domain of interest, is to be optimized
subject to the following restrictions:

apxy +apx; + ...+ apx, > ap
Ay X| + A3»Xy + ...+ AyX, > Ay
Ay Xy + A2 X3 + <.t AyyinXpy = Ao

It is sufficient for the purposes of this paper to consider
the problem of minimizing f(x, x5, ... X,), since
maximizing is an exactly similar process. The restrictions
may be grouped as

ap Xy + Xy + .o+ GX, = G
(fori=1,2,...m).

Some of these restrictions may of course reduce to
the simple condition x; > 0.

3. Computer Solution

The necessary condition for f(x;, x5 . . . x,,) to assume
its absolute minimum value is
of

o, =0 (j=1,2,...n).

This is not a sufficient condition, since the same con-
dition defines other stationary points of the function.
However, the introduction of sufficiency into the solution
is a simple matter and is treated later.

The computer solution is based upon the property of
an integrating amplifier (i.e. a high-gain amplifier with
capacitance feedback—see Thomason, 1961) that when
the input volts decrease to zero the output assumes a
constant value. n integrating amplifiers are required,
their outputs representing x, . . . x,, respectively.

. . ) df
Fed as inputs to the n integrating amplifiers are b—';

i
respectively (as in Fig. 1) so that, when f(x,...x,) is

. o df
driven to its minimum value, the 3; have become zero.

Consequently the integrating amplijﬁer inputs = 0 and
their outputs, now constant, represent the values of
X ...X, which minimize f(x,,x,...x,). This is a
closed-loop arrangement as the amplifier outputs x; are

oX;

J

used continuously to compute the partial differentials

which are fed as inputs to the integrators.
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If the values x; corresponding to the minimum solution
are required, these may be read off directly as amplifier
outputs to a digital printer; if the minimum value of
f(x, X35 . .. x,) is required this is computed by other
computer units from the x; values and can also be
recorded.

The sufficiency for the computer solution to be the
absolute minimum of f(x, . .. x,) is ensured by repeating
the solution say 3 times, each time taking a different
starting point for the x; and verifying the minimum
solution. Since, for a medium-sized problem, one
solution takes only 2 seconds, the sufficiency check takes
only 6 seconds, and so the complete solution is still
obtained in a very short time. With the best analogue
computers, which can resolve the fourth or fifth decimal
digit at each component operation, the overall computing
accuracy for medium-sized problems will be better than
19. The sufficiency check on certain analogue
computers may be programmed automatically, so that
the correct minimum solution is selected by the computer.
Solution time may be speeded up by feeding /;—ij to the

J
input of the integrator shown in Fig. 1, where k > 1.

4. Constraints

The introduction of constraints into the minimization
process is readily achieved by the use of discontinuous
driving voltages y;(i = 1...m) such that y; is a large
positive voltage if the ith constraint

(@i x + @ixxy + ... + @X, — aip >~ 0)
is not satisfied, and is zero if the ith constraint is satisfied.
The driving voltage v; is applied to the appropriate x;
in a positive sense to increase the value of x; and so
readjust the minimization process to satisfy the ith
constraint.

Diode feedback around the constraint amplifiers
(high-gain type) provides either y; =0 or v; = very
large positive voltage (see Fig. 2) since, in the “constraint
not satisfied” condition, the amplifier is an open loop.
From a condition which is not satisfied, the driving
voltage y; must be applied to drive back each of the
parameters x, ...x, which occur in the equation for
the ith constraint so that the ith constraint is again
satisfied. For each one of the parameters x;, the restoring
voltage v; must be factored before feeding to the appro-
priate x; amplifier, according to the effect that the
particular x; has in generating the ith constraint; i.e.
for xi, y; is factored by a;.

It is more effective to feed the y; components into the
x; integrators (as —y;) rather than to x; itself (see Fig. 3).
This is desirable since the system has a quicker response
by this method, and the process of minimization is not
affected.

The simple condition x; > 0 is ensured simply by
diode feedback round the x; integrator as shown in Fig. 3.
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Fig. 3.—x; integrator with constraints
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5. Possible Types of Solution

(a) The most straightforward optimization solution
occurs when the minimum or maximum value of
f(xy, x5...x,) lies within the region specified by the
constraints on x,;...x, In this case the constraints
do not play any great part in the solution. This type of
solution is only possible for a non-linear “objective”
function f(x, ... x,), as the very nature of this type of
solution implies the existence of a minimum or maximum
value in f(x; .. x,). A linear function f(x, ... x,) does
not possess stationary points, and so linear-programming
problems are only soluble under constraints and are
therefore all of type (b).

For the solution of a problem with a non-linear

o . . Q .
objective function the conditions % = 0 are satisfied,

and thus integration ceases precisel)]/ when the x; give
the minimum value of f(x,...x,). The best accuracy
is found in this type of solution, and this should lie well
within the 0-59%,.

(b) When the absolute minimum value of the function
f(x;, x5...x,) lies outside the restricted region for
Xy ...x, the solution is entirely determined by the
constraints

i Xy + Aipx; + ... T QX > Gi

(i=1...m).

The x; will be driven in the direction of the minimum
(or maximum) value of f(x,...x,) until a restrictive
boundary is encountered. The x, ... x, will then follow
the boundary until f(x, ... x,) is optimized under the
restrictions applied. An example of this type is given
later in the text.

