Extensions of the Predictor-corrector Method for the Solution
of Systems of ordinary Differential Equations

By C. V. D. Forrington

Two extensions of the predictor-corrector method for the solution of systems of ordinary differential
equations are described. Both are aimed at reducing the number of derivative evaluations required

to integrate over a given range.
method is discussed.

1. Introduction

This article is concerned with the numerical solution of
systems of equations of the form

dy;

= fi = ey = L2 )
with particular reference to reducing the number of
derivative evaluations required to integrate over a given
range, while still retaining a check on the accuracy of
the solution.

The advantages of predictor-corrector methods over
Runge-Kutta processes in the above respects are well
known and will not be reiterated here except to note that
the formulae developed by Robertson (1959) and
Hamming (1959) largely answer the charge that predictor-
corrector methods may be unstable.

Methods of generalizing predictor-corrector formulae
to allow different step-lengths to be used in each equation,
and to allow arbitrary increments in the independent
variable, are developed below, and applications of each
extension are given. Each extension is considered in
some detail and the combination of the two to give an
efficient general method for the solution of systems of
equations is discussed.

The methods are developed in terms of a particular
form of fourth-order predictor-corrector pair, but the
extensions toother forms and other orders will be obvious.
For the purpose of this article, the step-length in an
equation is defined as the increment in the independent
variable between derivative evaluations. In the descrip-
tions it is assumed that only a single application of the
corrector is made.

2. Different Step-Lengths in each Equation
2.1 Basis of method. The generalized predictor

Consider the equations

dy
’d—ng(x’J’Z)
dz .
E—g(x,},Z)

and assume that the solution has reached the point x,,
using step-length A for the solution y and k for z,
where h = mk and m is an integer.
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The combination of the two extensions to give an efficient general

Let the values of y and f at the points x, — ih be
denoted by y_; and f_; and z, g at the points x, — ik
byz_ i, g_;

It is desired to progress to the point xo + h (= x + mk)
by means of one predictor-corrector step in the first
equation and m steps in the second. More explicitly,
we do not wish to calculate any values of f at inter-
mediate points of the range x, to xo + A.

It will be assumed that a predictor-corrector method
of the form

Y= agyo +a_y_
+ h(bofo +b (f 1 +b sf 2+ b 33 (D

Y= Co¥o+ € _1Y_4

+h(d fi* 4 dofo+d -1+ d 2f 3) 2

where the asterisks denote predicted values and the
coefficients are chosen to give fourth-order accuracy, is
to be used.

In order to evaluate g at the appropriate points in the
range x, to x, + mk, the values of y at these points are
required, and they must be obtained without any
evaluations of f, and hence the normal predictor-cor-
rector sequence cannot be used for the first equation.
Instead, the values of y must be obtained in some other
way. A convenient method of doing this is to use a
generalized predictor formula of the form

Yp=ao(p)yo +a_(p)y_,
+ h[bo(p)fo + b _(p)f 4
+b_(p)f 2+ b s(p)fsl)

This is of the same form as (1), but the coefficients are
allowed to be functions of p, so as to give the value of y
at a general point.

By expanding each term as a Taylor series about X,
and equating powers of 4 up to A* and then solving for
a,y, a_, and b, to b_;, we obtain

ap=1—a_, }
a_,=a_,
24 by = (p* + 8p3 + 22p* + 24p) + 9a_, 3)
24 b_, = — (3p* + 20p3 + 36p?) + 19a_, ‘
24 b_, = (3p* + 16p3 + 18p?) — Sa _, |
Ub 3= —(p*+4pP +ap) ta,
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and the truncation error is given by
51.(5)
K, = (6p° + 45p* - 110p3 -+ 90p> — l9a,,)Q~.
720
The value of @ | may be chosen arbitrarily, and it will
be determined from considerations of stability, trun-
cation error, and simplicity of formulae.

Thus we have a method of finding values of v in the
range x, to x, + mk without any evaluations of f at
intermediate points, and these values may be used in
calculating g, g». . . .. &

2.2 A practical procedure
If the value @ | == 0 is taken in the generalized
predictor formula, we get

Yo = Xothlbofob f v b of sHbof 5) ()

where by to b 5 are obtained from (3).
When p — 1, the formula reduces to

/i
B Yo 5y (55— S 3 -9 ) (5)

251

with K, = m/ﬁ_l“’

which is the Adams—Bashforth fourth-order predictor.
A convenient corrector formula is the Adams—Bash-
forth fourth-order corrector

h . . o
Yp=Jro T ﬁ(9f1 19 — 5 1+ f2) (6)
which has a truncation error
19
7 s s
K?_ 720/1 Al .

