The Manchester University Atlas Operating System

Part II: Users’ Description

By D. J. Howarth, R. B. Payne and F. H. Sumner

A system of operating Atlas is described from the point of view of the user.

The simple additional

statements required from the programmer are supplied to the computer rather than a human

operator.

The Manchester University Atlas will be used by various
departments of the University and others, and will deal
with a large quantity and variety of problems, some of
which will complete computing in a few seconds.
Consequently it is important that the computer operators
be relieved of as much work as possible to ensure a
smooth flow of work through the computer. This
operating system has been devised by Manchester Univer-
sity and Ferranti Ltd., as a result of discussions between
Professor T. Kilburn and the authors.

An important feature of the system is that it does not
depend critically on how much peripheral equipment is
operating; the system can function, though possibly with
reduced efficiency, even if no magnetic tape decks are
available to it. Normally three tapes are used to imple-
ment the system*:

1. the system input tape
2. the system output tape
3. the system dump tape.

Tape 1 buffers input from slow peripherals and also
preserves a record of all input from slow peripherals.
Tape 2 is similarly used for output and tape 3 has a variety
of uses, including a store for programs temporarily held
up and, where necessary, as an overflow of tapes 1 and 2.

The layout of all system tapes is the same, sufficient
information being recorded to locate any information
given the initial address on tape. Facilities are provided
for the programmer to use information from these tapes
instead of repeating input on slow peripherals; if a long
paper tape is read in, it may be used again by referring
to its location on a system tape. The location on the
system tapes of all slow peripheral input and output
dumps, etc., is printed with the programmer’s results.

When large amounts of input or output are involved,
the programmer may use private magnetic tapes to
record the information. This is done by suitable speci-
fication in the title.

Titles and Headings

Jobs are initiated on the computer by input of informa-
tion on a slow peripheral equipment. A job may consist
of several sections of information, each preceded by an
identifying title. This title, by which input information

* See the paper by Kilburn, Howarth, Payne and Sumner on
p. 222 of this issue.

226

is known, consists of one line of printing following a
heading such as

COMPILER (v)
DATA
JOB

where x may be

INTERMEDIATE INPUT
MERCURY AUTOCODE
FORTRAN

ATLAS AUTOCODE

If the heading of the input information is

COMPILER MERCURY AUTOCODE
(The title)

then the information is a source program in Mercury
Autocode language. More generally, the information
obeys the rules of Mercury Autocode, and may therefore
include data as well as autocode instructions.

If the heading of the input information is

DATA
(The title)

then the information following is data to be read by a
program during execution, and which obeys no rules
known to the system.

The heading ‘“compiler” does not itself initiate the
appropriate compiling, which is only commenced when
a “‘job” heading is read. If the heading is

JOB
(The title)

then the information following is the job description.
In general this information is optional. It is terminated
by an end-of-tape marker, in the case of a separate
steering tape, or by ‘““compiler’ or ““data,” in which case
the title is not repeated. The ““job’” heading will normally
precede the source program tape as follows:

JOB

(The title)

COMPILER MERCURY AUTOCODE
then the source program itself.

Further optional information may be included in the
job description such as:

¥202 Iudy 61 U0 1senb Aq 0508€/922/S /811 e/|ulWwoo/wod dno-ojwaepeoe//:sdiy woli papeojumoq

Atlas Operating System

data and program tapes (input)
output equipments used

magnetic tapes

4. store required, computing time, etc.

w N -

These sections of the job description are described below.

Job Description—Input

A program reads in data by means of instructions
which are effectively ‘“‘read next character/string of
characters from data tape »” where n is a decimal
integer. (In this context, “‘data tapes” are intended to
include stacks of cards.) The programmer’s number of
the data tape is specified in the “input” section of the
job description. This section begins with the word

INPUT

and is followed by a list of the titles of data tapes used
in this job, each preceded by the programmer’s number,
n, e.g.

INPUT
I (the title of data 1)
2 (the title of data 2)

where there are two data tapes known by the pro-
grammer’s numbers 1 and 2. These may have been
read into the machine on the same input equipment as
the “job” tape, either before or after it, or on other
input equipments. The programmer’s number, n = 0,
is reserved for the program itself (and may be used in
the program to read in data which follows the program
as part of the same tape). A separate steering tape
might be

JOB
(the title)

INPUT
1 (the title of data 1)
0 (the title of the program tape)

In this case, the name of the compiler to be used is
written at the head of the program tape. When the
“job” heading is on the beginning of a data tape, the
“input” section of the job description must include

SELF = (n)

where 7 is the programmer’s number by which this data
is known within the program.

If the input section of the job description is omitted,
it is taken as if

INPUT
SELF =0

were included, and the program following is compiled
and executed.

