The Reduction of a Matrix to Codiagonal Form by Eliminations

By C. Strachey and J. G. F. Francis

This paper describes a method of reducing a general matrix to codiagonal form by using a sequence
of elementary transformations, and identifies the second stage of the reduction with the Lanczos

transformation.

Introduction

It is possible to derive several interesting similarity
transformations of a matrix by means of series of ele-
mentary transformations. The whole operation may be
very complicated, but each step is relatively simple, and
when considered in this way we gain a new insight into
the computing process and can often see more easily
where numerical errors creep in.

We describe in this paper the use of elementary trans-
formations to reduce a matrix first to almost triangular
form and then from this to codiagonal form. We prove
that the second stage of the reduction is exactly equi-
valent to the method of Lanczos (1950) and briefly
discuss the relationship that the codiagonal form bears
to the almost triangular matrix and to the original matrix.
Various points concerning errors and accuracy, and some
details of a practical program are then mentioned.

1. Notation

Capital Roman letters represent n X n matrices, bold-
face lower-case Roman letters represent column vectors,
and small Greek letters represent scalars. A prime indi-
cates a transpose, so that #’ is a row vector. We shall
generally consider matrices to be made up of sets of
column vectors, e.g. 4 = (a,, as, . . ., a,); when indi-
vidual elements of a matrix are required they will be in
light-face lower-case Roman letters with a double suffix
(occasionally omitted).

We shall use 4 for a general square matrix, B for a
lower almost triangular matrix (i.e. with b; = 0 for
Jj>1i-+1) and C for a codiagonal matrix (i.e. with
c; =0 for |i —j| > 1). We shall also use e, for the
rth column of the unit matrix, so that I = (e, e,, . . ., e,).

2. Elimination Transformations

We define an elimination transformation of the matrix
A to be an elementary similarity transformation TAT - !,
where the matrix T (which consists of the unit matrix
with one additional off-diagonal element) is chosen so

that one particular element of TAT~! is zero. For
example
1 0 0 0 O ay ap a4y Ay as
0 1 0 wn O y Ay Ay Ayy A4ys
o 0 1 0 O az as; dszz Azs ass
0 0 0 1 O g1 QG Q43 Agq Ay
0 0 0 0 1 as; asy; Qs3 dss dss
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‘a a 00 0 0 0 07 ‘a a 00 0 0 0 07
a a a 0 0 0 0 O a a a 0 0 0 00
a a a x y ¥y vy yp a a a x 0 0 00
a a a a a a a a a a a a a a a a
@« a aaaaaal”aaaaaaaa
a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a
a a a a a a a a gaaaa?z?zzz

Some practical problems of computation are discussed.

a
where u = ;‘4 (a;, must be non-zero). Only the under-
12

lined quantities have been altered by the transformation.

This transformation will be referred to as *“‘eliminating
a4 With a;,” or “‘using a;, to eliminate a,,.” It is to
be thought of as first subtracting u times the second
column from the fourth and then adding p times the
fourth row to the second. These two operations (the
column and row operations respectively) can, of course,
be performed in the reverse order if required.

So long as the element which is used for eliminating
(a1, in the example) is not on the principal diagonal, the
multiple involved in the row and column operations is
merely the ratio of two elements of the matrix, and is
therefore quite simply found.

3. Reduction to Almost Triangular Form

The element immediately to the right of the principal
diagonal is used to eliminate all the remaining elements
in the same row to its right. The process starts with the
top row. A typical stage is:

The element x is used to eliminate the elements y.
The corresponding row operations all alter the row
below.

In this case we can also allow a permutation (i.e. the
interchange of two rows and the corresponding columns)
before the eliminations so that x is not smaller (in
modulus) than any of the y’s. This means that we can
guarantee that none of the u’s used in the elimination
will be greater than one. The whole operation can
therefore be carried out in fixed-point arithmetic.

1 0 0 0 O ay, ap a3z 0 ags
0 I 0 —pn O a1 4y dy3 Gy Qps
0 0 1 0 Of = lay ay ay ay ass
0 0 0 1 O Ay Gy Ay Gy dgs
0 0 0 0 1 sy dsy ds3 254 dss
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Reduction of a Matrix by Eliminations

The final result is a matrix in the form of a lower
triangle with one extra element in each row to the right
of the principal diagonal. This ‘“almost triangular”
form is the starting point for several other transforma-
tions and is of interest on its own account. See
Wilkinson (1959) for a full description of the reduction
to this form.