Using the above formulae, the sequence of operations
to advance from x, to x, -+ 4 is given below:

|
1 Putp:’fl;.q;:l

2 i,aPredict z, using (5)
3 Predict ¥, using (4)

4 ‘ Calculate g,

5 Correct z, using (6)

6 | Calculate g, using corrected value of z,
7! Putp=2p, g=¢qg+1

m times

8  Calculate f; using predicted value of y, and value
of z,,

9  Correct ), using (6)

10 Calculate f; using corrected value of y,
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2.3 Notes on the method
(a) Improvement of value given by generalized predictor

The method used by Hamming (1959) to improve the
value obtained from the ordinary predictor formula may
be extended to the generalized predictor, when the
improved value is given by

K,

Y = J}, T K_‘Z 7 Kl(po 7 CO)

where K| is the value of K, at p = 1. K, is the truncation
error coefficient in the corrector used, and p, and ¢,
are the predicted and corrected values obtained for the
previous step.

For the case a | = 0, the quantity to be added to the
predicted value becomes

6p° — 45p* - 110p3 — 90p? .
- 270 o

(b) Accuracy and change of step-length

With the second equation, using the shorter step-length,
the criterion for changing the step-length is the usual one

of using the value ~(p, — ¢,) as an estimate of

K,
K, — K,
the truncation error arising from the step, where p,, ¢,
are the predicted and corrected values obtained for that
step. If this is greater than the maximum permissible
error, then the step-length must be shortened, while if
it is much smaller, a longer step-length could be used.

The accuracy requirement for the first equation is
somewhat different, since it is necessary that the values
obtained from the generalized predictor should be
within the prescribed accuracy, since they are used
without correction in obtaining the solution of the
second equation. Only a predicted value is available at
the intermediate points of a stage, and it is necessary
to use the difference between the predicted and corrected
values at the end of the stage as a criterion.

For the case a_| = 0, the truncation error in the
generalized predictor is maximum in the range 0 to 1
when p == 1. Therefore, if the value obtained at p = 1
is within the required accuracy, so will the values obtained
at intermediate points. The estimated truncation error
K,

in the predictor at the end of a stage is —(p1 —¢))
K; — K,

and therefore p, and ¢, should agree to the required
number of places, otherwise the stage must be repeated
using a shorter step-length in the first equation.

In practice, since the predicted values of the first
solution must be within the prescribed accuracy without
correction, a somewhat shorter step-length must be used
than if the corrector was applied each time. With the
case a_; = 0, a reduction of about 409, in the step-
length used in the first equation would compensate for
the increased truncation error coefficient.
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(c) Starting the solution

This may be achieved by starting with equal step-
lengths k in the equations and integrating over 3m steps
to get the necessary starting values. It was found con-
venient to use a Runge-Kutta method for the first 3m
steps, although it is possible to change over to the
predictor-corrector method, using equal step-lengths &
after only three steps. This might be worthwhile if m
is large.

2.4 More than two equations

The extension to systems of more than two equations
presents no special difficulty. The number of coefficients
to be calculated for each step forward in the equation
with the longest step-length depends on the number of
different step-lengths and the ratios between them. If

h
there are r different step-lengths p (i=1,2,...,7r)

where A is the longest, it would probably be convenient
to calculate each coefficient as it is required rather than
store all the necessary values. In this case, 4(r — 1)m
evaluations must be made, where m = max (m;).

3. Unequal Increments in the Independent Variable
3.1 Generalized predictor-corrector formulae

We now consider the case of equal step-lengths in
the equations at any point, but with successive step-
lengths which are unequal. The method is given for a
single equation, but the extension to a system is straight-
forward.

Assume that y and f are known at the four points
X, Xo + P1» Xo + P2, Xo + p3 and are denoted at those
points by yo, fo: V1, f15 V2, f23 ¥3, f3. It is desired to find
formulae of similar forms to (1) and (2) to give the
value of y at the point x, + p.

First consider the predictor and write it in the form

V¥ =agyo +ay, + bofo + by fi + bafa+ bsfs (7)

where aq, a; and b, to b are functions of p,, p,, p3 and p.
Each of the y’s and f’s may be expanded in a Taylor
series about x,, and the coefficients of the successive
derivatives, up to the fourth, equated to give equations
for ay, a, and b, to b;.