Since all input is automatically copied to the system
input magnetic tape, a programmer may read his tape
in again, direct from this input tape (e.g. to make a

227

correction). To do this, in the “input” section of his
job description he writes

TAPE (a)/(b)/(c)
(n) (the title of his input)

where @« is the system tape “number,”
b is the number of the 512-word block of tape, and
¢ is the line within the tape block where his input
starts.

His title is, of course, written on the tape at this point,
but the title is specified again as a check.

Job Description—Output

A program puts out results by means of instructions
which are effectively “print next character or string of
characters on output n,”” where n is a decimal integer.
The output equipments are specified in the “‘output™
section of the job description. This section begins with
the word

OUTPUT

and is followed by a list of the output mechanisms used
in this job, each preceded by the programmer’s number,
n, e.g.

OUTPUT

1 (type of equipment) (m) BLOCKS

2 (type of equipment) (m) BLOCKS

The type of equipment may be

LINE PRINTER
TELETYPE

CARDS

FIVE-HOLE TELETYPE
ANY

where “Teletype™ means a 7-hole (Teletype) paper tape
punch,
“cards” mean a card punch
“any” means output on a line printer, Teletype
punch, or cards.

The operators can control which equipments are used
most by disengaging the other output equipments.
m defines the limit of the output, and if the output
exceeds m blocks of 4,096 characters, the program is
stopped. If the number of blocks of output is not
specified, it is taken as ““l block.” Further, if there is
only one output used, the output section may be omitted,
and this is taken as if

OUTPUT
0 ANY 1 BLOCK
were included in the job description.

When printed, the output information itself is pre-
ceded by

OUTPUT (n)
(the title of the job)

and output of system information is always on output 0.

¥202 Iudy 61 U0 1senb Aq 0508€/922/S /811 e/|ulWwoo/wod dno-ojwaepeoe//:sdiy woli papeojumoq

Atlas Operating System

Job Description—Tapes

If a programmer uses magnetic tapes directly in his
program (by use of tape instructions as distinct from
using tapes in connection with input or output) then he
specifies each tape used by two lines in the job description

TAPE
(n) (the title which is stored on block 0 of the tape)

where #n is the programmer’s number of the tape. When
a new tape is required, the appropriate two lines of the
job heading are

TAPE FREE

(n) (the title on block 0)
In this case, the title specified is written on Block 0 by
the system.

If a file extends over several tapes, this is specified by

a modified *‘tape” heading

TAPE/(m)

(n) (the title on block 0)
where m is the number of the continuation, counting

from 1 upwards. The programmer’s number n is the
same for all m. The final tape of this file has the heading

TAPE/(m) END

If a program involves extensive input, then the job
is preceded by copying this input to a magnetic tape.
To initiate this copying process the input is headed

COPY TAPE FREE
(the title on block 0)

where the title specified is written on block 0. If a
previously used tape is employed, the heading is

COPY TAPE (b)

(the title on block 0)
where b is the number of the tape block. (The pro-

grammer must always begin at the beginning of a tape
block.)

Information may be read from this tape subsequently
by specification of the tape and title of the information
in the “input” section of the job description.

If a program involves extensive output then the
output can be written on a private magnetic tape. This
is specified in the “output™ section of the job description
as follows:

OUTPUT

(n) TAPE FREE/(type of equipment) (1) BLOCKS
(the title on block 0)

where n, “the type of equipment” and m are as for
direct output, and where the title specified is written
on block 0. If a previously used tape is employed, the
specification is

(n) TAPE (b)/(type of equipment) () BLOCKS
(the title on block 0)

228

where b is the number of the tape block.
This private tape is printed by a steering tape con-
sisting of

PRINT TAPE
(the title on block 0)

if the whole tape is to be printed, or

PRINT TAPE (a)/(b)/(c)
(the title of his output)

if one section of tape only is to be printed, from tape a,
block b, word c.

Job Description—Miscellaneous

Further information may be given in the job descrip-
tion to indicate

1. the amount of core and drum store used,

2. the time for which the program is expected to
compute,

3. the number of drums the program requires for
programmed drum transfers.

All three apply to the execution stage of the program,
i.e. excluding input from slow peripherals, compiling,
and output to slow peripherals. These are specified by

STORE s
COMPUTING p.q HOURS

or COMPUTING p.q MINUTES

or COMPUTING p.q SECONDS
DRUMS d

where s is the maximum number of core and drum
512-word blocks of store in use within the program
during the execution stage, p.q is a fixed-point decimal
number such as

COMPUTING 7-5 SECONDS

where the program is expected to run for not more than
7% seconds (if the estimate for store used and computing
time is exceeded the program is stopped), and where d
is the number of drums the program requires to reserve
for programmed drum transfers.