4. The Codiagonal Form derived from the Almost
Triangular Matrix

The elements immediately below the principal diagonal
of the almost triangular form are used to eliminate all
the other subdiagonal elements thus leaving the matrix
in a codiagonal form.

We eliminate the elements column by column starting
with b, the first column. Thus we use b,, to eliminate
the elements b3, b4y, ..., b,;. The elimination trans-
formations multiply together to give the equation (shown
in Table I on p. 170) where the numbers u, are the
ratios b,,/b,;.

In eliminating these elements the only other elements
in the matrix that are changed are those (underlined
above) in the second and third columns. We now eli-
minate the second column with the element b5, (which

involves altering the elements in the third and fourth
columns), and this process is repeated until the codiagonal
form is reached.

5. Connection with the Lanczos Method

The elements b in columns (r + 1) to » are unaltered
from the almost triangular matrix B; the first (r — 2)
columns are in their final codiagonal form.

The next stage in the elimination process is to use the
element 3, to eliminate all the elements x in the column
below it. To do this, we form the ratios x/B,. Let us
therefore define a vector v, whose elements are these
ratios, with zeros in the remaining positions (i.e. rows
1 to r). Thus for the (r — 1)th column of M, we have

To0 1 o7 ro
\ . . .
0 0 L
‘ Yr—1 Yr—1 8 ‘
X 0 x|
X o x
| [T T \

| | | . :

I N .
Lo~y Lo _J [x_|
Note that the vectors v, are defined successively by
this equation at each stage of the process.
For the purposes of the induction we assume that the

rth column of M, takes the form y, = b, — y,v,_|.
Thus we have

In this section we shall prove that the elimination M, = (e €. Cn X ¥ by 1o by oy By)
method described above for reducing the almost tri- where X, —=c¢,, + Bo,
angular matrix to codiagonal form is in fact exactly _
equivalent to a method suggested by Lanczos (1950). Yr=br—yoy.
We shall show that the columns of ratios which are used The next stage of elimination is obtained using the
in the elimination process are identical with the right- transformation M, | = T,M,T, !
hand set of vectors defined by Lanczos. where
We shall use induction to prove a recurrence relation _
between these vectors, and later identify them with the T, = (e, e neyle,—vle 1.
Lanczos vectors. so that
Let us consider the elimination process when the first _
(r — 2) columns have been dealt with. The matrix will T, ' = (e, ey ..ne_y,[e,+v)e.0p,...,€)
take the form =(e, €5 .., €,V 0. ., ..., €).
[ V2 N
B2 *2 V3
3
. Yr—2
Br—2 2 Vroy
M, = r—1 %1 Yr
By b
x y b b
b y b b b
L x % b b b |

169

¥202 Iudy 61 U0 1senb Aq y91£8€/89L/2/v/8101 e/ |ulWwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq



Reduction

of a Matrix by Eliminations

Table I
1 by by 1
1 by by by 1
—ps3 1 by by by by ps 1
T4 1 Ha 1
. . bn—l n .
— Uy 1 by . . . . b, M 1
b bi ]
b 1_722 [_723
- 0 1_732 {’33 b4
— 10 by bay
. . . . b, 1n
0 an bn3 bn4 bmz
Note that v, = e, + v, is a vector with unity in the Thus we can put x,=¢, + B,.,v,., where v,

rth row and zeros above it.
Then M, T, ! only differs from M, in the rth column
which becomes

Muv, =y, + Mo, .

As v, is zero above the (r + 1)th row, and columns
(r +1) to n of M, are the same as those of B, this
becomes

Moy, =y, + Mo
- br - )’.1-’r~1 '{— Bi}l
= Bv, —y,v,_, .

It can readily be seen that the first two non-zero ele-
ments in this vector are the (r — 1)th and the rth. The
first of these is y,; we will call the second «,. (This is
the definition of «,.)

We define vy, ., as the top non-zero element of b, .
(i.e. y, = b,.. 1) so that we get as the rth row of
M, T !

