NEBULA: A Programming Language for Data Processing
By T. G. H. Braunholtz, A. G. Fraser and P. M. Hunt

NEBULA, a programming language for data processing, will be used on the Ferranti Orion
Data Processing System. No previous acquaintance with automatic programming languages is
assumed in this account of NEBULA. The aim is to give the reader a sense of mastery over
NEBULA, rather than to give him every factual detail of the language. However, most of the
basic topics are treated fully, otherwise a false impression of imprecision would be conveyed.
A complete example is given in the Appendix.

Introduction

There are two stages in preparing a program for a com-
puter. First the job has to be planned in detail, and
secondly a computer program to carry out the plan must
be written. These tasks demand precision of thought,
and frequently a lack of such precision gives rise to
teething troubles encountered when the data-processing
equipment is being brought into use.

Once the program has been prepared it must be tested
thoroughly and any errors removed. Then it can be
used for useful work, but in all probability it will still
be altered from time to time when minor changes are
made in the job to be done.

In the past the cost of this work has often been com-
parable with the cost of the computing installation, and
it has taken many months to bring the programs into
satisfactory operation. Efforts by many people to reduce
this cost and time have produced an assortment of
programming aids, each one contributing a little to
making the programmer’s task easier. From all this
there has emerged the technique of autcmatic pro-
gramming, in which the key feature is simplified com-
munication between the programmer and the machine
(and, indeed, between one user and another) by the use
of comprehensive special programming languages.

In the case of the Ferranti Orion Data Processing
System the language used is known as NEBULA
(Natural Electronic Business Language). It has a rigid
syntax and employs ordinary English words, so that
sentences similar to those of the English language can
be formed. The use of symbols as well as words allows
of brevity.

Any programming system should place a minimum of
restriction upon the user, both in the way he organizes
his system and in making the most efficient use of his
equipment. Nebula has been designed with this in
mind: the object program will be efficient, and the form
in which data is held on input and output media will not
be straightjacketed by presuppositions in Nebula as to
the form that data will take.

The language (Nebula) used for communicating with
the machine is called the Source Language. The user’s
description of the work to be carried out is written as a
sequence of Nebula sentences and is called the source
program. This is fed into the computer and auto-
matically converted into a program of machine orders

197

known as the object program; it is this object program
which is eventually used time and time again for pro-
ductive work. The automatic translation from source
to object language is carried out by a routine called the
Nebula Compiler. The process of compilation is quite
distinct from the process to be carried out later when
the object program is eventually obeyed. The con-
version from source program to object program takes
place once only, whereas the object program is obeyed
many times, and in fact the two processes need not be
carried out on the same computer.

The Advantages of Automatic Programming

Estimates and experience vary, but it may be assumed
that by using automatic programming the time spent
programming is reduced several fold, perhaps even by a
factor of ten. This saves money, staff and time. The
saving arises because the compiler solves the computer-
oriented problems; the programmer has only to provide
the compiler with a description of his data and of the
operations to be done on it, and of the form in which
he requires his results. For example, a significant
proportion of any data processing job consists of pro-
grams to read from and write on magnetic tapes, and to
move the data into working positions, or into positions
from which they can be written on magnetic tape. All
of these programs will be created by the compiler without
any attention by the programmer.

Using the old methods, the description of a file was
embodied in every program using that file in the form
of shifts, transfers, selections and so on. Now the
programmer need only describe his file once; the com-
piler creates a directory which it then uses over and over
again to create new programs related to that file.

A machine-coded program of any size is not at all easy
to understand and fully appreciate, and careful docu-
mentation is therefore necessary, even with the simplest
of programs. It can in fact take months to produce the
documentation required to give a full explanation of a
lengthy program. By contrast, programs produced in
a systematic manner from source language statements
require only a fraction of this documentation. In
addition, it is frequently difficult to make amendments
reliably and quickly to a machine-language program,
particularly if the originator is not available to make
them himself. But with a compiler system it is possible

¥202 Iudy 61 U0 1senb Aq 2G¥08¢/.6L/S/v/8101e/|ulWwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

NEBULA

to arrange that corrections to a compiled program can
be made in the source language, and that these correc-
tions are effected by the compiler with a minimum
amount of recompilation. This means that it is easier to
incorporate any modifications necessitated by changing
requirements. Indeed this is likely to be one of the most
important advantages of automatic programming.

In any installation with a large number of reels of
magnetic tape, many of which hold valuable information,
a properly organized system of tape identification is
essential. To achieve this every compiled object pro-
gram must check the identity of every magnetic tape
before using it, and must also label any newly created
output reel. In this way a strict control over the use of
tapes is maintained and the risk of destroying valuable
information minimized. Originally these problems
were considered in detail by the programmer, but now
the compiler includes orders in every object program
for performing this work.

Just as human beings are fallible, computers also have
their sources of error, though of a different type. It is
essential that after an electronic or mechanical failure it
should be possible to restart the program without going
back to the beginning; and preferably the restart should
be from a point reached in the last five or ten minutes.
Furthermore, there must be no doubt that the program
is being restarted from exactly the configuration it had
reached at the last restart point, including, for instance,
the positioning of cards and magnetic tapes. To provide
for this is a tricky task, best handled by a standard
procedure. Programs for establishing these restart
points are now included in all object programs by the
Nebula compiler, and the programmer need no longer
be concerned with this aspect of the work.

The Nebula System

Languages are intimately bound up with the ideas
and the physical situations that they express and describe,
and this is true of Nebula. In the case of Nebula this
background has to do with the computer for which a
Nebula program is written, and how the programmer
conceives of it. All this is referred to as the Nebula
System. To reiterate the terminology we use, a pro-
grammer writes a Nebula program in the Nebula Language
for the Nebula System, and this is translated into an
object program by the Nebula Compiler. 1t is assumed
that the actual computer involved is an Orion, but it
could be any computer with adequate facilities.

The Nebula System is to be conceived as a central
processing unit with a number of input and output
channels attached, as shown in Fig. 1. From this
primitive starting point details can be added to the
picture bit by bit.

Each input channel is a source of data, and each out-
put channel receives data. This data may be held on
punched cards, magnetic tape, or other media, but by
the time it is available to the central processor it has
been converted to a form that shows no trace of the

198

C ENTRAL PROCESSOR

/W

" [CHANNELS

d ™~

Fig. 1.—Primitive NEBULA system

INPUT

ND
CHANNELS A

S TORAGE UNIT

7/

physical medium on which it was recorded. Each channel
is called a file, and data is taken in or sent out one record
at a time. For each program, the files, records and
items within records are defined and given names by
filling in forms which will be described later. The names
may be English words or phrases, or just labels such
as “WI1.”

The operations carried out by the central processor
consist of arithmetic manipulations, or comparisons, or
transfers, or references to tables, and so on, carried out
upon the data held in the central storage unit. These
operations will be specified in Nebula by such sen-
tences as

ADD QUANTITY RECEIVED INTO TOTAL
STOCK ON HAND,

or

IF AMENDMENT CODE = “D” THEN WRITE
MAIN FILE RECORD TO PRINTED OUTPUT
FILE.

The central storage unit is used to hold not only records
of input and output files but also intermediate quantities
and lists of constants. All these must be defined and
named in much the same way as the files of data.

