RAPIDWRITE—A New Approach to COBOL Readability

By E. Humby

Features in an autocode which make programs easier to read are often just those which make it
irksome to write. The way to avoid an ugly compromise is to make Readability not something
which affects the design of the language but a feature which can be added during the translation
run. This paper describes I.C.T. RAPIDWRITE, an autocode enabling COBOL facilities
to be expressed in condensed form from which is produced, at translation time, a full and valid
COBOL version with its advantages of Readability and Compatibility.

The Readability Problem

A good autocode has to meet several requirements. It
should be easy to learn, easy.to use, and should produce
programs which are easy to read, easy to write, easy to
get working, and easy to modify. Different users in
differing circumstances put different emphasis on these
several requirements, and it is for this reason that no
single autocode has universal acceptance. The effects of
some of the requirements on the design of a language
may be incompatible. In particular it is often the
facilities which make a program easier to read by the
uninitiated that makes the autocode less attractive to the
person who has to write the program down. Some of
the strongest criticisms of COBOL stem from pro-
grammers, who view with distaste the need, after having
thought out the problem in broad steps, to write each
step down in a long English sentence. On the other
.hand, many connected with the original design of
COBOL have placed ceaseless emphasis on the require-
ment of Readability, at the cost to the writer of long
data-names and constant repetition of the 15 verb formats.
In COBOL 61 “IS GREATER THAN” constitutes
“required” COBOL but the symbol ““>-"" is “‘elective.”
The ADD, SUBTRACT, MULTIPLY & DIVIDE
verbs are ‘required” but “COMPUTE formula™ is
““elective.” 1 have yet to meet the accountant who whilst
understanding
MULTIPLY RATE AND HOURS GIVING BASIC.
ADD BASIC AND BONUS GIVING GROSS.
could not understand
COMPUTE GROSS = RATE * HOURS - BONUS.
It is a great pity that many people have thumped the
table on Readable autocodes, that many others have
rejected COBOL simply because of its verbosity, and yet
again that many have wasted time in trying to formulate
compromises in the design stage. A great pity because
there is a neat solution to the problem which retains all
that is best in both worlds.

The General Solution

The escape from an apparent impasse stems from the
fact that Readability is required, in the main, only after
the program is complete. It need not colour the design
of the autocode therefore, provided it can be added at
a later and more convenient time—ideally at translation
time. Having accepted this, the language in which the

301

programmer writes can be condensed to the minimum
which he requires. He will require only that separate
sections of the program can be identified by mnemonic
paragraph names, and his data-names may be abbreviated
to any extent so long as he personally can remember
what each means. He will not need to use any words or
signs which are not significant to the description of the
problem, and which might cause him trouble at testing
time because of mis-spelling or incorrect punctuation.

The Rapidwrite Solution

1.C.T. Rapidwrite was designed with this end in view:
of being able to write programs for a COBOL processor
without imposing the burdens of readability on the
writer. 1.C.T. are convinced that COBOL is a valuable
tool for business users of computers, and are offering a
COBOL translator with its 1301 and later computer
configurations. Rapidwrite is an alternative form of
input to this processor. At the same time as making
the language easier to write it is made easier to learn
by omitting some of the COBOL facilities with marginal
utilities, and also made easier to use by the provision of
preprinted documents so that the available facilities are
clearly displayed and the writer guided to the require-
ments for completion.

Examples: Fnvironment. A typical COBOL Environ-

ment statement would be

OBJECT-COMPUTER 1301, MEMORY SIZE 400
I.A.S. WORDS 12000 DRUM WORDS.

Since the computer number is implicit in the program,
the only items of significance to the compiler are the
*400™ and the ““12000.” The Rapidwrite Environment
form is designed so that there are two obvious boxes in
which only these two capacities have to be written.
Similarly boxes are provided against names of the input
output devices. The file identifier letter ““T,” for example,
written in the appropriate box suffices for the full
COBOL expression
FILE CONTROL. SELECT COMMODITY-

TOTALS ASSIGN TO PRINTER.