The equations obtained are

ay+a; =1
apy+bo+ by +by+b3=p
a,pi + 2bypy + 2b,p; + 2b3py = p?
a,pi + 3b,p} + 3b,p3 + 3b3p3 = p’
a,p} + 4b\p} + 4b,p; + 4bsp3 = p*.
As before, one coefficient may be chosen arbitrarily

and is determined by considerations of stability, trun-
cation error, and simplicity of formulae.
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A similar procedure with the corrector formula
y=coyo b oy Hdff +dofo +di fy + dafy (8)

gives ¢y + ¢ =1

opy+d+dy+d +dy=0p
e\p}+ 2dp + 2d,py + 2dyp, — p>
e\ p} + 3dp? - 3d,p? + 3dypt = p?

c1pt + 4dp’ + 4d,p} + 4d,p3 = p*.

Again one coefficient may be chosen arbitrarily.

3.2 A practical procedure

Taking a;, = 0 in the generalized predictor, corre-
sponding to the fourth-order Adams-Bashforth pre-
dictor, we get

ao - 1 \1

al - 0 ‘

p. _ PH(6pipy — 4ppy — dppi + 3p) |
} 12p3(py — p3)(p2 — P3)

b — pH6p\ps — 4pps — 4pp, + 3p?) } 9
? 12py(p1 — P2)(P3 — P2) '

p P2 2pabs — 2psbs
—

2p,
by =p — (by + by + by).

¢, = 0 in the generalized corrector gives

CO = 1
;=0
4 — P’Cpy—p
2 12py(p — )P — P2)
g p*2px — p) (10)
" 12pi(p — p)(p2 — PY)
|
d— p* — 2pdy — 2_sziz !

2p
|
dy=p—(d+d + dy) J

which, when equal step-lengths are used, gives the
Adams-Bashforth fourth-order corrector.

Using equations (7) and (8) as predictor and corrector
respectively, assume that a point x, has been reached
and that the previous values of y and f have been
obtained at x, — h,, x, — h,, x, — h3. The values of y
and f at x,, + h are required. The necessary coefficients
in (7) and (8) are obtained by putting p, = — hy,
p,= —hy, p3= —h;, p=~h in (9) and (10). This
enables y at x, + & to be calculated. Thus values of y
at unequal intervals in x may be calculated.
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3.3 Notes on the method
(a) Improvement of predicted value

The trucation error in the generalized predictor is
given by
K y®

5!

where K| = (p> — a,p] — 5b,p} — 5b,p% — 5b5p%), and
in the generalized corrector by

Kyy®
5!

where K, = (p® — ¢, p] — 5dp* — 5d,pt — 5d,pd).

An estimate of the truncation error in the predictor is
given by
K,
Kzf o Kl/(pO CO)

where p,, ¢, are the predicted and corrected values
obtained for the previous step, K{, K; the truncation
error coefficients for the previous step, and K, the
truncation error coefficient in the predictor for the
current step. This may be added to the predicted value
to give an improved approximation to y.

(b) Accuracy and change of step-length

An estimate of the truncation error in the corrector is
given by —»KZ—(pl — ¢), where all the quantities
refer to the current step. This may be used as a criterion
for determining the suitability of the step-length in the
same way as with the ordinary predictor-corrector
method.

(¢) Starting the solution

The first three steps in the process must be performed
by some other method, not depending on earlier values.
It is convenient to use a fourth-order Runge-Kutta
method for this purpose.

(d) More than one equation

The method extends immediately to systems of
equations, the coefficients in the formulae being the same
for each equation. Thus as the number of equations
increases, the proportion of the computation time spent
in evaluating the coefficients at each stage will decrease.

4. Applications of Above Methods

The first method is of use when some solutions of a
system are varying much more rapidly with the inde-
pendent variable than others. Such systems arise in
some physical problems where ratios of a hundred to one
in the time constants involved are not uncommon. If

G*
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equal step-lengths were used in the equations of such
systems the computing time might be prohibitively long,
whereas using different step-lengths, allowing a uniform
accuracy bound for all the equations, a considerable
reduction is possible. The method has been demon-
strated for various equations on the R.A.E. Mercury
computer, and satisfactory results have been obtained.

The second method may be used where it is desired to
change the step-length frequently, or make it a function
of some other variables in the problem. Alternatively,
it can be used as an efficient method of changing the
step-length in ordinary predictor-corrector methods
which is both fast and requires very little extra storage
space. The coefficients in the formulae need only be
evaluated when a change of step-length is about to take
place, or has taken place in the previous three steps.