The Subdivisions of a Nebula Program

A Nebula program is a description of a system, and
using this information the compiler generates a machine-
language program that will make Orion behave as the
system. Much of this description consists of procedure
statements such as those given above. In addition the
compiler has to be provided with a good deal of purely
descriptive information about the data and about the
equipment available in the installation on which the
compiled object program will eventually run. Conse-
quently, a Nebula program is divided into three parts:

(1) The Procedure Description

This is a description of the actions to be performed
on the data.

(2) The Data Description

This is a specification of the form of the data. As
will be apparent later, the data description is subdivided
into two parts:

(a) A description of the data as it is actually held on

¥202 Iudy 61 U0 1senb Aq 2G¥08¢/.6L/S/v/8101e/|ulWwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

NEBULA

the input and output media (this is called the
physical description); and

(b) A description of the characteristics of the data
that affect how it is stored internally in Orion (this
is called the logical description).

(3) The Machine Description

The procedure description, together with the data
description, is translated into an object program by the
Nebula compiler using an Orion computer. This
translation can be performed on any Orion computer,
but the particular computer used must be described if
efficient use is to be made of its facilities. Furthermore,
the object program obtained as a result of translating
the source program, has itself to be obeyed on a (possibly
different) computer system. This object computer has
also to be defined to the compiler so that an efficient
object program can be obtained.

The description of the two computer systems is called
the machine description.

A Comment

We have now discussed the advantages of automatic
programming, and have introduced the Nebula compiler
in broad terms. From now on this article will be taking
up particular topics and discussing them in some detail.
There is a danger that the reader new to automatic
programming will not be able to see the wood for the
trees—that he will feel unable to grasp the whole
although he understands each individual part. We have
tried to prevent this happening by being liberal with
introductory remarks and comments on the nature of
the problems involved. We have made no attempt to
give complete information, for that is taken to be the
task of a reference manual, but we have aimed instead
to give full details about the most important topics, and
to give an idea of what has been omitted.

File Structure and Data Names

We now return to the elaboration of the structure of
the Nebula System. This section is concerned with the
structure of files, and with naming files and the items of
data in them. A little advance information about the
procedure description will also have to be given.

It has already been stated that each input or output
channel of data is a file and must be given a name. Each
of these files will be held externally on some medium:
punched cards, paper tape, printed paper, or magnetic
tape. Regardless of the external medium, the data, on
input, is converted and fitted into a framework which
we will now describe.

Each file consists of a series of records. A record may
contain the details of an insurance policy, or of an
amendment to it; in general it will contain the data
pertaining to one document or to one transaction. An
input file is read one record at a time (by a procedure

199

CENTRAL PROCESSOR
AND STORAGE UNIT

\ INPUT OUTPUT

AREA AREA

CHANNELS AREA AREA
/ AREA AREA

Fig. 2.—Primitive NEBULA system showing Input and
Output areas

OurpuT
? CHANNELS

1\

J

statement such as READ CHANGES FILE), and an
output file is written one record at a time (by a procedure
statement such as WRITE MAIN FILE). Files can
only be worked through from the beginning to the end.
Thus every READ statement reads the next record in
the file, and there is no possibility of re-reading the
previous record. Similarly every WRITE statement
places a record in the next position along the file.

Associated with each input file is an input area which
holds one record, and with each output file an output area
which holds one record, so the Nebula System may now
be visualized as shown in Fig. 2.

When a record is read from an input file it is placed
in the input area for the file, thus covering over the
previous record. The input area is unlike an ordinary
computer buffer store, because it is not of a fixed size:
a record may have a variable amount of data in it, or
there may be more than one type of record in a file,
but the input area always holds just one record.

The rules for output files are similar, and once a
record is written from the output area on the file, the
contents of that record are no longer available to the
central processor. As with input files, the output area
is not of fixed size, but holds exactly one record regardless
of the record’s size.

The actual handling of records in the store of Orion
does not correspond very closely with this account of the
Nebula System’s view. The difference arises from the
arrangements for efficient use of tape decks, card
machines and other peripherals; therefore the reader
should not let the question of just how Orion effects this
record handling trouble him. However, it can be stated
that records will be held in the core store of Orion, and
in fact usually at least two records per file will be held.
This should be borne in mind when considering how
much data to include in a record, although usually in
Nebula a record will conform to the usual meaning
of the word, containing for instance the data pertaining
to one account or transaction.

To return to the structure and naming of files: every
record type must have a name, even in files containing
only one record type. Every record name and every file
name must be different from every other data name of
any sort on any of the files in the same program. We
have now introduced two kinds of data names, namely
file names and record names, and there are two more,
group names and detail names, which we will introduce

¥202 Iudy 61 U0 1senb Aq 2G¥08¢/.6L/S/v/8101e/|ulWwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

NEBULA

shortly. These four classes of names are needed because
they have slightly different properties, either in connec-
tion with the rules for forming names or in connection
with their use in procedure statements.

Every unit of data is stored internally either as a
number or as a series of characters which we call a field.
Each record contains a collection of these numbers and
fields. Each number or field is a detail and must have a
name, a detail name. It will often be required to refer
to several of these details at a time. This is done by
introducing another name, a group name, and stating
which details it contains. For instance, the three details
DAY, MONTH, and YEAR could belong to the group
DATE, and then a statement such as COPY DATE
INTO NEW DATE would copy all three details.

In many records the same kind of data will occur
repeatedly. For instance, in an invoice record there may
be the particulars of several transactions. These par-
ticulars might consist of the details ITEM NAME,
UNIT PRICE, QUANTITY, and PRICE, and be given
the group name ITEM DETAILS. If this group occurs
several times in a record there must be some way in the
procedure description of referring to a particular
occurrence. This is done by using suffices. We will
not give the full details on suffices, but simply say that
the particular occurrence of a group or detail is specified
by an integer enclosed in brackets after the name. For
example, the successive occurrences of ITEM DETAILS
are referred to in the procedure description as ITEM
DETAILS (0), ITEM DETAILS (1), ITEM DETAILS
(2), etc. More usefully one may write, for example,
ITEM DETAILS (COUNTER) where COUNTER is a
detail used for counting through the occurrences.

The structure of files has now oeen explained. To
summarize: the structure and naming of a file is defined
if the file is given a name, and then all the record types
in the file are given names, and then for each record all
the groups and details in it are given names, and the
details contained in each group stated. This is done in
the file outline, which is specified on the left-hand side
of all the data description forms, and is described
later.

We turn now to the rules for forming names. The
detail names and group names within a record must all
be different, but the same detail (or group) name is
allowed to occur in different record types. However,
if it does occur in more than one record type, then, when-
ever one of the details with this name is referred to, the
record it is in must also be named. To illustrate this
we indicate the form of an expression in a way that will
be used frequently in the rest of this article. The full
names of the details under discussion take the form

detail name IN record name

The parts of this expression in capitals are meant
literally, i.e. these words will actually occur in the
expression; whereas the phrases in small letters state
what kind of thing is to appear in their place in the
expression. Thus an example of the form of name just

200

described might be
DATE IN INVOICE RECORD.

The rules for forming a data name are simple:

(1) A data name may contain any number of words:

(2) The characters in the words must be letters or
digits;

(3) The first character of the first word must be a
letter;

(4) No distinctions are made between upper case and
lower case letters;

(5) There are nine words that may not be used in
data names, these words being AND, BY, FOR,
IN, INTO, OR, OTHERWISE, THEN, and TO.