Data Division

For Data description a tabular form is provided.
There are “Redefines,” ““Occurs,” and “Value™ columns

¥202 Iudy 61 U0 1senB Ag 0881 EY/L0E/P//e101e/|ulWwoo/wo0 dno-ojwapeoe//:sdiy wolj papeojumoq

RAPIDWRITE

I.C-T RAPIDWRITE

L0 1] o=oTHeRwISE |

1 A = AND 2
PERFORM
FROM [THROUGH] EITHER [EXACTLY OR [uUNTIL

T e B B //ILJ|1|1|;Z ﬂ[lllllj;

3 4 5 TIMES] 6 7 EQUALS ZERO] 8

OR [VARYING FROM BY T0]
Y //lLJllll_J{lll!Jl!_lllllI[lllII

9 10 I 12 13
PROG.NO.| P |CARD| SEQ.NO. |~| FROM [[THROUGH] [EXACTLY] [UNTIL] [VARYING FROM BY T0]

COF () | @ (4) (6) (8) (10) an (12) (13)
2
Fig. 1.—Example Rapidwrite card—Perform

and, apart from these, everything else to be defined baskets filled is remarkably lower during the pro-
against each name is coded in the “PICTURE” column. gramming phase.
This entails the addition of some extra codes, but in this Some idea of the volume of writing saved is given by
we seemed to have partly anticipated COBOL 61. A Figs. 2 and 3. Fig. 2 shows part of a program in
Rapidwrite picture: T999(9V99) contains all the informa- COBOL. Fig. 3 shows the amount of writing for a
tion given by the COBOL statement Rapidwrite version of the same problem. It should be

SIZE IS 6 CHARACTERS, SIGNED. POINT remembered that this is much more comprehensible
LOCATION IS LEFT 2 PLACES, CLASS IS when it appears on the preprinted sheets and cards.
NUMERIC, ZERO SUPPRESS LEAVING 3
PLACES.

and a tabulation of such pictures is much more descrip-
tive of a record content than a sequence of COBOL
statements.

The Processor

The significant information shown is punched from
the Environment and Data sheets and into the dual-
purpose Procedure cards: the resulting pack constitutes
the input to the translation process which produces the
Procedure Cards machine-code version of the program. Fig. 4 shows
broadly the process of translation. When the processor
is accepting a full COBOL program via entry 2. the
main task of Phase I is to extract the significant parts
of the sentences, but it will incidentally print a copy of
the input program. A Rapidwrite program would be

In the Procedure Division, since COBOL is a restricted
form of English, certain sentence format groups keep
repeating, and only the data-names involved change
from occasion to occasion. Rapidwrite allows 11
different statement formats: READ, WRITE, COM- accepted by entry 1. This time the program is almost
PUTE. MOVE. IF, GO, STOP, PERFORM, INCLUDE, already reduced to .its elemental signiﬁcvances but the
SUBSCRIPT & PARAGRAPH-NAME. The con- ’

. valuable contribution of phase 1 is to dress up the bare
stant parts of these statements are pre-printed on cards, S .
. . . . bones of the Rapidwrite statement into a readable and
and boxes are provided at the appropriate points in

which the programmer writes the data-names, literals, valid COBOL printout. The necessary format words

. ; . . are ready stored in a dictionary. In addition a data-
etc., which are involved on each occasion. (Fig. 1 shows name synonym dictionary can be loaded as well. For
the PERFORM CARD as an example.) The pro- ynony Y :

example, in an earlier example the programmer used “T"
grammer selects and completes the procedure cards one as a file-n: but th anal L h
by one, from a tub file, as he interprets the basic flow as a f?:(rizrz)rrl;cl,M(L;tDtr;:;y_Srtgn;Zinsd“ystl;ngy 1}:1515t on the
chart. This unit method of constructing the procedure use o) ' in the synonym

. table is entered
enables the statement cards to be laid out as they are

prepared, as though they were blocks in a block diagram. T = COMMODITY-TOTALS

In this form the redirecting of jumps, the revision and the COBOL printout in phase 1 would contain the long
insertion of pieces of program are considerably simplified. name wherever the programmer had written the short
The number of rubbers consumed and waste-paper name.