0,0,..., 8,0, ¥.:1,0...0]

The effect of premultiplying by 7, is to subtract
multiples of this row from the rows below it so as to
reduce the rest of column (r — 1) to zero. This will
alter columns » and (r + 1) by subtracting from them
o, v, and vy, . v, respectively.

Thus column (r — 1) becomes ¢, _;, column r becomes
x, = Bv, — v, v, | — o,v,and column (r ++ 1) becomes
Y,.1=b, — vy, v,. Note that the form of y,  is
similar to that of y,.

We define B, ., as being the element in the (r + 1)th
row of x,. The two elements above this have not been
altered by premultiplying by T,, so that the first three
non-zero elements of x, are v,, «, and B8, which are
the non-zero elements of c¢,.
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will be zero down to (and including) row (» + 1). This
is the form we assumed for x,_ | initially.

To complete the induction we must verify that the
first step for r = 2 is correct. If we assume v, =0

(so that v, = e,), «; = b;; and B, = b,; we can put

Bavy = by — ¢, =

bnl

Then we have M, = B so that the correct conditions
for starting exist with x;, = ¢, 4+ B,v, = b, and
y> = b, — y,v; = b, which are the first two columns of
B.

We can now form a recurrence relation connecting
the v,. We have

X, = €, + Br—rlvr 1 Bvr — YiVro1 T XU,

The vector ¢, has elements only in rows (r — 1), r and
(r +1).

If we put these elements at the top of the vectors
y,v,_y, a,v, and B, v, | respectively we get

B, v, = Bv, — (H

This is exactly the recurrence relation used by Lanczos
in his method of ‘“minimized iterations.” However, at
first sight the method used by Lanczos for determining
the constants (x, S and y) involved appears to be
quite different. Lanczos uses a second set of row
vectors uj, us, . . ., #, which satisfy a similar recurrence

AU, — YV, .
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Reduction of a Matrix by Eliminations

relation (with the same «, 8, y) and which form a
biorthogonal set with v, v,, ..., v,. The constants «,
and y, are determined by the requirement that v,
shall be orthogonal to u, and u,_; (which ensures that
it is also orthogonal to the earlier u’s), B8, is a scale
factor chosen to make the scalar product u, v, .,
equal 1o unity. If the matrix ¥ is made up from the
column vectors v (so that ¥V = (v, v,, .. ., v,)) and U’
is similarly made up from the row vectors u’, the
recurrence relation gives the matrix equation BV = VC
while the biorthogonality condition (together with the
scaling) gives U’V = I so that U'BV = C is in fact a
similarity transformation which produces the codiagonal
form C.

The algorithm given by Lanczos shows that once the
initial vectors w; and v, have been chosen, all the
remaining vectors are in general uniquely determined.
(The exceptions are relatively unimportant.) Thus the
transformation matrices U’ and ¥, and hence also the
codiagonal form C, are fixed by the choice of the initial
vectors. We shall now show that the elimination method
described above is equivalent to choosing the initial
vectors uy = vy = ey.

If we choose u; = e, = (1,0, . . ., 0) and take account
of the nearly triangular form of B and the recur-
rence relation satisfied by the wu, (viz. y, 4, .| =
uB — xu, — Bu,_,) it is easy to see that each suc-
cessive u, has one more non-zero element than the last,
so that the matrix U’ whose rows are uy, us, . . ., 4, 1s a
strictly lower triangular matrix.  The fact that
v, 1 = b,, ., ensures that the elements on the principal
diagonal of U’ are all unity. Thus U’ is non-singular
and ¥=U'"! is also a lower triangular matrix with a
unit diagonal. Thus the orthogonality condition on the
vectors v, (i.e. u,_v,=u,_,v,=0) is simply that
they must form the triangular matrix V" of the correct
shape. It is an inherent property of the method of
minimized iterations that the orthogonality conditions
u,_ v, = u,_,v, = 0 imply that u;v, = 0 for all s <r,
and also that w,v, = O for all s < r. Thus the fact that
the matrices U’ and V are strictly lower triangular,
combined with the recurrence relations, is sufficient to
show that U'V = I.