The possibility of choosing an optimum step-length at
each stage for use with the second method is being

investigated, and one idea is for successive step-lengths
15

e

> hy.

where e is the maximum permissible truncation error in
a step, e’ is the estimated truncation error for the
previous step, and k is some constant less than one.

to be determined by the formula hZ:k<

5. Combining the two Methods

In theory there is no difficulty in combining the two
methods to give a general method for the solution of
systems of equations in which the step-length in any
equation at any stage depends only on the rate of
variation of the solution of the particular equation in
the neighbourhood of the current value of the inde-
pendent variable. However, there are several practical
disadvantages with a completely general procedure of
the above form. For example, for each step forward in
the equation using the shortest step-length, up to 4n - 4
different coefficients would have to be calculated, and
the time taken to do this might be a significant propor-
tion of the total computing time. Also up to 4n
quantities, representing the previous three step-lengths
and the current step-length in each equation, must be
stored, and this, together with a longer program, would
represent a considerable increase in the storage space
required, compared with ordinary methods.

Rather more attractive is a restricted scheme which
allows only a limited number of different step-lengths to
be used at any stage, and which makes a change of step-
length a relatively infrequent occurrence. For example,
if the equations were split into two groups, representing
two different step-lengths, and no change of step-length
was occurring, only four coefficients would have to be
calculated for each step forward in the shorter step-
length, and these would be of the simple form given by
(3). When a change of step-length was required, the
second method could be used to obtain the appropriate
coefficients, and very little extra storage space, inde-
pendent of the total number of equations, would be
required.
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A scheme like the above would be applicable to
physical systems involving two widely different time
constants, where the equations for the rapidly varying
solutions depend on the slowly varying solutions.

Other ideas for dealing with systems with widely
different time constants are being developed by R. H.
Merson and are based on his own variations of the
Runge-Kutta method (Lance, 1960).

6. Stability of the Methods

A complete stability analysis for the above processes
is beyond the scope of the present paper, but the following
points are noted.

(a) By restricting the formulae to fourth-order
accuracy when sufficient information is used to give
fifth-order accuracy, the coefficients are obtained in
terms of a single arbitrary parameter. Robertson (1959)
considers the stability of the corrector applied to a single
equation and using equal step-lengths, and obtains a
condition on the value of the parameter for stable
formulae. The value used in the formulae developed
above satisfies that condition and gives a reasonable
compromise between accuracy and radius of stability.

(b) The uncorrected values given by the generalized
predictor and used at intermediate points of a stage will
not themselves become unstable over the stage, since
they are independently obtained from the corrected
values of the solution at earlier pivotal points.

(¢) The value taken above for the parameter gives the
Adams—Bashforth fourth-order method when equal
step-lengths are used, and this is well known as a stable
process.

7. Examples

The following examples illustrate the economies that
may be obtained by using different step-lengths in the
equations.

(i) It was required to obtain the solution of the
equations
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d)'l B B

I fi = cos x

(1_1'2 . .

i f> = 100y, cos 100x -+ cosxsin 100x

at x = 1, given that y, = », = 0 at x = 0. The results
obtained were checked against the formal solutions

1 =sinx
¥y = 1y sin 100x.

Using equal step-lengths /4 for each equation, the
value h = 0-05 gave six-figure accuracy in the first
equation, while a value # = 0-0005 was necessary to
obtain the same accuracy in the second. Using different
step-lengths h, and h, in the two equations, six-figure
accuracy was obtained with #; = 0-025 and h, -- 0-0005.
With equal step-lengths it was necessary to evaluate f
at 4,000 points in [0, 1], whereas using different step-
lengths it was calculated at only 80 points.

(i) An example for which the solutions were not
known is now given.

dr

—dx — fl = — (l +- xl)(,f.\'cos X
dy, ‘
Tx’ = f5 = y; -+ cos (20y,).
Given y, = 2,y, — Oatx = 0, the solutionsat x — 1

were required.

Using equal step-lengths in the two equations, the
following values of h were tried: h = 0-00125, 0-0025,
0-005, 0-01.

Results consistent to six figures were obtained with
h=0-00125 and & = 0-0025, and so the value
h = 0-0025 was taken as a suitable step-length. With
this value, 800 evaluations of f; were necessary.

Using different step-lengths s, and #,, consistent
results were obtained with 4, = 0-025 and 4, = 0-0025.
In this case only 80 evaluations of f; were required.
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