302

¥202 Iudy 61 U0 1senB Ag 0881 EY/L0E/P//e101e/|ulWwoo/wo0 dno-ojwapeoe//:sdiy wolj papeojumoq

RAPIDWRITE

NLRATIVE

Downloaded from https://academic.oup.com/comjnl/article/4/4/301/431880 by guest on 19 April 2024

SED). M.

N IO = O Oy N F WD = 0 oy, £ N F IO OTo SeT AEY 3 WD
B P DA O S N N K SR U U OV VI SR R T WA

2 . ”n

m ' .. m

- —~~ -

& n an 0 o

2 Mmom[o < H

e 5 oo, Ho= L

z LI R T S =

2 n na < D o

B H oHH = 0

= S o= i Fiinn

2 B . o e 1l
2. wno oo u o o o im DA
2o = . . M o e o RIH B
$23 Hm oo ™ o© — oy e = = @A oo
2« mp == o = o Clal< | o ololew
e wa 1 ! < S = I
So =< an o m = i L am
Sp = mm o= @ ER e o | oere

S o ome 1=) Hola | o mokm
S wn oo ® O) wim e o AaA
3 0 e M e m i « RS
21 mo wnn = 0 SHIS s D omm=
2a om —w— o o o ARSI Ak ==
5o O mo = O < A =z mo oo
2% oL ma o > o A< Je wm=zoo
2= = Ho D = o= =ow w - 1

To 1+ pm o o< IR e omo ma wom
B0 @ ez = Mm@ Mon mEe = oOmOOo

8 . mEaa = e = om Sk ol H< = -
dan =pwboA < [[[EXSINEY o mma
2m oawom & a o < o & o ameEp®n
T @ e @ < e > mmin e Mo RGO
T sn>NA OB 3 R V= oA ' e
TaAp le@Ae R0 < o > B o o on ~o=mmo
Cx lomzZrnHa @ e o Mo ommm me om <1
2xa mpo =@ o« . Zon HbE HH = pea
IfnoomorA=mAa o a o T sao oA coona
o OnZ=H = e om m<O =mo nz o
T @ B <o o < ¢ o <> | ax= v omo
Femn HAa e M : ‘»n B : S e omeon
3o mmazoa : @ w 0 \mo niH Ao me
Zrnoop <mon n. s D D = DZm Ha | <o vo~da
B emae Dem mm R Yok o A1 YvEsco e iEon=
5D n< wn D epo 4xnD H o emsHmE e A Em <
2o oHbnmnon: nE | BEHA B >EAMmo 1] mE mEmo

2 o tmoHonmn<g e < o rm<al v BH xniko~
T mepn HoHm fEm> < Homlom mM ome=o
SHmAcHMnamA = O. mEO Il n MeEMerR << neHdz
Shm ZuHo mm@m I E =D = om map= o s =m ownl Hal .«
snMEmo M mopomo | wom < | pnHasn@as SE WO m
S =| m| o mh Aalzz TR aoibdnnkazD ma <o
FHElEmOD ROMO=E ARl e <4 miiol =i MRS
2 <@po AdzZunzo< <EMO ‘HomAamor NS enl A
Re me s 1 el eEmie o omm<oro la le Hrel
S oEERG> omoKnD mOox E e oE N eam Ee A S
MM MOODH I MEZEDO GHo® = | aHOoAn I<b Ho®wa
aEmbLOden bEOROA Eueo | | Mmone <ol aimeed i
2N c<Zn noMo < <bnm A Bekp smeon A Somo
T nprr<oneEomO mOpm O OMOEOMMHEH VuHE O
sEHoo DM HA: e | o ON B =N xeNna £l o ox
g™ Ha o D poo e ‘¢ mo ome =l inak
20 AMEeN A MLOME, A HA R « O RE R M e SRR e
2od><donA < O mHs S A EER s EHO Ao A
f THoamAAmMMEMEMO mmo o) HomMMmoooma limooAa
s EFoo<d mHnHLG OENE M HEFLOESOERS Al EmdE
B o CE o = <