Returning now to the elimination method, the com-
plete reduction will be

TBT-' =TT, ,...T,BT;'T;'. .. T, !
and it is easy to see that
T-'=T;'T;7'.. . T;' = (e}, vp, v3, ..., 0,) =V,
as v = €,

and furthermore, that ¥ will be a strictly lower triangular
matrix. Thus in equation (1) which is the recurrence
relation both for the elimination method and for
Lanczos’ algorithm, the constants are determined to
ensure that the vectors are of the right form, and this
automatically ensures that they are orthogonal to the
vectors ., although these are never found explicitly.
This shows that the two methods are equivalent and,
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moreover, that all the numbers involved are the same.
The right-hand Lanczos vector is exactly the column of
ratios used in eliminating the elements below the sub-
diagonal of the rth column of the matrix.

6. Some Remarks on the Codiagonal Form

We can choose the starting vectors u; and v, for the
Lanczos method at will, apart from the normalizing
condition u{v, = 1, and different choices will in general
give different codiagonal forms. A codiagonal form
with a fixed characteristic equation has generally n — 1
degrees of freedom if we disregard transformation by a
diagonal matrix (diagonal scaling does not change the
elements on the main diagonal nor the products of
corresponding off-diagonal elements, and these are the
essential quantities). If we write Ay (A) = |C — Al| and
A,(A) for the minor of the first element of this deter-
minant, then the quantities «, and B,y, are defined by
the continued fraction expansion:

:ocl—)\— Bz’yz

53?’3

“2"’\_@3*)\—...

Thus the n — 1 degrees of freedom in C correspond to
the n — 1 choices we have (in theory) for the coefficients
of the polynomial A,(}).

The Lanczos starting vectors have 2n — 1 degrees of
freedom. In general, of these, n — 1 determine the
resulting form C, and # arise from the fact that #; and v,
can be replaced without effecting C by u(P~! and Puv,
where P = P(B) is any polynomial in B. Thus
U'P-'BPV = U’'BV = C because B commutes with P.
In general an arbitrary polynomial in a matrix of order
n has n degrees of freedom.

In the elimination method u,, which is implicit, is
necessarily equal to e, but we can choose v, by a slight
modification of the process. If v, = e; + v, the first
element of @, is zero (as u{v, = 1), while the remaining
elements are at choice giving the required n — 1 degrees
of freedom corresponding to those of the codiagonal
form. If we wish D, to be non-zero we initially pre-
and post-multiply B by T, and T ! respectively,

where T, = (e, — vy, ey €3 ...,¢,)
and TP = (e, + vy, e €3, ..., 6€,).
Thus we have
TBT-! = Cwhere T=T,T,_, ... T,T,
and so we see that
T-!'= (v, vy, 03, ..., 0,) = V.

The transformation of B by T, is exactly similar to
the subsequent transformations or eliminations by the
other T,. Multiples of the first row of B (i.e. of the
elements b, and b,,) are subtracted from the rows
below, and the same multiples of corresponding columns
are added into the first column. The multiples are the
elements of ©;. One can show that in general the row
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Reduction of a Matrix by Eliminations

operations can change the minor of the first element of
|B — M| arbitrarily and can thus change arbitrarily
Ay(A) defined above. (This minor is unchanged by
the subsequent eliminations because the matrices
T,, Ts, ..., T, have their first rows and columns equal
to e;.) Thus one can show independently of any con-
sideration of degrees of freedom that, in general, a
suitable choice of multiples is sufficient to determine
any codiagonal form C similar to B.

When we consider the complete reduction to codiagonal
form starting from the square matrix 4, as described in
Sections 3 and 4, and not including a choice of v,
different from e,, it is interesting to note that all the
transformation matrices concerned in the eliminations
have first rows and columns equal to those of the unit
matrix. Therefore, if X’AY = C is the complete trans-
formation, we have x; =y, = e;. Thus we can easily
see that the elimination method produces the same
codiagonal form as the Lanczos method using matrix A
and starting vectors equal to e, and that the minor of
the first element of |4 — Al| is equal to the same minor
of |C — M| and determines the particular codiagonal
form obtained. We must point out that the inter-
mediate arithmetic involved in the Lanczos method in
this case is quite different from that in the elimination
method.

