An Efficient Scheme for the Co-diagonalization of a Symmetric
Matrix by Givens’ Method in a Computer with a Two-level Store

By J. S. Rollett and J. H. Wilkinson

The Givens’ process, as it is commonly performed, requires simultaneous rapid access both to
rows and to columns of the matrix. By running in parallel the various rotations which produce
a row of zeros it is possible to reduce the number of scans of the matrix by a factor of order n.
The scanning required is then less than that for Householder’s process, which is, however, faster
in other ways. The number of multiplications and the rounding errors for the modified Givens’
process are the same as when the rotations are carried out sequentially, but on Mercury there is
an overall gain in speed by a factor of 7 for matrices of order 96.

1. Introduction

The Givens’ process in its usual form (Givens, 1954)
loses much of its effectiveness when the order n of the
matrix is so large that the coefficients cannot be kept in
the computing store but must be drawn from the backing
store row by row or column by column. The reason for
this is that the typical elementary step in which the zero
in the (i, ) position is produced consists of the calcula-
tion of the matrix 4v+ 1 defined by

Ar D = TOAO(TO)T (1)
where T is an orthogonal matrix defined by
(i =t =cos by \T
. |
1y = — 60 =sin 0, \} 2)
=1 (k=#i+ 1,j); [
tyy = 0 otherwise. J

This involves replacing rows i + 1 and j and columns
i+ 1 and j by linear combinations. If the matrix is
stored by rows then rows i to n must be brought to the
computing store, though, except for rows i 4 1 and j,
only the elements i + 1 and j have to be altered. The
position is only slightly better when advantage is taken
of the symmetry of the matrix to store only the upper
triangle. A detailed account of a technique which over-
comes this difficulty is given here, and comparative times
are quoted for the two methods applied to large matrices
on the magnetic drums of the Mercury computer.

2. Recommended Procedure

It is usual to describe the Givens’ process as con-
sisting of 4(n — 1)(n — 2) steps in which zeros are
produced successively in positions (1, 3), (1,4), . . .,
(1,n); 2,4, 2,9, ... 2,n;...;(mn—2,n. The
zero in position (i, j) is produced by the transformation
defined by equations (1) and (2) with 8, ; ; given by

tan 0, ., ; = ap/al; 1. )]

Since each transformation preserves symmetry and also
leaves undisturbed the zeros produced by previous
transformations, the final matrix is of co-diagonal form.
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For the purposes of this paper, it is convenient to
group together the (n — i — 1) transformations which
produce the zeros in the ith row and column and thus
to think of the process as consisting of (n — 2) major
steps.

The modified procedure which we now describe is
such that in the whole of the ith major step only one
transfer to the computing store and back again is made
for each of rows i to n. The procedure requires a total
of 4n registers for numbers in the computing store and
these are divided into four groups of n registers each.

The first (i — 1) rows and columns play no part in the
ith major step, which is formally similar to the first,
but operates on the matrix of reduced order (n — i + 1)
in the bottom right-hand corner. There is thus no loss
of generality in describing the first major step and this
will be done for the sake of simplicity. This step has
five main stages.

(1) The first row of A4 is transferred to the registers
in group 1.

(2) The values of cos 0,3, sin 0,3; . . .; cos 05, sin 0,
are computed successively from:

cos b; = afy V/v/[(ay ") + ai)] )

sin 0,; = a, ;/v/[(@}™")? + ai)] (5)
where a¥=a,, (6)
o) = VIR + ) g

The cos 6, ; may be overwritten on the a; ;, which
are no longer required, and the sin 6, ; are stored
in the group 2 registers.

(3) The second row is transferred to the registers in
group 3. Only those elements on and above the
diagonal are used in this and all succeeding rows.

For k = 3,4, ..., n in turn, the operations in
stages (4) and (5) are carried out:

(4a) The kth row is transferred to the registers in
group 4.

(4b) The elements a,,, a,, and a, are subjected to the
row and column operations involving cos 65, and
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sin 8,, (here and later we use a;; to denote the
number currently occupying the (i,j) storage
location).

For/ =k + 1,k + 2, ..., nin turn, the part of
the row transformation involving cos 6,, and
sin 6, is performed on a,; and a,.

For/ =k +1,k+2,... nin turn, the part of
the column transformation involving cos 6,, and
sin 0,; is performed on a,, and ay,, taking advan-
tage of the fact that a,, = a;,, by symmetry.
When (4a), (4b), (4¢) and (4d) have been com-
pleted for a given k, all the transformations
involved in the first major step have been per-
formed on all the elements of row k and on ele-

(4¢)

(4d)

ments 3, 4, . . ., k of row 2. Elements 2, k -+ 1,
k +2, ..., nof row 2 have been subjected only
to the transformations involving 6, 3, 6,4, . . .,
02k-

(5) The completed kth row is transferred to the backing
store and we return to (4a) with the next value
of k.