Perhaps it should be added here that no distinction is
made between upper case and lower case letters in any
part of a Nebula program whatsoever.

Finally, before leaving the topic of files, we must
mention working files, which provide the means of
naming and describing intermediate results and working
data, as well as lists of constants. These files are rather
different from ordinary files, but as with ordinary files
contain a number of records. They are stored on the
magnetic drums or in the core store of Orion: and, in
general, those records containing working data currently
in use are held in the core store, and the remainder are
held on the magnetic drums.

The Procedure Description

We have given a detailed explanation of the organiza-
tion and naming of the data used in a Nebula program,
although leaving until later the question of conversion
from external media to internal form. We will now
consider the procedure description, which describes the
processing to be done on the data when it is in internal
form.

There are about twenty statements that can be used
in the procedure description. Every statement has a
strict format or set of alternative formats. As an
example, one of the alternatives for the ADD statement
is described by

ADD arithmetic expression INTO detail name.

Each of the statements begins with the word that
identifies the statement, such as ADD, and this is followed
by several different formats for the various statements.

The term “‘arithmetic expression,” used in the descrip-
tion of the format, has yet to be defined. There is a
precise set of rules in Nebula for constructing an arith-
metic expression, but for practical purposes it is enough
to say that any formula such as

(PRICE — DISCOUNT * FACTOR) * TAX RATE
+ BASIC CHARGE

is an arithmetic expression. The variables in arithmetic
expressions must be data names, and the symbols
4+ — * and / must be used for the arithmetic opera-

¥202 Iudy 61 U0 1senb Aq 2G¥08¢/.6L/S/v/8101e/|ulWwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

NEBULA

tions. Numbers may be included, the ways in which
they may be written here or elsewhere in Nebula being
defined exactly. Approximately, any sensibly-written
decimal number is allowed, as well as other forms.
Brackets may be used in an arithmetic expression, as in
the example above. Arithmetic expressions in Nebula
programs are evaluated according to the normal rules.

Note that a particularly simple case of an arithmetic
expression is a detail name. Thus

PRICE

is an arithmetic expression. Frequently, where an
arithmetic expression is permitted in a statement, there
will be in practice just a detail name.

Every word that is written in the procedure descrip-
tion must conform perfectly with the rules; that is,
every word must be part of one of the allowed con-
structions, which we are about to describe, and also
every word must be spelt correctly. The same is true,
in fact, of every part of a Nebula program.

It is nearly true to say that the procedure description
simply consists of a series of procedure statements, each
one terminated by a full stop. They are obeyed (or,
rather, the corresponding sequences of machine orders
in the object program are obeyed) in the order in which
they are written, except after the GO TO and PERFORM
statements which are provided so as to be able to break
this sequence.

It is quite true to say that the procedure description
consists of a series of sentences. A sentence is always
terminated by a full stop. It can consist of just one
statement, or it may contain a series of statements each
linked to the next by the word THEN.

A sentence can begin with a label, which is enclosed
in square brackets, thus:

[label] statement THEN statement . . .

The label is formed in the same way as data names, but
it does not have to be different from all the data names,
although all the labels in a program must be different
from each other. The label is used by the GO TO
statement, which has the form
GO TO label

and evidently something like a label is required so that
the GO TO statement can specify which senteince to
obey next.

There is an important kind of sentence beginning with
the word IF. Such sentences are called conditional
sentences, and are necessary in order to be able to vary
the action of the program according to circumstances.
The form of a conditional sentence is

IF condition THEN ordinary sentence

and the ordinary sentence can as usual contain any
number of statements linked by THEN ; if the condition
holds true then all the statements are obeyed. The term
“condition” must be explained. There are formal rules
for constructing a condition, but again for practical
purposes a condition consists of any two arithmetic

D

201

expressions related by one of the symbols = # > =
< « (where % means “not equal to,” etc.). Thus

PART NUMBER IN MOVEMENTS FILE
= PART NUMBER IN MAIN FILE

is a condition.

A condition is said to hold true if, when the two
arithmetic expressions are evaluated, the relation in the
condition is true.

Conditions may be combined into more complicated
conditions by the words AND and OR. An example is

A-+-B>C*D AND E#F

Notice that the first condition must be read as
(A + B) > (C * D), and not A -+ (B > C) * D, which
does not make sense. In other words, arithmetic expres-
sions must be evaluated first, and then relations
(i.e. = etc.), and finally ANDs followed by ORs.

In addition, the word OTHERWISE may be used to
link any number of conditional sentences together,
giving a complete sentence of the form

IF condition THEN statement . . . OTHERWISE
IF condition THEN statement . . . OTHERWISE
statement . . .

The meaning of this sentence will be as in ordinary
English; but it is easy to construct sentences which are
perfectly correct and yet quite incomprehensible, through
being too long, in which case they should be broken into
smaller sentences. An example of the satisfactory use
of OTHERWISE clauses is the sentence

IF A =0 THEN ADD 5 INTO D
OTHERWISE IF A = 1 THEN ADD 2 INTO D
OTHERWISE CLEAR D.

(D will only be cleared if A is not equal to 0 or 1.)

A Digression on the Appearance of Nebula Programs

It may not be clear how, given a blank piece of paper,
the procedure description should be recorded on it, or
just what variations are permitted, or how it is that the
Nebula compiler is able to interpret the punched paper
tape corresponding to the printed form of the program.

Nebula programs will be prepared on a Flexowriter
which will produce a paper tape as a by-product of
typing, and this paper tape has a character punched in
it every time a key is depressed.

It is a principle of Nebula that the printed form of a
program is what counts, and that if it appears to make
sense to a human being then, so far as possible, it should
make sense to the compiler too.

For most of a Nebula program the exact position of
data on the page does not matter to the compiler. The
compiler reads the information rather as one reads a
book: the break between lines is not significant, but the
order of lines and the order of information along a
line is. The rule is that between words, even between a
pair of words constituting a data name, one may type

¥202 Iudy 61 U0 1senb Aq 2G¥08¢/.6L/S/v/8101e/|ulWwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

NEBULA

any number of spaces and one new line, but a word may
not be split. In Nebula, as in English, the largest unit
of the language is the sentence. After the end of a
sentence one may type any number of spaces and new
lines. The data description forms are an exception to
the rule that position across a line is not significant, as
will be clear when they are explained.

Although the programmer is not compelled to lay out
his program neatly, he will usually wish to do so and
may arrange margins and paragraphs and headings as
he wishes. He will, for instance, want to type labels at
the left edge of a page, with the actual procedure state-
ments indented a few characters.

The major sections of a Nebula program will be
introduced and terminated by statements such as
PROCEDURE DESCRIPTION, and END OF
PROCEDURE DESCRIPTION, and DATA DE-
SCRIPTION, and within the data description CARD
DESCRIPTION, and so on. It is evident that these
statements can be recognized like any other statement.

A full description of how statements and such things
as IF clauses are analysed would be very lengthy, and
a full statement of how incorrect forms of expression and
misspellings are recognized and dealt with would be
even lengthier; suffice it to state that the language is so
chosen that these analyses can be done.