) A o T B

2 e < S T e ‘o

= 0 = o S 2

= —

2

COBOL

mn

2.—Part of a Program written

ig.

F

Co30L

BLOCK 2
SCAN

ENTRYJ} 2

PHASE |
FULL COBOL

PRINTOUT

«~

PHASE |
REDUCTION

I

>

BLOCK |

SCAN

RAPIDWRITE

ENTRY

SYNONYM TABLE

>
1Z]
=
[=}
.
(2]
2
o
(L] 172}
[1%}
(2] > o
(2] 1 (=
Qo C
“ i= 4 (1]
€8 T nog
o
a1 gg4%
2 g gf
8 LD
[=] o
g Tagghigs
=D E
G.p3H3dnEx
o o B =3
£82%888533
M
NN IO N0 N0

FORMAT DICTIONARY

STATS

RE I

1

ABBREVIATED DIVISIONAL SENTENCES

IF CU-NOI < CU-NOS
13 T ST CU-NOS

12
14

Cu=-NoS

IF CU-NOI >

15 T PE CU-CHG
GO CALC
PA ERROR
ST "NIL"
PA CU-CHG

16
17
18
19
20
21

CO TONET TONET + NET

“R CU-SM

CODED PROCEDURAL EXPRESS!ONS

M0 O F NET

22

4
PHASE 2

GENERATION

PHASE 3
ASSEMBLY

[2]
o
5
=3
o
0
m
[)
=3
cm
I
own
T4~8
=21 o
ONnoH
sgag
HHMM
"y
EE

WR CU-SK
PE P-LINE

27
28
29
30

A

NO 1 1 999

M0 0 F P-SNO P-QTY

MO TOGRS P-GRS
WR TOTLN A 4
ST "RUN"

32

SYMBOLIC INfTRUCTIONS

o
"
=
o
=
n
o
o
o
n 3
=
Eg
[~ R<d
EEE
£ERS
1]
RARR

a
g,
n =
+

bl

5 2 4

I 18

g 2 23

HOEHOO o

NaANZZEH 133

2393383 E

HNZEZNOWN-:

< < < <

RRRAIITYD

MACHINE CODED INSTRUCTIONS

itten and punched in the RAPID-

IS wWr

1l that

IS 1S a

Fig. 3.—Th

v

Fig. 4.—The Processor

iven in Fig. 2

WRITE version of the piece of program g

303

RAPIDWRITE

Another Kind of Translation

As well as helping the programmer who wants to use
a language that is more economic than COBOL English,
Rapidwrite comes to the aid of programmers who do
not understand English. The basic sentences on the
preprinted Rapidwrite cards might equally well appear
in French or German. Moreover, provided they are
made up from the set A to Z, 0-9 and hyphen, data-
names may be invented that are mnemonic to the program
writer in his own language. It requires only the replace-
ment of the format dictionary table by a German one
to give a printout at translation time which is readable
to someone who understands German only. This kind
of flexibility is worth thinking about. The synonym
table could be used not only for the substitution of long
English names for short English names, but could also
be used, for example, to substitute long English names

Bibliography

“COBOL 60, U.S. Dept. of Defense. (April 1960)
“Rapidwrite Programming Manual,” I.C.T. Ltd.