When stages (4) and (5) have been completed for all
appropriate values of &, the whole of the work on row 2
has also been completed. The cos #,, and sin 8,,
(k = 3 to n) and the modified elements of the first row
(i.e. the first two elements of the co-diagonal form) are
written on the backing store and row 2 is transferred to
the group 1 registers, either physically, or by a change
of the group labels. Since the second row plays the same
part in the second major step as did the first row in the
first major step, everything is then ready for stage (2)
in the second major step. Stage (1) is not needed in any
of the later major steps because the appropriate row is
already in the computing store.

It is not very helpful to express this sequence of
operations in the language of matrix multiplications,
but it should be appreciated that at the end of each major
step each element of the transformed matrix has precisely
the same value as it has at the corresponding point in
the usual procedure. Although some parts of the later
transformations in a major step are done before the
earlier transformations have been completed, the
elements affected by these later transformations are not
subsequently involved in the completion of the earlier
transformations. There is essentially no difference
between the two schemes as far as the number of arith-
metic operations and the rounding errors are concerned,
but the number of transfers from and to the backing
store is substantially reduced.

3. Storage Requirements

Space is required in the computing store for the four
vectors of order n and the program. On the Mercury
computer, for which programs using the method have
been written, there are 1,024 registers in the computing
store and this has limited the method to values of n
satisfying n < 160, independent of the size of the backing
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store. On the Oxford University machine the backing
store holds 16,320 numbers on two magnetic drums,
and this has limited the method further to matrices of
orders up to 115. The size of the computing store is
not the main limitation in this case, but if the computing
store were smaller (as on Pegasus or DEUCE) or if the
backing store were extended by adding further drums
or magnetic tapes, this would no longer be true.

It is convenient to allocate n? locations for the matrix
in the backing store, storing each row in full, in spite of
the fact that the elements below the diagonal are not
used. Some advantages of this are as follows.

(@) The matrix can be derived by previous operations
with standard matrix routines (Brooker, Richards, Berg
and Kerr, 1959) and needs no special packing before
submission to the Givens’ library program. This is
hardly efficient, but it is highly attractive to relatively
unskilled programmers attacking small problems.

(b) The element cosf; may be overwritten on
a;_y,;and sinf;; on a,, , ; ;_; and hence the matrix
and the quantities used in calculating the vectors of A
from those of the co-diagonal form can all be stored in
the same compact block of n? locations. The final
configuration on the backing store for a matrix of
order 5 is then

a a;,, cosb,; cosb,, cosb, s
[ x as » a, ; cosly, cosb; s
sin 0, s X as, 3 as 4 cos by 5 | (8)
sin 63 4, sin6; x ay, 4 ay, s
sin 6, 3 sinf, , sin6, s X as. s

This is very convenient when the backing store is on
magnetic drums, as for Mercury, but is less attractive
if the backing store is a magnetic tape which can be read
only in the forward direction. There is then difficulty
in obtaining rapid access to the sines and cosines when
calculating the vectors.

The elements of the co-diagonal form are returned to
the backing store in this way by the library sub-program
which we describe below, so that the main program can
be re-entered between the co-diagonalization and the
determination of roots and vectors. It would be possible
in a complete program to keep a copy in the computing
store in the registers of groups 1 and 2 which are not
required for work on the successive matrices of order
n—i-+ 1.

(¢) The address arithmetic for the transfers between
the stores is simplified. This is a small advantage, but it
helps to shorten the program which competes with the
vectors for the computing store.

4. Experience with the Method

One complete program, which punches out as many
as are required of the eigenvalues and eigenvectors of a
matrix read from paper tape, and one library sub-
program (programme—>517 of the Autocode system),
which writes in the backing store similar results for a
matrix which was stored there, have been written (by
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J. S. R) for the Mercury computer. The complete
program handles matrices of orders up to 96. The
subroutine is not quite so fast as the complete program
for a matrix of the same order, but will deal with matrices
of orders up to 115. For matrices of the highest orders
the subroutine suffers from the slight disadvantage that
it is necessary to overwrite the Autocode compiler.

In an earlier version of the complete program, the
rotations were carried out one by one, and although
this was reasonably efficient for matrices of small orders,
for matrices of order 40 or more most of the time was
spent on drum transfers. Comparative times for
co-diagonalization by this earlier version and the com-
plete program based on the methods of this paper are:

ORTHODOX REVISED

ORDER METHOD METHOD
64 20 min 6 min
96 140 min 20 min

The modified version not only shows a very substantial
saving of machine time, but also removes the need to
consider provision for re-starting, since an error-free
running time of 20 minutes is reasonably certain.

5. Comparison with the Method of Householder

In a recent paper one of us (Wilkinson, 1960) described
a program based on Householder’s method (Householder
and Bauer, 1959). This is also a method for reducing a
symmetric matrix to co-diagonal form, and it involves
half as many multiplications as the Givens’ process.
The method described there requires two complete scans
of the reduced matrix for each transformation intro-
ducing a row of zeros. It does not seem to be possible
to reduce this to one scan per row as we have done in
the modified Givens’ process.