Procedure Statements

The number of genuinely different statements abso-
lutely required for programming is perhaps four: one
for reading or writing records to or from files, one for
doing arithmetic and transferring data internally, a
third to move control from one part of a program to
another (such as the GO TO statement, which, with
IF clauses, would also allow action dependent on the
circumstances), and a fourth to stop the program. These
statements would of course rely heavily on the expres-
sions that occur in them, such as arithmetic expressions,
or outside them, such as conditions and labels, to give
variety of expression.

At any rate, the point is made that a small number
of statements, together with a few forms of expression,
are able to describe data-processing operations. The
greater number of statements in Nebula are provided
partly to allow efficient use of the computer and partly
to provide more convenient means of expression.

We shall now discuss each of the Nebula procedure
statements, mentioning most of them only briefly, but
treating some of them fully in order to give an idea of
how many questions they raise and how much explana-
tion they require. The procedure statements may be
classified under the headings Input and Output, Arith-
metic, Control, and Miscellaneous, corresponding
approximately to the four essential statements mentioned
above.

Input and Output Statements

There are six input and output statements: OPEN,
CLOSE, ACCEPT, DISPLAY, READ, and WRITE.

202

The OPEN and CLOSE statements are used, respec-
tively, to bring a file into use and to remove it from use.
They cause various routine operations to be carried out,
such as checking the identity of the tapes on opening a
magnetic-tape file, and placing an end-of-file marker on
the tape and rewinding on closing a file. These state-
ments are not absolutely essential, since Nebula could
arrange that every file in a program is opened auto-
matically when the program is begun and closed when
it finishes. But this, though perhaps usually satisfactory,
could waste time, or even require extra input or output
machinery. (This latter situation would occur when
two files could use the same peripheral because they were
never in use simultaneously.)

The ACCEPT statement is used to receive messages
typed by the operator on the monitoring Flexowriter,
and the DISPLAY statement is used to print messages
for the operator on this Flexowriter. For instance, the
following DISPLAY statement

DISPLAY “END OF STAGE 1”

will cause the words between quotation marks to be
printed on the monitoring Flexowriter.

The main features of the READ and WRITE state-
ments were explained in the section on file structure, and
the explanation will not be repeated here. But there are
two problems arising with the READ statement, and
we will discuss them in detail. The READ statement
takes one of the forms

READ file name
or
READ record name

The second alternative may only be used when there is
only one type of record in the file.

The first problem arises when there is more than one
record type on a file, so that it is not known in general
what type of record has been read in by a READ
statement. The procedure description cannot refer to
details in the record until it knows what type of record
it is, and on the other hand it cannot discover the type
of the record without referring to some identifying
detail in the record. This dilemma is resolved by a
special dispensation, which is as follows. If an input
file has more than one record type, it is suggested that
each record type contain a detail with the same name
and properties. In this special case the detail may be
referred to without its name being followed by *“‘IN
record name” as would normally be required to remove
ambiguity. Then, if the detail contains a different
value for each record type, the record can be identified,
and the problem is solved.

The second problem is concerned with recognizing
the end of a file. The difficulty is that the end of files
is indicated by a marker, not a record, put on auto-
matically by the conversion programs, and this marker
cannot be read as a record by a READ order, so how is
it to be sensed? The solution is provided by another
special facility. A new form of conditional expression

¥202 Iudy 61 U0 1senb Aq 2G¥08¢/.6L/S/v/8101e/|ulWwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

NEBULA

is introduced:
IF END OF file name

which can be used to test for the end of the file before
giving a READ statement. An example of its use is

IF END OF MAIN FILE THEN CLOSE THEN
STOP OTHERWISE READ MAIN FILE.

Arithmetic Statements

The eight arithmetic statements are ADD, SUB-
TRACT, MULTIPLY, DIVIDE, COPY, CLEAR,
COMPUTE, and TAKE. The first five of these all
have the same construction as the ADD statement.
For instance (one form of) the MULTIPLY statement
is described by

MULTIPLY arithmetic expression INTO detail name.

To make the meaning of this statement clear,
MULTIPLY PRICE INTO QUANTITY

wiJl multiply PRICE by QUANTITY and place the
result in QUANTITY. Similarly

DIVIDE P INTO Q

will place Q/P in Q.

There are alternative forms for these statements,
which are useful for making Nebula programs read
naturally. These involve a special detail named
QUANTITY ON HAND, or QH for short. Then
statements such as

ADD arithmetic expression
MULTIPLY BY arithmetic expression
TAKE arithmetic expression
COMPUTE arithmetic expression

all leave the result in QH, with the ADD and MULTI-
PLY statements adding and multiplying what was
already in the QH by the arithmetic expression. (Notice
the BY in this form of the MULTIPLY statement.)

There is yet a third form of these statements, as
illustrated by

ADD INTO detail name

Here the QH is added to the detail and the result placed
in the detail. With these forms one can write such
sentences as

TAKE GROSS CAPITAL THEN SUBTRACT
DEDUCTIONS THEN MULTIPLY BY INTEREST
RATE THEN COPY INTO INTEREST.

Control Statements

The four control statements are GO TO, PERFORM,
EXIT, and STOP. The GO TO statement was explained
when labels were introduced. The PERFORM state-
ment is used to enter a procedure, which is roughly the
same as a subroutine in ordinary computer terminology.
Without going into the matter fully, it can be said that

203

FiLe OUTLINE LOGICAL DESCRIPTION

NUMERIC |NoN

LEVEL NAME NUMp
MIN{ MAXIMUM [ERIC 0SITioN

OTHER DETAILS

! INVOICE FILE
‘1 INVOICE
“I1 |PERSONAL DETAILS]
* 1 |INITIALS AND TITLE 12
2| SURNAME
3|LINETOF ADDRESS
* 4 |LINE 2 OF ADDRESS|
5 |LINE 3 OF ADDRESS]
“12 |INvOICE DETAILS(ID
* 1 |QUANTITY 0 999
2 |DESCRIPTION v
- 3|PRICE £0|£10
4 |AMOUNT £0|£10000

e

REPEAT VARIABLE,

‘13 |ToTAL £0|£100 000

Fig. 3.—The Logical Description Form, filled in for a simple
Invoice File

the PERFORM statement causes the program to return
to the statement following it when the procedure has
been completed, whereas the GO TO statement has no
such effect. The EXIT statement is used in procedures
to cause this return. Lastly, the STOP statement
terminates a program.

Miscellaneous Statements

The other statements of the procedure description are
the LOCATE, ROUND OFF, ROUND UP, and
TRUNCATE statements. The LOCATE statement is
for use in searching lists or files, and the other three
are for rounding or truncating numbers.

The File Outline and Logical Description

Fig. 3 shows the logical description form, filled in for
an invoice file containing one record type named
“Invoice.” The part of the form to the left of the
double line is called the File Outline. The file outline
occurs on all the data description forms.

The File Outline

The file outline describes the structure and naming of
a file. The entries in the Level columns indicate the
structure, by means of the dots (full stops) before the
numbers in the entries, which are interpreted as follows.

The level entries for files have no dots. Thus if a
second file were described on the form, its level entry
would be just the digit 2. The level entries for records
have one dot, such as that for “Invoice.” If there were

¥202 Iudy 61 U0 1senb Aq 2G¥08¢/.6L/S/v/8101e/|ulWwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

NEBULA

another record in the file its level entry would be .2.
The entries for items within a record have at least two
dots, and these entries define the group structure of a
record. In the example, Personal Details and Invoice
Details are group names, and all the other names are
detail names. The details Initials and Title, Surname,
and the three lines of address are members of the group
Personal Details; and Quantity, Description, and Price
are members of the group Invoice Details. The rule is
thus: that an entry followed by one with a larger number
of dots is a group name, and any entry followed by one
with the same number of, or fewer, dots is a detail name.
Groups within groups can be defined in this way, to as
many levels as may be required.

