Atlas Operating System

End of Tape Markers

The end of a section of tape is indicated by
*k %k ok (\)
where xis Z, A, B, Cor T.
The marker

* # * 7 indicates the genuine end of the tape/stack
of cards

* * % 4 indicates “abandon previous incomplete
section, if any” (this may be required by a
machine operator)

* * * Bindicates that a binary tape follows

* % * (" indicates the end of a section, and that
there is another section following on the
same tape

* * * Tindicates a temporary stop within a section.

The number of characters, #, on a binary tape may be
indicated by

(n) * * * B

where # is a decimal number.

On reading the marker * * * Z the peripheral equip-
ment is disengaged by the computer. When the operator
next engages this equipment, a new section (with the
appropriate heading and title) is read. The marker
* * * (indicates the end of a section of tape, but the
equipment is not disengaged and the next section is
automatically read.

On reading the marker * * * T for a temporary stop,

the equipment is disengaged as for * * * Z. However,
when the operator next engages this equipment, a con-
tinuation of the current section (without a new heading)
is read. Finally, on reading the marker * * * B, the
computer reads the information following, in binary,
without testing for further end-of-tape markers.

A better method of specifying the continuation of a
section of data, without use of the marker * * * T, is
by means of a modified ‘‘data” heading

DATA/(n)

where n is the number of the continuation of the section
of data; e.g. for a program with data on two distinct
paper tapes, the data may be headed

DATA/1

(the title of the data)
and

DATA/2 END

(the same title)

and each tape ends with the marker * * * Z. The
continuation data tapes may be read into the computer
in any order.

Acknowledgements

This work forms part of the Atlas project. It has
benefited from many helpful discussions with the
authors’ colleagues at Manchester University and Ferranti
Ltd., whose permission to publish is acknowledged.

Correspondence

To the Editor,
The Computer Journal.

Dear Sir,
“The LISP programming System”

Frem the paper by Woodward and Jenkins (1961) it appears
that McCarthy’s LISP system is aimed at bridging the gap
between machine instructions and logical propositions in a
way which on the machine side is dcminated by questions of
store utilization and access. It is widely agreed that any
“generalized autocode” should have a recursive structure,
and there are great advantages in a two-level system of direct
language and meta-language. But as soon as one looks at
the specific structure of LISP one notices that in the simplest
presentation the hardware of the machine store must be such
that two parts of each location are separately addressable.
The subdivision of ccmputer “words’™ into ‘‘syllables,”
which is beccming ccmmon in new machines, provides this
facility ; but it must be remembered that this adds to the ccm-
plexity of the addressing system and so involves scme addi-
tional cost. It is also essential that the “atcms’ be small
enough to pack two to a word, though in non-mathematical
work the ‘“‘atoms” may often be addresses of the storage of

229

multi-word blocks of data (e.g. in sorting with detached keys)
and two addresses per word is reasonable. Alternatively,
the scheme could presumably be used with any machine code
which has a Next Instruction Source address associated with
each operand address, i.e. a 1 -+ 1 address code.

But if we are to be sufficiently mathematically minded to
retain the idea of a function, 1 would suggest that it is useful
to retain the distinction between ‘‘quantities’ and ‘‘operators™
in S-language. (I regard a function as a compound or ‘“‘mole-
cular” operator for this purpose.) Thus the authors’ list
X, +, COS, 7, (includes two quantities X and - and
three operators, namely ‘“‘add”, “take the cosine of™ and
the opening bracket which is an organizational operator. In
algebra a pair of brackets can be described as an operator
meaning ‘‘treat the list between the mating pair of brackets
as a single molecule.” This is still true in the comma-and-
bracket notation for LISP but cannot reasonably be applied
to the dot notation, when a list (C, D, E) which would
naturally be regarded as a molecule is represented by
(C.(D.(E.Nil))). Looking at the machine format, it is
possible to regard opening brackets as the equivalent of

(Continued on p. 241)

¥202 Iudy 61 U0 1senb Aq 8¥G08€/622/S/v/8101 e/ |ulWwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