It is commonly believed that the matrix of the House-
holder transformation which produces a row of zeros is
the product of the Givens’ rotations which produce the
same row of zeros, but this is not so. For consider the
Householder transformation which produces the zeros
in the first row. The matrix P, of this transformation is
(I — 2w wT) where

wl = (0, x5, X3, . .

o Xp)s ©)

and, in general, none of the x; is zero. (See, for example,
Wilkinson, 1960, p. 24.) Hence, for a matrix of order
five we have,

1 0 0 0 O
{0 X x X x}
P=]0 x x x x (10)
lO X x x X
0 x x x x

where P is symmetric and, in general, none of the elements
in the matrix of order four in the bottom right-hand
corner is zero.

The Givens’ transformations producing the zeros in
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the first row are plane rotations in the (2, 3), (2, 4) and
(2, 5) planes. The product of the three corresponding
matrices is of the form

1 0 0 0 O

0 x x x x]

0 x ix x x (11)
0 x i0 x «x

0 x 0 0 «x

as may readily be verified by multiplying the identity
matrix successively on the right by the appropriate T
matrices. In general there is a triangle of zero elements
in the positions shown in (11). For a matrix of order n
this triangle consists of 4(n — 3)(n — 2) zeros. The
Givens’ and Householder matrices are therefore different
in general. However, it is true that the final co-diagonal
matrices and the product of all the transformation
matrices are the same in both cases apart from signs.
For in each case the product of the transformation
matrices is orthogonal and has its first column equal
to e,, the first column of the unit matrix. We now show
that if R is an orthogonal matrix having this property
and if

RTAR = C (12)

where C is co-diagonal, then both R and C are uniquely
determined apart from signs. We may write

R=1[e ryiry ...irl (13)

so that the r; are the columns of R. Clearly C is sym-
metric in any case.
Writing equation (12) in the form

AR = RC (14)
and equating the first columns we have
A€1:C”€1+(’2|I‘2. (15)

Now the columns of R are of unit length and orthogonal
to each other. Hence

€{A€1 = Cyy» (16)

so that ¢, is uniquely determined. Equation (15) now
gives
Cyyry = Aep — cypey (17

and the right-hand side is uniquely determined. Since
r, is to be of unit length, ¢,, and r, are uniquely deter-
mined apart from their signs. Equating each of the
columns in succession and making use of the symmetry
of C and the orthonormality of the columns of R, we
find that each element of C and each column of R is
uniquely determined apart from its sign.

Our proof shows incidentally that the co-diagonal
form produced by the symmetric Lanczos method
(Lanczos, 1950) is also the same if the initial vector is
taken to be e, and each vector in the orthogonal system
is normalized.
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6. Conclusions

A program for the Mercury computer, using the
scheme described in this paper, has been tested for a
matrix of order 96. The fraction of the total time spent
on drum transfers is quite small in this case. For a
computer with a fast arithmetic unit in which the backing
store was magnetic tape, so that the speed of transfer
from the backing store was the effective controlling
factor, the speed factor gained by minimizing the number
of scans through the matrix would be even greater than
that of seven obtained with Mercury.

It is worth noting that in this single respect the Givens’
process is better than that of Householder which needs
two scans to produce each row of zeros. In other ways
the Householder process still has the advantage, requiring
only about 2r® multiplications as against $n3, and
In(n + 1) backing stores as against n>. The require-
ment for n? stores can be reduced to in(n + 1) if the
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Sir,

A few comments on the significance of Allen’s useful approxi-
mation (Allen, 1959) may be helpful to other readers. Given
an empirical function f(x, y), the problem is to fit it numeri-
cally by finding functions a,(x) and b,(y) such that

10603) = 3 a0,

If the variables are defined over a rectangular lattice, we may
write this in matrix notation F ~ AB’ where A4 and B each
have n columns. The mathematical interest of the problem
is that a solution can be found, as Allen shows, in terms of
the eigenvectors of FF’ such that 4’4 and B’B are simul-
taneously diagonal. This gives the hint that a least squares
fit of F to AB’ has been obtained, though this is nowhere
stated in the paper.

Allen fits FF'to AA’, and the significance of this is obscure.
If, instead, we look for a least squares fit of F to AB’ from
the start, the eigenvalue equation is very simply obtained.
Thus, differentiating the sum of squares of the elements of
F — AB’ with respect to the elements of 4 and B gives

(F— AB)B =0 (n (F"— BA)A =0 2)
from which we immediately obtain the eigenvalue equation
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FF'A = A(B'B)(A’A).

By choosing B'B to be diagonal without assuming it to be
normalized as a unit matrix, we may write the admissible
solutions in the form

A=VrT (3) B =F'A (4)

where V' is the unitary matrix of eigenvectors of FF’ and the

matrix
. III
- ¢]

selects n of these for inclusion in 4. In this form of solution,
we are not troubled by factors 4/A because they have been
absorbed by F”’ in equation (4) above.

There is a further result of importance to the numerical
analyst, pointed out to me independently by Mr. E. D.
Farmer and Dr. D. P. Jenkins. By considering the trace of
(F — AB')(F' — BA’), and denoting the complete diagonal
eigenvalue matrix by A, it is not difficult to show that the
sum of the squared errors in the fit is given by

Tr(A — TT'N),
which is simply the sum of the omitted eigenvalues.

Yours faithfully,
P. M. Woodward.

Malvern.
17 April 1961.
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