Abbreviations for names can be defined in the file
outline. The abbreviation can be given in brackets after
the name, as in the example where the abbreviation 1D
for Invoice Details is defined. These abbreviations can
be used whenever desired, instead of the full name, in
the procedure description. More than one abbreviation
may be given; and perhaps it should be stated that the
“abbreviation” does not have to be shorter than the
main name.

If there were not space in the Name column on the
same line, the abbreviation could be given on the next
line. This way of overcoming shortage of space applies
to all the columns of all the data description forms: if
there is not enough space, an entry may be continued
on the succeeding lines of the same column. The next
full entry on the form will then be entered on the line
after the last of these overflow lines.

The Logical Description

The logical description contains the information
required by the compiler to allocate storage space, and
to keep track of scaling in arithmetic operations.

Every detail is either numeric or non-numeric. Very
little has been said so far about the properties of these
two classes of detail. To discuss numeric details
thoroughly would involve discussing the scaling of
numbers, but there is no need to do so in this article.
Numeric details are numbers, and so arithmetic can be
done on them. Non-numeric details correspond to
what are usually called alpha or alpha-numeric fields in
punched-card work, consisting of a series of characters.
These are six-bit characters, and so can take 64 values,
allowing a character set of 64 characters.

The columns headed NUMERIC MIN and NU-
MERIC MAXIMUM must be filled in for numeric
details. The entry in the MIN column must be the
minimum value the detail can take (the most negative
value if the number can be negative), and the entry in
the MAXIMUM column must be the maximum value
the detail can take. These entries allow the compiler
to allocate space to the detail, and also allow it to put
orders into the program to check that it is within range.

The column headed NON-NUMERIC must be filled
in for non-numeric details. If it is of fixed length, this

204

length, in characters, should be entered. If its length
is variable, the letter V must be entered.

All the other information required in the logical
description is entered as statements in the Other Details
column. These statements have a strict structure, along
the same lines as those for the procedure description,
although naturally a different set of statements is pro-
vided. There are about twenty of these statements, and
as with the procedure statements, many of these are not
essential but are provided for the programmer’s con-
venience. We will mention the most necessary ones
very briefly.

A group or detail that occurs repeatedly has entered
against it the statement

REPEAT integer TIMES
if it occurs a fixed number of times, or
REPEAT VARIABLE

if the number of occurrences is variable. Naturally,
even if the number of occurrences is variable, it must
have a limit. Nebula contains provision for specifying
the limits on record lengths. REPEAT VARIABLE
includes no occurrences as a possibility.

A group or detail that may or may not occur, but is
not repeated, has

OPTIONAL

entered against it.

Working files or constants files are identified as such
by the statements WORKING FILE or CONSTANTS
FILE entered against the file name.

The accuracy to which a numeric quantity is held is
not dedugible from the MAX and MIN entries. But
unless otherwise specified, integers will be stored to
unit accuracy, and sterling quantities to units of one
penny. If other units are required, and in any case for
fractions, they are specified by the UNITS statement.

The Physical Description

There are three different ways in Nebula of describing
the data recorded on external media. These are the
Card Description, the Printing Description, and the Paper
Tape Description. It turns out that the description of a
file is the same whether the file is an input or output file,
with the exception that some information needed for
input files is not needed for output. Therefore the same
method of description is used for describing input and
output files on each medium.

The descriptions of the files on the different media
are necessarily different. For instance, comparing
punched cards with printing, the natural way of describing
the position of a detail on a card is to state the columns
occupied by the detail, whereas the position of a detail
on a page is described by line number and character
position along the line. To take another example, with
punched cards some provision must be made for
describing single hole positions used to represent -+

¥202 Iudy 61 U0 1senb Aq 2G¥08¢/.6L/S/v/8101e/|ulWwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

NEBULA

and — ; but printing and paper tape have nothing similar.
On the other hand, on printed forms but not on cards
it must be possible to describe where format symbols
such as £ and , are to be inserted in the print-out of
details.

A form and a set of statements are provided for each
of the three physical descriptions, along the same lines
as for the logical description. As with the logical
description, the left-hand side of the forms contains the
file outline. It has been stated that the file outlines for
the logical and physical descriptions of a file must be
the same, but this needs a word of explanation. The file
structures and names given in the two file outlines must
be identical, but the exact positioning of information on
the forms is not significant. Abbreviations for names
must not appear on the physical description. A file
might be the third file described in the logical descrip-
tion, but the first one in the printing description, and
then the level numbers for the file would be 3 and 1
respectively: this does not matter.

The right-hand side of a physical description form
contains the complete specification of how data is
recorded on the external media.

It will be necessary when explaining some of the card
and printing statements to introduce /iterals, which are
of great use in Nebula. Literals are numbers or words—
at any rate a series of characters—written in Nebula
programs, and in some sense intended literally. Thus
the statement

ADD 127 INTO QUANTITY

will add 127 into the detail called QUANTITY.

Similarly
COPY “HENRY” INTO NAME

will place the characters HENRY in the non-numeric
detail called NAME.

Literals can appear in arithmetic expressions instead
of detail names, and in many other expressions in
Nebula. The rules for writing literals are simple. A
literal must be enclosed in quotes (e.g. “HENRY”), or,
alternatively, every character of the literal must be
underlined (e.g. HENRY). The only exception is that

a numeric literal need not be underlined or enquoted.
There is a list of the forms that a numeric literal may
take, but a few examples will suffice here: £17.3.6 or
£35 or - 104 or 23.7 or .001. (Sterling quantities are
identified by the £ sign.)

The Card Description

Before explaining the card description it will be well
to outline the nature of the card files and how they are
handled.

Usually, but not necessarily, each card will contain
one record. Each card will contain full identifying
information. If there is more than one record type in
the file, a field, in the same position on each type of
card, will be punched with the identifying code. It is

205

FILE OUTLINE CARD DESCRIPTION
7ERO
LEVEL NAME R [SThglPOSITION| OTHER DETAILS
at PRICE L |0[0| 16
L |0|0] 17
L |0j0| 18
S OVERPUNCH 19/B = 10.
S |0|0| 19
D 0[O0 20 |OverRPUNCH 19/A=10;I9/3I

Fig. 4.—The Card Description Form

expected that cards will be used ‘‘fixed format,” that is
to say that for each type of card the meaning of the data
punched in a particular column is always the same.
The end of card files will be indicated by specially
punched cards, it might be, for instance, by a part
number of 99999. Reloading readers and emptying
stackers will be done on Orion without program inter-
vention. Misreads or mispunching, and card wrecks
and other failures will be dealt with by standard pro-
cedures, so that there is no need to mention them in the
card description.

Any card code can be used with Nebula and Orion.
Standard card codes are given names and stored along
with the compiler, so that usually the Nebula pro-
grammer will not have to describe his card codes.

Non-standard punching, in the upper or lower curtate,
is assumed to be common, and it must be possible to
describe it reasonably conveniently.

