Improving Problem-Oriented Language by Stratifying It

By Philip R. Bagley

In order to lighten the programming task, further development of problem-oriented computed
languages must take the direction of relieving the programmer of specifying those details which
in thecry can be supplied mechanically. The first step toward accomplishing this is to develop
programming languages which permit the mechanically-supplyable expressions to be stated
separatcly from the remainder of the program expressions. An immediate benefit of this first
step is that the programmer is free to formulate, express, and modify procedures and data for
the solution of a problem without concern for the manner in which the procedures and data will
be implemented on a computer. By having the mechanically-supplyable detail separately stated,
the way is paved for the development of translating programs which can supply this detail. These
ideas are not radically new, but rather serve to emphasize a trend which is apparent in current
computer languages but which has not been carried far enough.

Introduction

This paper is a result of a search for principles to guide
the further development of programming language. It
is the thesis of this paper that in order to lighten the
burden of programming, further development of
problem-oriented computer languages must take place
in the direction of relieving the programmer of specifying
those details which in theory can be supplied mechani-
cally (that is, by programs). This thesis is not advanced
as a revolutionary principle, but rather as a restatement
and emphasis of a trend which is already apparent in
current programming-language development. The defini-
tion in this paper of several levels of language within a
programming language may serve to intensify the trend.

A General Characteristic of Current Programming
Languages

If we hope to supply mechanically those program
expressions which in theory can be so supplied, we must
first organize our program language in a way which
allows those expressions to be stated separately from the
expressions which cannot be so supplied. It appears,
however, that in most current computer languages these
two types of expressions are not wholly separable. In
the succeeding paragraphs I try to substantiate this state-
ment about non-separability, both to illustrate what I
mean by separability and to demonstrate that current
languages fall short of this goal.

In most if not all of the current computer program
languages—called ‘‘problem-oriented languages”—the
programmer must be concerned in some degree with how
his program will be handled either on a specific computer
or on a class of computers with specific characteristics.
The programmer must in general be aware of the
following types of information at the same time that he
is working out the program procedure: the amount and
type of secondary storage (such as magnetic tapes) that
will be used, the arrangement (coding and format) of
data in internal and secondary storage (this includes the
computer’s method of representing numbers), the likeli-

E

217

hood of various types of errors and a selection of
methods for dealing with them, and the relative fre-
quencies of various operations to be performed.

We offer some illustrations of specific cases of non-
separability. These illustrations have been drawn from
COBOL (Conference on Data Systems Languages, 1960)
and MAD (Michigan Algorithm Decoder, based on
ALGOL) (Arden, Galler, and Graham, 1960) because
these languages are moderately well known and repre-
sent in large measure the state-of-the-art in programming-
language development.

(1) In COBOL, a datum cannot be described as an
abstract quantity (that is, in terms of the kind of
quantity and its precision or number of characters),
but it must be described in terms of how it will be
represented in a machine’s internal storage. One
cannot say, for example, “quantity A is a dollar
value precise to 1/100 of a unit,” but rather that
“quantity A is a decimal value expressed by a
dollar sign followed by six digits, a comma and a
decimal point to follow the first and fourth digits,
respectively, when printed, but not when stored,
initial zeroes to be suppressed,” etc.

(2) In COBOL, the references to program error-
handling routines must be made in the same
sentences as those operations which may give rise
to an error, instead of being expressed in separate
statements.

(3) In COBOL, the choice of operation names for the
movement of information in or out of the com-
puter depends on what type of input-output device
is to be used. Example: READ, WRITE, OPEN,
and CLOSE refer to tape files; ACCEPT refers
to low-volume input devices such as card readers;
DISPLAY refers to low-volume output devices.

(4) In COBOL, notations indicating where the pro-
cedure may be segmented for the purpose of fitting
it in machine storage are written as part of the
procedure statements.

¥202 Iudy 61 U0 1senb Aq 90G08¢€/. L 2/S/y/e1o1e/|ulwoo/woo dno-ojwapeoe//:sdiy woli papeojumoq



Problem=Oriented Language

(5) In COBOL, the number of characters comprising
a quantity must be known and kept in mind when
that quantity is moved from one ‘‘field” (storage
position) to another, for if the receiving position
is smaller than the source position, one or more
characters will be lost.