7. Accuracy

When considering the accuracy of the method it is
worth while investigating where the errors can come in
and how they can grow. In common with most direct
methods the method described above for reducing a
square matrix to a codiagonal form will give a precise
answer provided the operations are carried out with
infinite precision. It follows therefore that the original
source of all errors lies in the finite precision of the
arithmetic, in other words in the round-off. When they
are first formed these round-off errors are quite small
and, unless the overall error of the process is con-
siderably larger than this, there is not usually much
cause for concern. There are two ways in which the
originally small round-off errors may grow and become
objectionable. The first is by the accumulation of a large
number of small errors by addition or subtraction. The
second is by multiplication of a small error by a quantity
appreciably larger than one.

In the first part of the process described, i.e. the
reduction to nearly triangular form, we have seen that
by suitable permutations it is possible to ensure that
none of the multiples used in the process is greater than
one. This means in turn that there is no possibility that
any round-off error is multiplied by a large quantity, so
that the only way in which errors can accumulate is by
addition. Procedures of this type are numerically very
well behaved; not only are they eminently suitable for
fixed-point operation, but they also turn out to be very
accurate. It is not always possible to give an exact
error analysis and it might seem at first sight possible
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for the error to double at each operation. However, in
practice the rate of build-up of error is very much lower
than this. Wilkinson has carried out an exact error
analysis for a process which is somewhat similar to the
one described here. In the case of triangulation by
Gaussian eliminations with interchanges he has shown
that the result, although not the exact solution to the
problem given, is the exact solution to another problem
which differs from the original one in only a few units
in the last place.

We feel confident therefore that the first part of this
process is stable and extremely well-behaved, and that
unless the elements of the original matrix are known
exactly it is sufficient to do the arithmetic to single
precision and fixed point. The nearly triangular matrix
formed will be an exact similarity transformation of a
matrix which differs from the original matrix by only a
few units in the last place. There are various practical
advantages to this. In the first place about 5/6ths of the
total number of multiplications in the whole reduction
are consumed in the first part of the process. If this
can be done single precision and fixed point the saving
in time is very considerable. Furthermore this part of
the reduction is the only one in which a large number of
elements of the matrix have to be stored. It is quite
simple to arrange a program so that the original matrix
is overwritten by the nearly triangular form, so that one
matrix space will be sufficient for this part of the
operation.

When we come to the second part of the process, the
reduction of the nearly triangular form to a codiagonal
form, the situation is not so satisfactory. We are not
able to perform any interchanges before eliminating the
elements of a column so that we are unable to guarantee
the size of the multiples involved. Nor does there seem
to be any reasonable method of choosing an initial set
of multiples o, so that the multiples subsequently involved
can be controlled in size even if such a set exists. This
has two consequences: in the first place we are no
longer able to be sure that the numbers will remain
fractional, and in the second, we are faced with the
possibility of errors growing catastrophically by multi-
plication by a large number. The cure for both these
difficulties is to work to greater precision.

We have found it convenient to continue to do the
arithmetic fixed point allowing an integral part and two
or three lengths for the fractional part of each number.
It will be seen that as there are only two columns of the
matrix which are altered during a stage of elimination
(the x and y of Section 5), there are at most two vectors
of numbers which need to be kept to multiple precision.
This means that the storage requirements are not pro-
hibitive. Furthermore, as the total number of multipli-

cations in this part of the process is only about in3, the .

time taken for the multiple precision operation is not
very serious.

It is worth while investigating a little more closely
where the numerical difficulties may arise. These can
only occur if an element B, immediately below the
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diagonal which is used for eliminating the column below
it turns out to be small. Two cases have to be distin-
guished; in the first not only is the element 8, small
but all the x’s below are also small; in the second,
although the B, is small not all the x’s below are small.

In the first case the multiples involved are not large,
but are badly determined as they are the ratio of two
small quantities. From our previous argument we
would not expect that this situation would introduce a
very large error, and this is in fact the case. This
situation corresponds exactly with the case in the
Lanczos transformation where the new vector turns out
to be small and has to be multiplied by a considerable
factor in order to normalize it. In this case it is necessary
to reorthogonalize the vector against all the previous
vectors, and provided this is done it is immaterial that
the vector was itself to a certain extent ill-defined. In
our case the reorthogonalization is automatic, owing to
the form of the matrices involved, so that no error is
introduced by the fact that the ratios are badly deter-
mined. In effect, the final result is a codiagonal form
which is a perfectly good similarity transformation of
the original matrix, but not one which is very well
determined by the starting conditions.