Fig. 4 shows the card description form and a typical
entry for a detail called price. As this entry shows,
each line of the form describes one digit of the detail.
The most significant digit is described on the first line,
and successive digits on successive lines. Similarly for
alphanumeric data, one character is described on each
line and the leading character is described first.

The entry in the first column, headed Char. Type
(for Character Type), is always the letter A for alpha-
numeric characters; for numeric items the entry gives
information about the significance of digits. In this
latter case the possible entries are N, F, L, S or D. For
sterling quantities L, S and D are used to identify the
pounds, shillings and pence digits, as shown in the
example. In ordinary decimal numbers N and F are
used, N for digits to the left of the decimal point
(“integer digits”’), and F for digits to the right (‘““fraction
digits”).

The entries in the next two columns, headed Zero S
and Zero NS (significant and non-significant zero),
specify the punching of zeros, and are therefore only
used when describing digits. The entry in these columns
is usually either 0 in both, if zeros are to be punched,
or the columns are left blank if zero is to be represented
by an unpunched column. If any other characters are
required, they should be entered in the columns.

The entry in the column headed Position gives the
number of the card column holding the digit or character

¥202 Iudy 61 U0 1senb Aq 2G¥08¢/.6L/S/v/8101e/|ulWwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

NEBULA

being described. If several successive columns of the
card have the same description, which will happen very
often, they can all be described on one line by another
kind of entry in the Position column. An illustration is
afforded by the three L digits in the example in Fig. 4,
and in this case the entry would be

16 — 18

All the other information about a card file is given
by statements in the Other Details column.

The reader may wonder why some information in the
logical and data descriptions is given by entries in
columns, and some by statements: all the information
could in fact be provided in either way. However, the
aim has been to reduce the amount of writing by pro-
viding columns for the information which is required
most frequently. On the other hand, statements are
preferred in general because their meaning is more self-
evident, and because every extra column means more
spacing or tabbing across the form. Also, some of the
information varies in quantity, which does not matter
with statements but does with column entries.

Before giving a detailed description of two of the card
description statements, we mention all the statements
briefly. Some are more essential than others. The
OVERPUNCH statement, and the associated statements
NO OVERPUNCH and SINGLE PUNCH are essential
for describing non-standard card punching. The
RECORD IDENTIFICATION statement is necessary
for identifying records in files with more than one record
type, and the END OF FILE statement is necessary for
detecting when the end of the file has been reached.
The STANDARD CODE statement is necessary for
naming the card code used. The card machine to be
used must be named either in the card description by
the CARD MACHINE statement, or in the object
machine description. The ROUND OFF, ROUND
UP, TRUNCATE and USE TABLE statements serve
the same purposes as in the logical description, and are
convenient rather than necessary. There are other
statements for handling multi-card records and variable
field-length data; for saving duplication of the description
of identical records or parts of records; and for the
esoteric purpose of interpreting columns with deliberate
double-punching in the lower curtate.

We shall describe in detail the two most complicated,
and probably most used, statements, the RECORD
IDENTIFICATION and OVERPUNCH statements.

Consider a card file with several different record types,
with every record corresponding to a card, and with
different layout of fields for the different card types.
Before each card can be converted its type must be
determined. Usually the type will be indicated by the
punching in a field of one or two columns, these columns
being in the same position on all the card types. If this
is so, it is only necessary to know where on the card
this field is and what punching it contains for each
record type in order to identify the card type. The

206

FILE OUTLINE CARD DESCRIPTION

CHAR| Zero

LEVEL NAME Tvee [S]ng| POSITION| OTHER DETAILS
-1 MONTH N9 38 |OvERPUNCH 36/A=10;38:I!;
38/0=12.
SINGLE PuNcH

Fig. 5.—The use of the OVERPUNCH statement to supplement
a standard digit

RECORD IDENTIFICATION statement gives just this
information. It takes the form

RECORD IDENTIFICATION condition
and an example might be
RECORD IDENTIFICATION CODE - “*AB”

entered against the record name. Here CODE is the
identifying detail, and it takes the value AB for the
record type this statement is entered against.

We have described the most straightforward record
identification situation, although the statement will apply
under other circumstances, for example when the
identifying field is not in the same columns for all record
types.

All non-standard punchings of digits or characters are
described by the OVERPUNCH and associated state-
ments. The form of the OVERPUNCH statement is

OVERPUNCH hole position = literal; hole posi-
tion = literal. . ..

Thus if the category to which some article belongs is
punched in positions 0 or 1 of column 7 of a card, and
these categories are referred to by the procedure descrip-
tion as A or B, then the OVERPUNCH statement against
the character holding the category will be

OVERPUNCH 7/0 = “A™; 7/1 = “B”

If in addition a category C is represented by neither of
these positions being punched, then the statement

NO OVERPUNCH = “C”

would be made as well. On the other hand, if it were
an error for there to be no punching in either position,
then the statement

SINGLE PUNCH

would be made as well.

The OVERPUNCH statement can be used to supple-
ment the description of a standard digit. For instance,
if the month is punched in column 38 of a card with
holes in the A, B, and 0 positions representing months
10, 11 and 12 respectively, then the character holding
months would be described as in Fig. 5. In such cases,
where there is an entry in the Position column as well as
an OVERPUNCH statement, the value given to the
digit formed by the OVERPUNCH statement is added
to the value derived from the standard punching.

¥202 Iudy 61 U0 1senb Aq 2G¥08¢/.6L/S/v/8101e/|ulWwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

NEBULA

Incidentally, the 9 in the Character Type column is a
special notation which states that the standard digit is
contained in the bottom nine positions of the column,
not ten as usual, with no punching in these nine positions
representing zero. The SINGLE PUNCH statement has
been made because there should be exactly one hole
punched in column 38, taking the standard digit and the
overpunch positions together.

The OVERPUNCH statement has required more
explanation than one might wish, but in fact this has
no more than reflected the variability in the special
punchings which it has to describe. There remain a few
fine points of interpretation and extension of notation
which we will not discuss.

The Printing Description

Fig. 6 shows the printing description form and a
typical entry for a sterling quantity called TOTAL
CHARGE.

Before explaining the printing description we discuss
what is required of it, and how this differs from what
was required for the card description. There are two
aspects of card files which do not occur with printing.
One is record (i.e. card type) identification, which does
not arise because printing is a type of output, and the
record identification problem is one which only arises
with input files. The other aspect is that nothing corre-
sponding to overpunching occurs with printing. On the
other hand, data is held in fixed format on cards,
whereas the position of a detail on a printed form may
vary. For instance the position of a person’s surname
on a form depends on his title and how many initials
he has. With printing, too, more is needed for zero
suppression, for inserting format characters into the
print-out of details, for headings to data, and for other
such refinements needed to make the printed output
easily read.

The main job of describing printed output is done by
the entries in the Position column which state where the
details are to be printed, and by the MAP and ZERO
statements in the Other Details column, which state
what characters are to be printed for each detail. Notice
that in the card description, each character is described
on one line of the form, whereas in this description it is
each detail that is described on a line.