In MAD, there is no explicit provision for expres-
sing the precision with which quantities will be
stored and processed, hence these precisions are
determined implicitly by the characteristics of the
machine on which the procedure will be run (or
alternatively by its translator); the programmer
must know these precision factors in advance of
writing his program in order to know what the
precision of his result will be.

In MAD, for recursive use of a subroutine (that
is, in the case that a subroutine calls itself) one
must express ‘‘save’ and ‘‘restore’ operations to
preserve the subroutine temporary storage on a
push-down list. These operations are not part of
the logic of the subroutine, but rather a conse-
quence of the way it is implemented.

By far the strongest dependence of the purely logical
part (the procedure and data description part) of current
languages on computer characteristics cannot be illus-
trated by simple examples like the above. This depen-
dence can be recognized only through a first-hand
knowledge of the extent to which the choice of pro-
cedures and internal coding of data is determined by the
physical characteristics of the computer that is expected
to be used.

These examples are not meant to imply that in all
current programming languages one cannot separate to
some extent those expressions concerned solely with the
logic of a program from those concerned with how the
program is to be implemented for a specific computer.
But on the other hand, it is not possible yet wholly to
separate the two kinds of expression. I believe that it
is correct to say that there does not exist today an
operating programming system* in which it is possible
to do the following:

To write down an arbitrarily-chosen procedure to be
carried out, and an explicit description of the data
upon which it is to be carried out, which meet the
conditions that:

(1) The procedure and data description need not
specify how the data is to be coded or physically
organized, nor specify any guidelines to efficiency
or reliability of operation.

Any number of humans who were given the pro-
cedure and data description, along with the
information required to understand the symbols,
would, when they applied the procedure to the
data, arrive at identical results except for the
physical spacing of the output.

(6)

()

(2

* This phrase is meant to rule out ALGOL (Naur et al., 1960)
which by itself is not a complete programming language. Until
it is extended, it lacks ability to express input-output formats and
processes, for example.

218

The above paragraphs indirectly illustrate what is
meant by separability of procedure and implementation
expressions. This lack of complete separability of
procedure and implementation expressions in current
languages stands in the way not only of developing
translating programs to mechanize the implementation
task as fully as possible; it also imposes a positive two-
fold burden on the programmer. First, it prevents him
from concentrating exclusively on procedure logic
during the time he is working out a method of solution
to a problem. Second, implementation details (such as
the way data is coded and stored) become interwoven
with the procedure logic, making it less easy to revise
tentatively expressed procedures.

Outline of Stratification

As I stated earlier, I believe that a necessary step
toward simplifying the programmer’s job is to separate
completely the programming expressions concerned with
implementation from those concerned with procedures.
For reasons which will become clear, it appears useful
to stratify the language into four levels rather than the
more obvious two, so that a programmer may con-
centrate on and state separately the following types of
information:

(1) The procedures and the data description (in the
abstract) devoid of expressions concerned with
anything other than the intellectual method of
problem-solution.

The essential constraints on the intellectual or
abstract solution of the problem. These con-
straints are largely concerned with physical formats
of inputs and outputs.

The implementation details, such as the internal
format and coding of data, storage allocation,
conversion of procedure into machine instructions.
Information about the program, which cannot be
mechanically deduced, and which can be given at
the programmer’s option for the sake of efficiency,
such as the relative probabilities of specific choices
at a decision point.

The succeeding paragraphs will discuss these strata in
more detail, and the potential benefits and drawbacks of
this stratification scheme.

If we actually use the method of stratification outlined
here, 1 feel strongly that we will find that a vast per-
centage of a programmer’s effort is expended on speci-
fying implementation (levels 3 and 4 above). If we can
show that these levels can be mechanized, it will then be
obvious what a price we are paying in order to have the
unnecessary luxury of being able to specify how a
program is to be implemented.

)

(€)

(4)

Procedure and Data Description

The first level of language should enable the pro-
grammer to specify procedures and the nature of the
data involved with those procedures, this language to be
completely devoid of expressions concerned with any-

¥202 Iudy 61 U0 1senb Aq 90G08¢€/. L 2/S/y/e1o1e/|ulwoo/woo dno-ojwapeoe//:sdiy woli papeojumoq



Problem-Oriented Language

thing other than what a human being would need in
order to carry out the procedures and achieve the desired
result. The procedures would, nonetheless, have to be
completely unambiguous, for we are not assuming any
problem-solving ability on the part of the executor,
only the ability to follow the procedure steps.