The second case, where B, is small and one of the x’s
in the column below it is not small, is more troublesome.
In this case one of the multiplies will be large and there
is a danger that some of the round-off errors will be
multiplied by this factor. It remains true, however, that
an increase in the precision of the arithmetic will avoid
these difficulties, and it is for this reason that the second
part of the program is arranged to work multiple length.
It is perhaps worth repeating that since this process has
been identified with the Lanczos method the same diffi-
culty must make its appearance there. It has in fact
been described by Wilkinson (1958, page 152) and
occurs when the corresponding left and right vectors
turn out to be nearly orthogonal. Fortunately, this
situation does not seem to occur very frequently and in
practice has caused very little difficulty.

8. Practical Results

A program based on the method described above has
been in operation on Pegasus since Spring 1959 and will
accept matrices of order up to 48. The first part of the
program is single length, fixed point. The second part
of the program is basically five-length fixed point, but
there is a provision for placing the binary point between
any two sections of the number and arrangements have
been made that zero integral sections shall not cause
any unnecessary work to be done. If the number of
fractional sections is made too large, so that the integral
part of the number will not fit into the remaining sections
available for it, an alarm indication is given. Thus the
second part of the program is effectively variable-
precision arithmetic and an interesting check on the
accuracy of the results can be obtained by repeating the
calculation with one extra length in the fractional part
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of the numbers. The codiagonal form which is the final
result of this part of the program is stored in the form
of two vectors of multiple-precision floating-point
numbers. As an indication of the time involved, a
matrix of order 24 is reduced to almost triangular form
in 1 min and to codiagonal form in a further 2 min 20 sec.

No provision has been made for using an initial set
of multiples before starting the elimination proper in
the second part of the program (ie. we take v, = )
though this might be useful and could be quite easily
incorporated in the program. As mentioned above,
little difficulty has been caused by large multiples when
eliminating the subdiagonal elements, but it is true that
a codiagonal form may arise which is unstable in the
sense that its eigenvalues are sensitive to small changes
in its elements. This would be a rare occurrence but a
provision for changing v; would permit one easily
(without recalculating the almost triangular matrix) to
derive a different codiagonal form which would probably
be more stable—the unstable case being the exception.
However, we are able to reverse the original matrix
about the principal anti-diagonal and this provides a
simple way of forming a different codiagonal form via a
different almost triangular stage. We can also transpose
the original matrix, which leads to a different almost
triangular form, but to the same codiagonal form as
that produced from the untransposed matrix (the minors
of the first elements of |4 — AI| and |4’ — AI| are the
same). This gives us a check on the errors introduced
by the first part of the program.

The method compares very favourably with that of
Lanczos (starting from the original matrix) in the
amount of work and space required by the computation.
If single-precision arithmetic were used throughout, the
elimination method would involve about »3 multipli-
cations and use one matrix space, while the Lanczos
method would involve 4n3 multiplications and need
three matrix spaces. Greater precision increases the
advantage of the elimination method.

One point of detail may be of interest. When the
program was first written it was thought that the
occurrence of an exact zero as an eliminating element
either above or below the diagonal would be such a
rare event that it would be sufficient merely to stop if it
occurred. A zero as the eliminating element above the
diagonal would imply that all the remaining elements
in that row were exactly zero. In practice this has
happened sufficiently often to be a nuisance, and it
became desirable to modify the program so that it no
longer stopped. Fortunately, since we know that the
rest of that row must also be zero, no further elimina-
tions are needed and it is sufficient merely to skip to the
next row. Zeros or very small numbers have also
occurred as elements to be eliminated in a column
below the diagonal. In this case it is sufficient to treat
a zero eliminating element as a half in the last fractional
place.