Before describing the position entry and the MAP
and ZERO statements in detail, we comment briefly on
the other statements. There are the POSITIVE and
NEGATIVE statements for indicating the sign of a
number other than by + and — for instance, it might
be by printing CR or DR after the number. There is
the TEXT statement for printing headings and other
fixed words. There are the usual rounding statements.
There are the FORM LENGTH and PRINTING
LIMIT statements for specifying the length of the form
and the number of lines available for printing, and the
FORM FEED statement for stating that a form feed
character sent to the printer will move the paper to the

207

FILE OUTLINE PRINTING DESCRIPTION

LEVEL N AME POSITION OTHER DETAILS

12 ToTaL CHARGE 2/*60 MAP=£LLL

Fig. 6.—The Printing Description Form

beginning of the next form. And there are statements
for handling continuation forms, for naming the printer
used, and for other purposes.

To explain the use of the position column, let us take
the simplest entries first. These are for the case in which
the detail is to go in a fixed position. They are best
illustrated by examples:

4/10 —
or
4/ — 10

The first states that the detail is to be printed on line 4
with its left-hand character in character position 10; the
second means the same except that the rightmost
character of the detail is to be in character position 10.
The first is what is usually required for alphabetic
information and is called left justification, and the second
is for numbers and is called right justification. The only
case where no arrow is required is where the detail
consists of only one digit or character.

Now consider specifying the positions of a repeated
group of details, such as a list of invoice details. Here
the occurrences of the group of details are to be printed
consecutively down the page, each occurrence beginning
on a new line, and the line on which this listing is to
start is known. Usually each occurrence will occupy a
fixed number of lines, but the notation to be described
does not demand this. Fig. 7 shows how such situations
are described. The line on which printing starts is
entered against the group name: here it is line 10. The
first occurrence of detail A will be printed on line
10 - 0 = 10, and in character positions 15—, and
similarly B and C will be printed at 10/ — 25 and
11/12 —. Then, since this first occurrence of the group
used lines 10 and 11, the next occurrence will start on

NAME POSITION
INVOICE DETAILS 10

A +0/15~

B +0/=25

C +1/12~

Fig. 7.—Use of ‘“ -+’ to describe positions of details of a
repeated group

¥202 Iudy 61 U0 1senb Aq 2G¥08¢/.6L/S/v/8101e/|ulWwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

NEBULA

NAME PosITION OTHER DETAILS
INvoice DETAILS 10 LAST LINE= A.
A +0/I5—~
B HO/-25
Cc 1/12—~
TOTAL A+1/25

Fig. 8.—Use of the LAST LINE statement

line 12. On this occasion detail A will be printed on
line 12 + 0 = 12, and so on.

Suppose it were required to print a total on the line
below the last line occupied by the listing. It must be
possible to refer to the last line occupied by the listing.
The LAST LINE statement is provided for this purpose.
The previous example would then be augmented as
shown in Fig. 8. Note that the -~ in the A -~ 1 is used
in the ordinary way, as distinct from its use as a
“relativizer” against details A, B and C. It should be
added that the LAST LINE statement has the form

LAST LINE = label

where the label in practice will be a letter, and must
differ from any other labels used in the physical descrip-
tion of the same record.

The MAP statement describes the printing of a detail,
and takes the form

MAP = format description

This format description is a character by character
representation of the printed detail. In this representa-
tion, L, S, D, N and F stand as usual for a pound,
shillings, pence, integer, and fraction digit, respectively.
Format characters such as decimal point or commas are
underlined. Examples will make the interpretation of
the MAP statement clear:
An example of

MAP = N, NNN.FF
is 4,719.32
An example of
MAP = £LL.SS.D
is £35.15.7

There are other symbols with special meanings in the
MAP statement. ““A” represents any character of the
printing code, and is used for alphanumeric data.
“+" is only used with numeric details and represents —-
if the number is positive and — if the number is negative.
“—" has the same meaning as -+ except that a space is
printed if the number is positive. There are a few other
characters with special meanings. Lastly, the notation
A. .. represents any number of characters and is intended
for describing variable-length fields.

208

Any string of characters belonging to the code is an
example of MAP = A. ...

Examples of MAP = + NN are 37 and — 04.
Examples of MAP = — NN are 37 and — 04.

These details of the MAP statement suffice for its use
in the printing description. It is also used for the paper
tape description, where a little more is required of it.

The ZERO statement supplements the MAP state-
ment if any zero suppression is required. The ZERO
statement evidently can only be made against numeric
details. It takes the form

ZERO = format description

This format description must contain the same
number of characters as the format description in the
MAP statement it goes with, and each character of the
ZERO statement is simply the character to be printed if
the corresponding character of a number being printed
is not significant. Usually there is no difficulty in
deciding whether a digit is significant in the ordinary
sense of the term, but there is a precise rule in Nebula
for deciding in special cases. Again, examples will
clarify the situation.

Examples of

MAP=N,NNN . FF
ZERO=%53%%50.05%

where $ represents the space character, are
13.7 rather than 0, 013.70

and 0.0 rather than 0,000.00

An example of
MAP=£LL .SS.D
ZERO—£ ~0.50 .0
is £-—3.2.0 rather than £03.02.0

Conclusion

The paper tape description is similar to the card and
printing descriptions, many facilities being very like those
provided in one or the other.

We have given no description of a great many of the
facilities provided in Nebula. Some of these are: how
to describe card, printer, and paper tape codes:; how to
cope with faulty data on cards and paper tape; the
Object Machine Description, which states such things
as the amount of core store and drum store available,
the number of tape decks and the number and names of
the other peripherals; the specification of restart pro-
cedures; the specification of tables; the use of sub-
routines; and any specification that may be desirable
concerning the sizes of the files, or the maximum length
of records. But these facilities all use the same kind of
statements and principles of construction as those parts
of Nebula that have been explained.

¥202 Iudy 61 U0 1senb Aq 2G¥08¢/.6L/S/v/8101e/|ulWwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

NEBULA

The purpose of this article has been to make clear
how programming with the Nebula language is done,
and in parallel to give some understanding of how the
language has been constructed: and for those who wish
to use Nebula the aim has been that they should under-

stand enough to be able to write programs in Nebula
with the aid of the programming manual and the
summarized procedure sheet.

The authors are indebted to Ferranti Ltd. for per-
mission to publish this paper.

Appendix

A Stock Control Application

A warehouse has in stock a large number of different
items. Each item is given a part number. Each time a
quantity of an item is issued from stock an issue card
is made out. Similarly, each time a new batch of items
is brought in a receipt card is made out. These cards
are punched cards to be used by an Orion computer
system. The fields on the cards are as follows:

(a) A single character 1 for issue card and R for
receipt.

(b) A part number.

(¢) The quantity of stock issued or received.

A master file is kept on magnetic tape which contains
a record of all the items in stock. For each item is
recorded against its part number, the quantity currently
on hand. Also kept with each record is a minimum
below which the quantity on hand should never fall.

Each day it is intended to pass the cards, sorted into
part number order, and the master file, through the
computer and to produce as a result a new, updated
master file. Some printed information is also required:

Transaction Records

These are summaries for each stock for which there
was a receipt or issue card. Against the part number is
printed the total quantity received and the total quantity
issued.

Requirement Slips

These are print-outs giving the number of any stock
for which the quantity on hand is below the specified
minimum for that stock. Also printed is the deficiency.

The receipt and issue cards will constitute a file called
the Movements File and the cards themselves will
generally be referred to as Movement Records. The
Total fields in the transaction records will be used to
contain the intermediate totals of issues and receipts.

The part number will occupy the first twelve binary
digits of the forty-eight digits in one Orion word.

One possible flow diagram for the required program
is given below, and it is followed by the appropriate
Logical Data Description and Procedure description.