That the array of procedures available to the pro-
grammer in this language is limited by the choices of the
language designer does not concern us here. What does
concern us is that the portion of the language used to
describe procedures and data should not refer to or imply
how these procedures and data will be implemented on
a computer.

At this language level we must be free of concern with
such things as: the word length of the computer or
storage medium involved, that the storage media (internal
or external) have restrictive characteristics (tapes have
one-dimensional serial access), that storage registers are
physically adjacent address-wise in one dimension (with
the consequence that we cannot insert a register between
any two consecutive registers), the specific representa-
tions of data in storage (such as the manner in which
“logical” or “‘status” variables are numerically coded),
the organization of program and data in storage with
respect to time, procedures for dealing with machine
errors, details of input-output format (editing and
spacing).

The Essential Constraints

The second stratum includes constraints consisting
primarily of details about input-output formats. These
constraints have the common characteristics:

(1) they are extraneous to the planning of the pro-
cedures,

(2) if they are not specified by the programmer, they
can be supplied more or less arbitrarily by the
translator.

Examples of this type of constraint are: the physical
arrangement of data on some external medium (e.g.
punched cards, tapes, printed page), the coding of data
or of characters or both as the data is found on some
external medium. I do not mean that specific input and
output formats cannot be requirements of a problem,
but I am claiming that the formats can be described
separately from their content.

Expressing data formats and coding is often intricate.
There is perhaps a lesson here for designers and users of
future programming systems: in cases where exact
format is not really important, formats should be laid
out as far as possible so that their description will be
simple.

The Implementation Details

Implementation details consist of that information
which must be supplied in order that a program can be
run on some specific computer. This includes the
internal (to the machine) format and coding of the pro-

219

cedures and data, the allocation of storage (with respect
to time), the selection of specific input-output units and
operations to control them, additions to the program
for performing checks, and a certain amount of com-
pensation for errors.

Current translators supply some amount of this
implementation detail for us, but they rarely supply all
of it. Programmers supply some because of their con-
viction that the efficiency of the resulting program will
thereby be greater. The author’s contention is that these
details are in theory wholly mechanizable. At the present
time, however, we are weak in our ability to write
translators which can both supply all these details and
turn out an efficient program.

Information Relating to Efficiency

The fourth stratum of information is information
concerning the programmer’s intent and expectations
regarding the program. Examples would be: (1) the
relative frequencies with which various choices will be
made at a single decision point, and (2) precedence
matrices to show interdependence of various segments
of programs.

This class of information can contribute to the con-
struction of a program which is more efficient than one
constructed without this information. Furthermore,
this class of information is not deducible by any known
techniques (short of operating a program).

It is the author’s private and unsubstantiated con-
viction that this class of information is rarely vital to the
implementation of a program and can therefore be largely
neglected. The major influence on the efficiency of a
program will be the programmer’s basic choices of pro-
cedure steps—this information will be incorporated in
the top stratum or procedural level.

Benefits of Stratification

Let me enumerate what appear to be the potential
benefits of a language stratification such as I have
outlined.

First, a most obvious benefit is the freedom the pro-
grammer would have to work out methods of problem
solution. He would be free of concern about matters of
efficiency, reliability, choice of terminal equipment and
secondary storage, coding and format of data in storage,
etc., until his program concept has been completely
worked out. He would not necessarily achieve an error-
free procedure at this stage, but he is hopefully less prone
to error if he is not forced to deal with matters irrelevant
to the logic of problem solution. Furthermore, he is free
to revise the logic without having first to disentangle from
the logic any concepts concerned with implementation.

A second important benefit is that, by relieving the
programmer of some of his present burden, he will be
able to cope with problems whose size or complexity are
at present beyond his capability to deal with effectively.

Third, the ability to express the essential algorithm and
the description of the data involved, without any of the

¥202 Iudy 61 U0 1senb Aq 90G08¢€/. L 2/S/y/e1o1e/|ulwoo/woo dno-ojwapeoe//:sdiy woli papeojumoq



Problem-Oriented Language

details concerned with implementing them on a com-
puter, opens the way to evolving checking methods for
discovering and correcting logical errors. It is con-
ceivable that a program could be written, and the logic
completely checked out, without any consideration being
given for putting that program on any computer.

Fourth, if a program can be expressed in terms of the
strata that have been described, then the way is paved
for mechanizing the translation of that program into
machine code. This translation process (which might
be done either by compiler or interpreter) is in theory
mechanizable. There are some practical difficulties,
however, concerned with achieving efficiency of the
resulting translated program.