As b—/

o
absolute minimum or maximum is never reached) the
solution to the problem is obtained with a slight error,
because the inputs to the x; integrators can only be
zero if there exists a a;;y; voltage contribution to cancel
gir’ i.e. if one or more of the / restrictions are minutely

vi(;lated.

Due to the characteristics of the diode feedback cir-
cuits providing the large y;, this violation is very small
indeed, so the error is minute and the overall solution
error should not exceed 0:-59 for a medium-sized
problem.

(¢) Linear-programming problems, by the very nature
of f(x,, x5 ...x,) which is a linear function of x, ... x,,
cannot have a stationary value no matter how wide the
restricted domain. In every case the optimum solution
is dictated by the constraints of the problem, and so the
remarks of solutions type (b) apply.

In the majority of linear-programming problems
f(x;...x,) is the cost function to be minimized or the
profit function to be maximized. For the transportation
problem f(x,...x,) = c¢;x; + ¢3x5...+ ¢,x,, where
the ¢; are the transportation costs associated with the n

can never be made zero for this case (the
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for the jth route and so is a constant for the simplest of
problems.

different routes. = ¢;is the cost function

6. Illustrative Example

To illustrate the application of the optimization pro-
cedure described in this paper to an actual problem, a
very straightforward example is now considered.

It is supposed that the actual problem investigation
has been carried out by a research team and the mathe-
matical model of the problem constructed. The problem
is thus reduced to the minimization of a function of two
variables f(x,, x,) where

S(x1, x3) = x2 — 4x; + x3 — 6x, + 13 (1)

subject to the restrictions

x; >0 (2)
x, >0 (3)
x|, + 2x,> 10 (4)
Xy — X = 2. (5)

The solution to this simple problem may be con-
veniently shown graphically as demonstrated in Fig. 4.

First the function f(x,, x,) (1) is constructed for
various constant values of f. The given function f(x,, x;)
of course represents a family of circles centre (2, 3). If
no restrictions were imposed in the problem then the
absolute minimum solution would be attained giving

f=0atx, = 2,x, = 3. However, restrictions (2) ... (5)

exist and these are drawn on to the graph as the lines

x; =0 (6)

x, =0 (7

X, + 2x, =10 (8)
Xy — X; = 2. )
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The restricted domain lies above the shaded boundary.
It is noted that the condition x, > 0 plays no part in
the solution, as this condition is already contained in
the other three restrictions.

The value of fis gradually minimized as x, — 2 and
x, — 3, and the point of closest approach to x, = 2,
x, = 3 within the restricted domain is the point x; = 2,
x, = 4 at which point f= 1. This is the required
minimum solution.

The graphical method of determining the minimum
value of f is useful only for two-variable problems, but
for the present purpose it gives a good picture of
optimization solution.

df df
For the analogue computer both a— and b—~ are
required: X X2
of
S.le = 2X| — 4
of
v, 2x, — 6.

The driving voltages v;(i = 1,2) are set up from
equations (4) and (5) as shown in Figs. 5 and 6.

The signs of v, and y, are then changed before feeding
to the x, and x, integrators. The complete circuit for
this simple quadratic example is shown in Fig. 7.

In Fig. 7 amplifiers 11 and 12 are the integrators to
generate the minimizing variables x, and x,. Both have
diode feedbacks to ensure that x;, > 0, x, > 0. Ampli-
fiers 21 and 22 are restriction amplifiers which generate
the driving voltages y, and y, respectively. y, and vy,
are sign changed in amplifiers 31 and 32 respectively.
Amplifier 41 inverts the sign of x,.

7. Conclusions

It is noted that the solution to this non-linear opti-
mization problem could be re-arranged to require only
6 amplifiers from a general-purpose analogue computer.
It is thought that this number could possibly be reduced
by a further 2 by making use of passive condenser-
resistance networks to replace the integrating amplifiers
used to generate x; and x,.

However, confining our attention to conventional
analogue computer units, the rule for calculation of the
number of amplifiers necessary to solve linear or quad-
ratic programming problems is:

(a) one amplifier per parameter x;,
(b) two amplifiers per restriction.

Hence a problem in 20 parameters x; under 15 con-
straint conditions would require 50 computer amplifiers.
Similarly a problem in 200 parameters x; under 150
constraints would require 500 amplifiers. 50-amplifier
computers are today common in many Research Depart-
ments, while 500-amplifier computers have already been
installed in several centres in this country.

Without increase of amplifier capacity, non-linear
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effects (such as step changes in cost coefficients) can be
appropriately set into the problem, as demanded.

The solutions for a large-scale problem (with auto-
matic sufficiency checks) might take 20 seconds to
converge, but this is very favourable compared with
solution times on a digital computer. The effects of
small changes in critical coefficients may be examined
very readily with the analogue, each new solution taking
only approximately 20 seconds to converge.

Of course accuracy in the solutions is subject to limita-
tions, but for a large scale problem would be better
than 19; it must be borne in mind here that a large
number of industries employing optimization techniques
are not able to provide problem data to the computer
to an accuracy better than 19%.

Specially designed analogue computers for linear
programming problems are being considered, with auto-
matic setting up of the problem from digital input
equipment, and with the facility for digital recording of
results. Such computers could be usefully employed in
an on-line sense in a closed loop system where high
solution speeds are necessary.
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Fig. 7.—Analogue computer set-up
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