If the total execution time is significantly different from
the actual computing time, because there is considerable
tape waiting time, the actual computing time should also
be specified, e.g.

EXECUTION
COMPUTING

5 MINUTES
30 SECONDS

If information is not supplied in the job description, then

20 store blocks (10,240 words)
4 seconds computing time
and, of course, 0 drums are reserved. Estimates of the
computing and execution times are taken as being equal
unless both are specified explicitly.

¥202 Iudy 61 U0 1senb Aq 0508€/922/S /811 e/|ulWwoo/wod dno-ojwaepeoe//:sdiy woli papeojumoq

Atlas Operating System

End of Tape Markers

The end of a section of tape is indicated by
*k %k ok (\)
where xis Z, A, B, Cor T.
The marker

* # * 7 indicates the genuine end of the tape/stack
of cards

* * % 4 indicates “abandon previous incomplete
section, if any” (this may be required by a
machine operator)

* * * Bindicates that a binary tape follows

* % * (" indicates the end of a section, and that
there is another section following on the
same tape

* * * Tindicates a temporary stop within a section.

The number of characters, #, on a binary tape may be
indicated by

(n) * * * B

where # is a decimal number.

On reading the marker * * * Z the peripheral equip-
ment is disengaged by the computer. When the operator
next engages this equipment, a new section (with the
appropriate heading and title) is read. The marker
* * * (indicates the end of a section of tape, but the
equipment is not disengaged and the next section is
automatically read.

On reading the marker * * * T for a temporary stop,

the equipment is disengaged as for * * * Z. However,
when the operator next engages this equipment, a con-
tinuation of the current section (without a new heading)
is read. Finally, on reading the marker * * * B, the
computer reads the information following, in binary,
without testing for further end-of-tape markers.

A better method of specifying the continuation of a
section of data, without use of the marker * * * T, is
by means of a modified ‘‘data” heading

DATA/(n)

where n is the number of the continuation of the section
of data; e.g. for a program with data on two distinct
paper tapes, the data may be headed

DATA/1

(the title of the data)
and

DATA/2 END

(the same title)

and each tape ends with the marker * * * Z. The
continuation data tapes may be read into the computer
in any order.

Acknowledgements

This work forms part of the Atlas project. It has
benefited from many helpful discussions with the
authors’ colleagues at Manchester University and Ferranti
Ltd., whose permission to publish is acknowledged.

Correspondence

To the Editor,
The Computer Journal.

Dear Sir,
“The LISP programming System”

Frem the paper by Woodward and Jenkins (1961) it appears
that McCarthy’s LISP system is aimed at bridging the gap
between machine instructions and logical propositions in a
way which on the machine side is dcminated by questions of
store utilization and access. It is widely agreed that any
“generalized autocode” should have a recursive structure,
and there are great advantages in a two-level system of direct
language and meta-language. But as soon as one looks at
the specific structure of LISP one notices that in the simplest
presentation the hardware of the machine store must be such
that two parts of each location are separately addressable.
The subdivision of ccmputer “words’™ into ‘‘syllables,”
which is beccming ccmmon in new machines, provides this
facility ; but it must be remembered that this adds to the ccm-
plexity of the addressing system and so involves scme addi-
tional cost. It is also essential that the “atcms’ be small
enough to pack two to a word, though in non-mathematical
work the ‘“‘atoms” may often be addresses of the storage of

229

multi-word blocks of data (e.g. in sorting with detached keys)
and two addresses per word is reasonable. Alternatively,
the scheme could presumably be used with any machine code
which has a Next Instruction Source address associated with
each operand address, i.e. a 1 -+ 1 address code.

But if we are to be sufficiently mathematically minded to
retain the idea of a function, 1 would suggest that it is useful
to retain the distinction between ‘‘quantities’ and ‘‘operators™
in S-language. (I regard a function as a compound or ‘“‘mole-
cular” operator for this purpose.) Thus the authors’ list
X, +, COS, 7, (includes two quantities X and - and
three operators, namely ‘“‘add”, “take the cosine of™ and
the opening bracket which is an organizational operator. In
algebra a pair of brackets can be described as an operator
meaning ‘‘treat the list between the mating pair of brackets
as a single molecule.” This is still true in the comma-and-
bracket notation for LISP but cannot reasonably be applied
to the dot notation, when a list (C, D, E) which would
naturally be regarded as a molecule is represented by
(C.(D.(E.Nil))). Looking at the machine format, it is
possible to regard opening brackets as the equivalent of

(Continued on p. 241)

¥202 Iudy 61 U0 1senb Aq 0508€/922/S /811 e/|ulWwoo/wod dno-ojwaepeoe//:sdiy woli papeojumoq