Fifth, the expression of a program on various levels
will make easier the understanding of the program by
persons other than the original programmer. In other
words, the documentation of a program, which is
essential for most programs, is thereby clarified. Hence
if a second programmer needs to modify the program,
as is occasionally the case, he will be substantially aided
by clear documentation.

Sixth, a program expressed at the top level—without
regard for implementation—has a moderate degree of
universality. That is, it can be implemented for a wide
range of computers. It would be truly universal if it
were not for the fact that not every computer can execute
every program. (This inability may be due to lack of
appropriate input-output characters, or lack of ability
to execute a program at a tolerable rate of speed, or lack
of suitable terminal equipment.)

Seventh, when the task of implementation has been to
a significant degree taken over by a translating program,
the associated programming language will be easier to
use. This ease will be the result of the elimination of a
vast number of programming rules which are concerned
with implementation. 1, for one, look forward with
great eagerness to thin programming manuals.

The Bugaboo of Efficiency

It may be argued that the significant weakness in the
scheme I propose is that programs constructed by these
techniques will be likely to have poor operating efficiency.
That is, they may take much longer to run than programs
which do the same thing but are coded by other means.
This criticism is valid. A loss of program operating
efficiency is the price of making easier the writing of
programs. It is the inevitable result of taking some of
the burden of specifying detail from the programmer’s
shoulders and placing it on mechanical program trans-
lators. 1 feel strongly that we should be willing to pay
this price—a poorer utilization of computer time and
storage—in return for making faster the preparation and
revision of programs for computers. Presumably we
will get a substantial discount on the price in the form of
a reduction of computer time spent in correcting program
errors.

Some of this inefficiency is the consequence of our

220

not knowing how to write capable translators. As our
ability to write translators improves, the efficiency of
translated programs will improve. However, let’s not
wait for better translators. Let’s accept the inefficiency
imposed by present translating techniques and imme-
diately work toward relegating to translating programs
as much as possible of the programming job.

How Far from the Goal are We?

Of all the better-known current programming lan-
guages, LISP (McCarthy er al., 1960; Woodward and
Jenkins, 1961) is perhaps the nearest to a true illustration
of the top level of stratification—the language which
deals with procedures and conceptual data descriptions.
LISP is totally unable to talk about any aspect of imple-
mentation—neither coding, nor efficiency, nor reliability.
It is thus a living example that, for at least certain classes
of programs, the process of implementing a program
can be entirely mechanized.

Conclusion

This paper has argued that in order to relieve the
programmer’s burden, the task of implementing a
program for a specific computer must be relegated to a
mechanical process. 1 firmly believe that without such
mechanical aid we will be severely limited in the com-
plexity of programs that we can deal with.

It has been pointed out by some of my friendly critics
that I underestimate the importance, in many applica-
tions, of achieving efficient coding and program
organization. I agree that in present situations where
a program must be run on a specific machine, the ideas
I am advocating may not apply (because we do not yet
know how to write translators which can organize and
code a program with the same ingenuity shown by the
average programmer).

Given a program which can be put on a given
machine only if efficiently coded, there are two obvious
approaches:

(1) Code it efficiently (by the programmer’s exercising
close control over how the program is translated to
machine code by a translating program) and run
it on the given machine.

Code it somewhat less efficiently (by taking away
from the programmer most if not all of his control
over how the program is translated) and run the
program on some more capable machine.

(2)

The programmer effort and cost is greater in the first
approach than in the second. The machine cost is
greater in the second approach than in the first. An
advantage of the first approach is that one can utilize
his available machine. An advantage of the second
approach is that the elapsed time to the completion of
the program run is very likely to be shorter than in the
first approach.

The approach that one will favour is based on an
intuitive evaluation of the relative importance of these

¥202 Iudy 61 U0 1senb Aq 90G08¢€/. L 2/S/y/e1o1e/|ulwoo/woo dno-ojwapeoe//:sdiy woli papeojumoq



Problem-Oriented Language

factors. My personal attitude is that the second approach can carry it out more speedily than the programmer,
is going to appear progressively more attractive as: namely, a “‘translating program’ (this is a poor name
for it) on a machine.