The layout of items within the store of the computer
will only be specified in the case of the stock records on
the master file. The layout of the remaining items will

be left to the compiler. A stock record will be contained
in two computer words as indicated below:

12 bits

————

Word 0 | Part No. | Minimum Quantity

Word 1 Quantity on Hand

Fig. 9.—Arrangement of stock record words

Flow Diagram

— Read first card ————————

Begin

|
— — |
| | ‘

|

Y ¥
| Compare Part numbers in Stock Record and

} rﬁwMovemeh«t Record —— 1
|

| —»Error \ ‘

| | ‘
‘ i ¥ ‘
i Matched Unmatched !
: | l |
| 1 N

Update total VStock on hand —Ifa transaétion has taken | |

place Print a transaction ‘
Record.

and total receipts or issues.

! i
If no more cards go to If the stock on hand is
unmatched otherwise read—— below the minimum print
next Movement Record a requirement slip.
]

|
]
}
Write up new stock record 1
on new master file. }

M .
Clear issue and receipt
totals.

If end of either file go
to ending, otherwise

~read next stock record
from master file.

|
Enging Error

Display “Card Sequence
Error” and the part num-
ber. If the operator types
“continue” go to read
another card otherwise to
ending.

Copy records from master
file to the new master file
until end of file, then stop
displaying “END”.

¥202 Iudy 61 U0 1senb Aq 2G¥08¢/.6L/S/v/8101e/|ulWwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

NEBULA

FILE OUTLINE

LOGICAL DESCRIPTION

|
NUMERIC | NoN-

NAME ‘ | NUMERIC | POSITION ‘ OTHER DETAILS
} J MIN. | MAX. ‘ LENGTH ‘ 1
| |
1 Master File (MF) i | , } ‘
.1 | Stock Record ‘ | ‘ !
1 Part No. } 0 4000 | ‘ 0/0 |
2 Quantity 0 100000 | S
.. 13 ! Minimum 0 1000 | Coo/12
2 New Master File (New MF) | | | i
1 New Stock Record ‘ ‘ | Identical to Stock Record.
3 Movements File ‘ J
.1 Movement Record (MR) i
1 Code ‘ 1 | Code I = Issue Card.
2 Part No. 0 4000 j
. 3 Quantity 1 9999 ‘
4 | Printed Records ‘ ‘ |
.1 | Transaction Record ‘
| . Part No. 0 4000 | Value — Part No. in MF.
2 | Totals i ‘
. 1| Total Issue C 0 | 10000
. .2 | Total Receipt i 0 10000
.2 ‘ Requirement Slip |
1 | Part No. 0 4000 | Value - Part No. in Stock Record.
- 2 | Quantity Required ‘ 1 1000 | ' Value — Minimum Quantity in MF.
5 ‘ \ | Working File.
.1 . Error Direction .16 |
FILE OUTLINE CARD DESCRIPTION
| ZERO ACTION
F |
HEVEL NAME cf{:ﬁic(;m SIGNI- NON- PoifTRISN OTHER DETAILS
I- |
FICANT FSIICGANNT ‘ }
3 Movements File] ‘ Card Machine = ICT 581.
‘ End of File
‘ Part No. — 4000.
1 | Movement Record
1 Code Al10 ! 20
2 ! Part No. N ;0 2123
, ‘ N 0 | 0 | 24
3 Quantity N 0 | 30->32
! N | 0 l 0o | 33
FILE OUTLINE J PRINTING DESCRIPTION
LEVEL NAME | POSITION OTHER DETAILS
| |)’
| |
4 " " Printed Records 1 Printer = Bull BZ.
1 Transaction Record " Form Length = 8: Text — ““Transaction™ in 3/10—.
1 Part No. | 5/10— Map = D D D D: Zero — * * * (.
2 Totals |
1 Total Issue 5/20— Map = D D, D D D: Zero = * * * * *(,
- .2 Total Receipt | 5/30— Map == DD, D D D: Zero — * * * * x(,
.2 Requirement Slip | Form Length — 8: Text = “Requirement’ in 3/10—.
1 Part No. L 5/10—~ Map = D D D D: Zero = * * * 0.
2 Quantity Required f 5/25— Map = D D D D: Zero — * * *(,

210

¥202 Iudy 61 U0 1senb Aq 2G¥08¢/.6L/S/v/8101e/|ulWwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

NEBULA

Procedure Description
[BEGIN]
[MATCHING]

Read Movement File then Go to X.
If Part No. in MR > Part No. in Stock Record then go to unmatched action.

If Part No. in MR == Part No. in Stock Record then go to Error action.

[MATCHED ACTION]

If Code — Issue Card then take MR, Quantity then subtract into quantity Stock

Record then Add into Total Issue.
Otherwise Take MR, Quantity then Add into Quantity in Stock Record then add into

total Receipt.

[Y] Unless End of Movement File then read Movement file then go to Matching.

[UNMATCHED ACTION]

Unless Totals is Clear: Write Transaction Record.

If Quantity in Stock Record << Minimum then write Requirement Slip.
Write Stock Record to New Master File.

[X] Clear Totals.

If end of Movement File or End of Master File then go to ending Otherwise Read
Master File then go to Matching.

[ENDING]

If end of Master File then Close then Stop “END”.

Otherwise Locate Stock Record for End of Master File; Writing to New Master File
then Write Stock Record to New Master File then close then stop “END™.

[ERROR ACTION]

Display “CARD SEQUENCE ERROR™; “PART NUMBER IS"; Part No. in MR

then Accept into Error Direction.

[Z] If Error Direction = “CONTINUE” then go to Y.
Otherwise If Error Direction = “STOP” then go to Ending.
Otherwise Display “INVALID MESSAGE” then go to Z.

References

The NEBULA Programming Manual.
NEBULA Programming Examples and Solutions.
NEBULA Summarized Procedure Description.

Ferranti Publication List CS 282.
Ferranti Publication List CS 283.
Ferranti Publication List CS 284.

Annual Prizes: Result of 1960-61 Competition

As announced in The Computer Journal, Volume 3, page 163,
the Editorial Board have considered the papers which were
published between June 1960 and April 1961 in this Journal
and The Computer Bulletin.

Awards of twenty guineas each were made in respect of
two papers, and these were presented to the authors at the
Annual General Meeting of The British Computer Society
in London on 26 September 1961.

The winning papers were:
H. H. Rosenbrock (Constructors John Brown Limited).
“An Automatic Method for Finding the Greatest or
Least Value of a Function.”
Published in The Computer Journal, Volume 3, page 175.

211

A. J. Platt (Pilkington Brothers Limited).

“The Experience of Applying a Commercial Computer
in a British Organization.”

Published in The Computer Journal, Volume 3, page 185.

The Editorial Board highly commended the paper by Miss
Daphne E. Kilner (British Transport Commission) entitled
“The Characteristics of Computers of the Second Decade”
(The Computer Bulletin, Volume 4, p. 88); also the paper by
F. G. Duncan and D. H. R. Huxtable (The English Electric
Co. Ltd.) entitled “The Deuce Alphacode Translator” (The
Computer Journal, Volume 3, page 98.

A further competition will be held on the papers published
between June 1961 and April 1962.

¥202 Iudy 61 U0 1senb Aq 2G¥08¢/.6L/S/v/8101e/|ulWwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