The reason for this state of affairs seems to be that the
original matrices are far from general, but quite often
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appear to be built up out of several sub-matrices in such
a way that the large matrix can be factorized by inspec-
tion, or at most with very little numerical work. A
further complication is introduced by the fact that these
factors are often repeated, which makes the problem of
finding the eigenvalues of the large matrix very consider-
ably harder. In an extreme case of this sort a matrix
of order 18 could be reduced, by permutations only, to
three identical matrices of order 6, and these in turn
could be factorized into three matrices of order 2. It was
thus possible to find all the 18 eigenvalues of the original
matrix merely by solving three quadratic equations.
This kind of thing is an example of the sort of hazard
which the designer of general-purpose eigenvalue routines
must be prepared to face. It is easy to imagine circum-
stances in which it would be perfectly legitimate to pose
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the problem of finding the eigenvalues of a rather
special matrix of this sort, and it seems quite reasonable
to ask any general-purpose eigenvalue routine to cope
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Appendix

The program given opposite is an informal publi-
cation-language version of an ALGOL program to reduce
a matrix to a codiagonal form using the method described
above. The principal departures from standard ALGOL
are:

(I) A determined effort to make use of layout and
other typographical devices to make the program
easier to read. Statements are placed on separate
lines and are not terminated by semicolons.

(2) The use of “=" for “:=" and “otherwise” for
“else.”

(3) Theinclusionin comments of certain vital informa-
tion concerning precision which cannot be ade-
quately expressed in ALGOL.

Experience of attempting to communicate programs
in any generalized notation has shown the value of
having sets of numerical examples with which to test
the program, if possible with intermediate results as well
as the final one. Two such sets are given below; the
nearly triangular form is an intermediate result which
appears at the point indicated in the program. The test
matrices are given as integers and the results are exact.
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For a program using fixed-point fractions they should
be scaled—say by multiplying by 0-01. The eigenvalues
are also given for interest.

Test 1 Test 2
Matrix 4 3 1 0 1 2 2
6 13 3 4 11 0 11
—6 —13 1 37 -7 2
—4 —9 7 —4
Near Triangle 4 30 0 2 0 o
4  26/3 4/9 1 0 7/2 0
—6 —13 16/3 0 7 —3/2 32
—4 7 =252 32
Codiagonal 4 I 0 0 1 (V)
12 8 1 2 0 1 0
0 —4 6 0 7722 0 1
0 O 9/2 0
Eigenvalues 2.24123. .. —3
6.69459. .. —1
9.06418. .. 1
3
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Reduction of a Matrix by Eliminations

PROGRAM

Procedure Form Codiagonal (a) order (n) result (o, B)

Value n

Integer n

Array afl :n, 1
Begin Real x, w

Begin

End

Integer r,
For r = 1 step | until » — 2 do

ap = dyy

End

2n), [l :n], B[2 : n]

m, k, j

m=r 1
For k = r + 2 step 1 until n do
If |a, «| > |a, »| thenm =k
If m 5= r 4 1 then
Begin For k = 1 step 1 until » do
Begin x = a,, «

gk =4y 11,k

a,. 1,k — X
End

For k = r step 1 until n do
Begin x = a; .

A . m = Qg r+1
ak, rb1 = X

End

End
Ifa,,. 0 then
For k = r + 2 step 1 until n do
Begin X = ar, k/ar, r+1

a; k. = aj g — X .4,
For j = 1 step 1 until # do

T

End

For k = 2 step 1 until n do
Begin

ﬁk =4y, 1
o = g, 2

For r = 1 step 1 until n — 2 do

For j = r + 1 step 1 until © do

a.%lyj:a,._:l’j%x.ak,i

Comment
Comment

Comment

Comment

Comment

Comment
Comment

Comment

For j — r -+ 2step 1 until (If k + 1 < nthenk + 1 otherwise 1) do

Begin f,.; =1If 8,1 = O then §, | otherwise ¢
For k = r + 2 step 1 until n do
Bk = Bk/ﬁr =1
For k = r + 1 step 1 until » do
oy == Oy + Bj.ak,j
For k = r -+ 2 step 1 until n do
Begin w = B
Bk:o‘k—'w'ar%l
O = A, p2 —W-drig, ri2
End
End
For r = 2 step 1 until » do
Br = .-Br -a,_q,
End Form Codiagonal
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See note 1
See note 2

Find pivot

Interchange if necessary

Eliminate row r

Near Triangle
Set up first column

Eliminate column r.
See note 3

Comment Scale across diagonal
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Reduction of a Matrix by Eliminations

Comment  Notes.—(1) The matrix a is usually considered to be fixed point with its elements in the range (—1, I).
Floating point will obviously do equally well but is not necessary. No provision has been made for fixed-
point overflow, but this is unusual if the elements lie in a somewhat smaller range, e.g. (—0-1,0-1).