(Sept. 1961.)

for short Italian names. This would mean that an Italian
organization where no English was spoken could enjoy
the benefits of COBOL and, furthermore, it would only
require one run using different dictionary and synonym
tables to provide a complete English COBOL version of
any of their programs, thus providing Readability and
Compatibility over a much wider area. Is this not
making COBOL truly international ?

Conclusions

Anyone who has examined COBOL and liked it. and
anyone who has examined COBOL and disliked it.
should give it a fresh appraisal considering I.C.T.
Rapidwrite as an alternative means of expression.
1.C.T. Rapidwrite allows the programmer to write in a
fashion convenient to him but provides automatically
COBOL Compatibility and Readability even across
natural language boundaries.

Book Review

Automatic Control and Computer Engineering. Edited by
V. V. Solodovnikov, translated 1961 (Oxford: Pergamon
Press Ltd., £5).

This volume consists of translations of 24 assorted papers
presented at a session of the Academv of Sciences of the
USSR devoted to examining the problem of complete
complex automation of manufacturing processes. We are.
unfortunately left to guess just when this session was held,
but since the original Russian volume was published in 1958
and references up to 1957 are included in some papers, the
meetings were presumably held early in 1958. This means
that all the information contained in the book is somewhat
dated, since the fields which the book covers are at a stage of
rapid development, and three years have seen tremendous
advances. Also, since the I.F.A.C. Congress held in Moscow
in June 1960 contained many papers on the automation
aspects covered in the present volume, workers in the field
are quite well informed on Russian developments.

One interesting point arises from the references at the end
of the paper by Kopai-Gora. The first seven refer to a report
at an “All-Union Conference on the automation of manu-
facturing processes, Magnitigorsk (May-June 1948).” If
this is the correct date it is quite remarkable that some of the
present authors were able to give papers with almost identical
titles ten years beforehand. If, on the other hand, the date
is a misprint for 1958 then the date of the conference is fixed
and we are left to wonder whether these authors wrote more
than one similar paper for the conference, or whether we have
been presented with different renderings of the same titles.

This raises a most serious criticism of the book. The
translation in many places is of a most literal nature, pre-
sumably caused by a lack of familiarity with the subject on
the part of the translators The paper by Mamonov entitled

304

“The Use of Semiconductor Instruments in Computer
Engineering” is about the use of transistors and crystal
diodes. I suspect that the word translated (correctly) as
“Instrument’” is the Russian ““pribor™ which can also correctly
be translated as “‘device” which would be more satisfactory.
This is only a simple example. On pages 226 and 227 there
are figures showing the “Registering numerical material
from —" instead of “‘reading numerical data from — and
on pages 113, etc., we have a long dissertation on “*‘Sum-
mators™ using “*cadence pulses.” However, this same paper
also shows the reverse error which occurs throughout the
paper by Zimin on logical circuits where we are introduced
to the ILI, I, and NYeT circuits. These are transliterations
of the Russian words for “‘or,” **and,” and ‘‘not™ which, of
course, are the normal terms for these circuits. There are
many other such cases, and in fact I wonder if it is a waste of
human endeavour to produce translations of this nature.
Surely this translation suffers from exactly those faults which
are supposed to beset present-day machine translation. and
if this is so I would prefer the imperfect machine translation
at an earlier date and possibly at a lower price.

Returning to the subject matter of the papers, it must be
pointed out that there are interesting sections such as the
group of papers on steel automation, but a large proportion
of the book covers elementary facts in great detail. It is odd,
and yet characteristic of Russian papers, that constructive
work is often hidden amongst a mass of fundamental detail
which might, translated properly, form a sound text-book.

On the whole I cannot see many individuals wishing to
spend £5 and **500 pages™ of reading time for the rewards
contained in the book, but it may well be a useful acquisition
for libraries as a background work.

LAURENCE CLARKE.

¥202 Iudy 61 U0 1senB Ag 0881 EY/L0E/P//e101e/|ulWwoo/wo0 dno-ojwapeoe//:sdiy wolj papeojumoq