The reason we currently rely on human beings to
produce efficiently coded programs is that our tech-
niques used in translating programs produce results
having noticeably poorer efficiency. There is no reason
to believe, however, that the capability of translating
programs will not be continuously improved to the point
that translating programs rival in operating efficiency

(1) the capability of machines increases with respect
to cost (that is, the capability per dollar increases):

(2) the desirability of minimizing overall time from
problem statement to executed solution becomes
increasingly important;

(3) improved techniques of translating programs into
machine code are developed.

The development of larger and cheaper memories the present products of programmers.
seems virtually assured. We can expect as a consequence I do not pretend to have analysed here all of the
that the storage capacities of machines will be pro- elements of programming nor treated all of the things
gressively less limiting for a given cost. which make programming hard. 1 have presented one
In order to decrease preparation time of a program major facet of programming complication and suggested
one can put more programmers on the job, but a law an approach to alleviate it.
of diminishing returns prevents program preparation Grateful acknowledgement is made to Thomas L.
time from being made arbitrarily short. If we wish to Connors of The MITRE Corporation whose searching
decrease the preparation time still further, some of the questions and comments led to the formulation of the
programmer’s work must be shifted to a facility which ideas expressed here.
References

ARDEN, B., GALLER, B., and GRaHAM, R. (1960). The Michigan Algorithm Decoder. Ann Arbor, Michigan: Univ. of Michigan.

CONFERENCE ON DATA SyYSTEMS LANGUAGES (1960). [Initial Specifications for a Conumon Business-Oriented Language (COBOL).
Washington, D.C.: U.S. Dept. of Defense.

McCARTHY, J., et al. (1960). LISP I Programmer's Manual. Cambridge, Mass.: M.LT. Computation Center and Research
Lab. of Electronics.

NAUR, P., ef al. (1960). “Report on the Algorithmic Language ALGOL 60,” Communications of the A.C.M., Vol. 3, p. 299.

WOODGER, M. (1960). *“An Introduction to ALGOL 60, The Computer Journal, Vol. 3, p. 67.

WoobwARD, P. M., and Jenkins, D. P. (1961). “‘Atoms and Lists,” The Computer Journal, Vol. 4, p. 47.

Book Review

Digital Computer and Control Engineering, by R. S. LEDLEY, its importance, and complementary representations of

1960; 835 pages. (London: McGraw-Hill Publishing negative numbers are not mentioned at all!

Company Ltd., 112s. 6d.) Section 2 is a brief introduction to systems design which
This book forms a comprehensive introduction to digital concludes with the introduction O,f P.EDAGAC’ a simple
system engineering, and many of its 23 chapters are authori- gener.al-purpose computer whosp deSIgn‘ is used through.out'ths
tative and well written. The book is divided into five main remainder of thg book to provide .the ‘thread of continuity
sections under the following titles: between the various topics. Sections 3, 4, and 5 deal with

the central theme of the book, logical and electronic design.
1. Introduction to Digital Programmed Systems. I thought the author seemed more at home with logical
2. Functional Approach to Systems Design. design techniques than with electronic design. In particular,
3. Foundations for the Logical Design of Digital Circuitry. I enjoyed his treatment of logical design under constraints,
4. Logical Design of Digital Circuitry. in Chapter 12. A good deal of this is original work and is
5. Electronic Design of Digital Circuits. presented as a complete treatise for the first time. Earlier
chapters lead naturally from first principles of Boolean
The general tone of the book is well suited to the needs algebra to the manipulation of Boolean matrices and the
of the advanced student of engineering. The first section design of arithmetic and control circuits.
introduces the main topics of computer engineering, and The section on electronic design, particularly Chapter 20
prepares the reader for subsequent sections of the book. It which deals with semiconductor circuits, is less successful.
contains in addition two chapters devoted to programming, I found three incorrect and several confusing descriptions of
the first presenting elementary concepts, the second covering circuit behaviour. Nevertheless, a great deal of ground is
more advanced topics, ending with a brief description of covered, including comparatively recent developments such
automatic-programming techniques including ALGOL. Most as tunnel diodes, microwave logic, and cryotrons.
of this introductory material is presented remarkably clearly. On the whole, the book must rank as one of the most
However, floating-point representation is dismissed in successful introductions to computer and control engineering.
one and a half pages leaving, I fancy, the student unaware of N. E. WISEMAN.

221

¥202 Iudy 61 U0 1senb Aq 90G08¢€/. L 2/S/y/e1o1e/|ulwoo/woo dno-ojwapeoe//:sdiy woli papeojumoq