The vectors «,  which hold the result must be floating point and should preferably be multiple precision
(double length seems enough almost always). For smallish non-pathological matrices single length should

be sufficient.

(2) x is of the same type as a—i.e. single length fixed or floating point. 1 is of the same type as « and S,
L.e. floating point, multiple precision if possible.
(3) If the eliminating element B, , | is exactly zero it is replaced by & which should be a very small number.
If the near triangle has been formed fixed point, & should be rather less than one unit in the least significant

place kept.
Correspondence
Continued from p. 167

Sir,
The authors’ reply:

Mr. Watt’s letter raises some interesting points, to which we
would like to reply.

Firstly, if it were not possible to use statements as para-
meters of more complex statements, this would indeed be
restrictive. However, by suitably defining the class of
“auxiliary statements™ we can always avoid this difficulty.
It is true that for languages like ALGOL and Nebula, the class
of “source statements” proves less useful than in the case of
more “‘primitive”” languages such as Fortran and Mercury
Autocode, where this class is comparatively large: in the
former case emphasis is placed almost entirely on the class
of auxiliary statements.

The first example given by Mr. Watt could be treated by
means of the existing proposals were it not for a quite different
kind of difficulty, which arises in connection with the defini-
tion of [GE], namely

[GE] = [GE] [+][T], [+ ?][T]

This type of recursive definition cannot be used in con-
junction with a forward scanning recognition routine, because
it would be continually searching for a [GE]! Instead, it
has to be recast thus:

[GE] = [+ ?1[GE]
[GE’] = [T] [+][GE'], [T]

With this definition of [GE] Mr. Watt’s example becomes, in
the notation of our January paper, as follows:

statement definition: A = [GE’]
— 1 if [GE'] = [T]
let [GE']l = [T][+][GE’]
A = [GE']
A =[+]A +[T]
end
11 A =[T]
end

One reason why the class of secondary statements and the
class of auxiliary statements are treated exceptionally is
because they are large classes and are defined in a cumulative
manner. At any stage they can be regarded as complete and
are used for recognizing such statements in statement defini-
tions. There is, nevertheless, something in what Mr. Watt
says, in so far as it may be desirable to treat other classes in
this same cumulative fashion, and associate specific compiling
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routines (i.e. “statement definitions™) with each member of
these classes. At present the meanings of a phrase are
embodied in the statement definitions of the formats which
employ them (and indeed may be different in different con-
texts). If a phrase has several alternative forms this is reflected
in the relevant statement definitions by the appearance of a
multi-way switch (e.g. 8; = category of [Y], — ;) or other
means of discrimination. In the case of those phrases which
we would like to define in a cumulative manner and which
have many members, the corresponding statement definitions
would become unwieldy, and it is convenient to be able to
call in a routine to deal with the appropriate category of the
phrase on hand. The need for this was not very apparent,
however, in the study of Mercury Autocode, Fortran, or
even ALGOL, but first showed up in some preliminary studies
of Nebula, where an example of such a class is the “‘logical
description statement” (see Nebula Manual, Ferranti,
November 1960). We have, therefore, generalized the con-
ception of cumulative classes to take account of this.

Yours faithfully,
R. A. Brooker, D. Morris.

IFIP CONGRESS 62—Call for Papers

The International Federation of Information Pro-
cessing Societies (IFIPS) will hold a Congress in
Munich, Germany, from 27 August to 1 September 1962.

The Congress will cover all aspects of Information
Processing and Digital Computers. An outline of the
proposed programme of the Congress was given in
The Computer Journal, Vol. 4, p. 19 (April 1961).
Those wishing to offer papers are invited to send
abstracts of 500-1,000 words to:

M. V. Wilkes,
The British Computer Society,
c/o University Mathematical Laboratory,
Corn Exchange Street,
Cambridge,

by 15 September 1961. These abstracts will be con-
sidered by the international program committee of
IFIPS, and authors of selected abstracts will be invited
to submit their complete papers (in French or English)
for consideration by the program committee in March
1962.
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