Data Transcription in A.D.P. Systems

to work out system needs and standards. As far as codes
were concerned there was need for some rationalization; that
was difficult but there were now hopeful signs of some
successful thinking and collaboration in this field.

Mr. Stringer concluded by saying that many of the things
he had said he had said with his tongue in his cheek, and it
had had the desired effect of encouraging discussion. This
he found most gratifying, since he considered that the dis-

cussion was more important than what he had said in his
paper.

The Chairman said he was sure it would be agreed that
Mr. Stringer’s provocative address was the note on which to
close the conference. He would like to say “Thank you” for
coming along in such numbers and making the Conference
such a success.

The Conference then terminated.

Correspondence
To the Editor, A=[+T
The Computer Journal. END
Sir, 11 [GE/1]
A=A=T

1 was very interested in the recent articles of Brooker and
Morris (1960, 1961) on an ‘““‘Assembly Program for a Phase
Structure Language.” Their scheme is very general, but it
suffers from the disadvantage that it is not possible to use
statements as parameters in statement definitions—only one
level and not a hierarchy of statements is allowed. This
restriction could be serious if their program were used to
translate a language such as ALGOL (Woodger, 1960).

In their articles, Brooker and Morris distinguish carefully
between phrases and statements. The format or syntax of
each is defined, but the meaning or semantics of a phrase is
defined only when this occurs as part of a statement.

If the distinction between phrases and statements is
removed (the term class being used to include both concepts),
a simpler and more powerful scheme can be developed. We
construct a dictionary of class identifiers giving the syntactic
definition of the associated classes. Some of these classes
will also be defined semantically and then the dictionary will
contain a reference to this definition also. This semantic
definition corresponds to the statement definition of Brooker
and Morris. It will be obeyed interpretively by the trans-
lation routine to produce the compiled program. One can
now easily allow any class to appear as parameter in the
syntactic and semantic definitions. The definition of general
types of statement (such as the ALGOL conditional state-
ment) is now much more convenient.

The analysis record constructed by the expression recog-
nition routine will now include, at the end of the record of
each subclass that is defined semantically, a reference to this
semantic definition. This will be used later by the translation
routine.

As an example I give the definitions of [GE] which would
result in instructions being compiled, which when obeyed
would set the accumulator A equal to the current value
of [GE]

Syntactic definition : [GE] = [+ ?]T, [GE] + T
Semantic definition : [GE]

— 1if [GE]= [GE/1] + T

Let [GE] = [+ 7T

References

END

As syntactic definition of a conditional statement we might
take:
Syntactic definition : [Unconditional statement] = [jump N],
[Y = [GE]]
Syntactic definition : [Conditional statement] = if
[GE/1] ¢ [GE/2] then [unconditional statement]

which includes both the forms:

If y > 0 then jump N
and

If a2 + b2 > a/b then x = a? + b2

The semantic definition is easy to construct once elementary
conditional jumps have been defined. It would take the form

semantic definition : [conditional statement]

Let [conditional statement] = if [GE/1] ¢ [GE/2] then
[unconditional statement]

tsl = [GE/I]

ts2 = [GE/2]

jump o unless tsl ¢ ts2

[unconditional statement] ”

(o + a3) = oy

END.

(here a3 contains the number of an unused label).

The scheme suggested here seems to be a little simpler
logically, as well as being more general, than that of Brooker
and Morris, but no account has been taken of the efficiency
of translation. On a particular machine it might be found
that one method can be programmed much more efficiently
than the other, and that method would then be chosen.

J. M. Watt.
Computer Laboratory,
The University,
Liverpool 3.
3 March 1961

(See p. 176 for authors’ reply.)

BRrROOKER, R. A., and Morris, D. (1960). ‘““An Assembly Program for a Phrase Structure Language,” The Computer Journal,

Vol. 3, p. 168.

BROOKER, R. A., and Morris, D. (1961). “Some Proposals for the Realization of a Certain Assembly Program,” The Computer

Journal, Vol. 3, p. 220.

WOoODGER, M. (1960). ‘““An Introduction to ALGOL 60, The Computer Journal, Vol. 3, p. 67.

G

$202 YoJe\ ¢ uo 1senb Aq G£8€//91/2/v/81o1e/|ulwoo/woo dno-ojwapeoe//:sdiy woli papeojumoq

