Principles and Problems of a Universal Computer-Oriented

Language
By Philip R. Bagley

Hypothesized several years ago, UNCOL (Universal Computer-Oriented Language) has as its
basic premise that programs expressed in a problem-oriented language (such as ALGOL) can
be translated first into UNCOL and thence into machine code. This translation would involve
keeping invariant certain aspects of a program while it adapts those aspects which depend on the
machine chosen to execute the program.

The Goal: Convertibility of Programs

One much-desired goal in the computing field is the
ability to run a program on various computers without
having to do a consequential amount of rewriting of the
program. As a step toward this goal, we wish to investi-
gate here the problems of translating a computer program
from some source language, in which it is initially
expressed, into one or more target languages. These
target languages will usually be machine codes for
specific computers.

The source language form of a program might be at
any of several language “levels.” It could be in any of
the following:

(1) machine language for a specific machine;

(2) any one of a number of existing or future problem-
oriented languages, such as FORTRAN (IBM,
1958);

(3) alanguage which is largely independent of a specific
machine and which is not especially problem-
oriented, such as ALGOL (Naur er al., 1960;
Woodger, 1960).

We shall be primarily concerned in this investigation
with programs expressed initially in language other than
machine language (machine code). We are at a loss to
deal effectively with those in machine code because we
do not know how to formulate rules for extracting the
essence or intent from a program expressed in machine
code. This difficulty exists because, when a procedure
is expressed in machine code, some information is
obscured (e.g. a variable is often forced to be expressed
as some integral multiple of computer word-length), and
some extraneous data or actions may be added (such as
introducing an auxiliary variable indicating the quantity
of entries in a list).

It is not sufficient to have a language which can only
express enough concepts to permit the construction of a
corresponding algorithm (i.e. procedure) in a machine
language. To be acceptable, an algorithm for a specific
machine must be tolerably efficient in its operation.
That is, its operating time should be somewhere in the
neighbourhood of the theoretical minimum operating
time for any equivalent algorithm executed by that
specific machine. Even if the translation to machine
code can be accomplished, some programs will not
operate with satisfactory efficiency on an arbitrarily

D

305

selected computer. A specific computer may be inade-
quate for a given program in any of several ways:

(1) Tt may lack sufficient internal storage of the rapid
random-access type, with the consequence that
instructions or data must be brought in as segments
from secondary or external storage an excessive
number of times. What is excessive will depend
on the choice of the specific program and of a
specific computer.

(2) It may have a secondary storage which is randomly
accessible at an average interval which is sig-
nificantly greater than that envisioned by the
original programmer. To illustrate, a program
that refers to drum locations at random, probably
cannot be made to run tolerably efficiently if tapes
are substituted for drums.

(3) It may lack a special terminal device, such as a

light gun, and have no suitable substitute therefor.

It may simply take too long to perform the neces-

sary computations.

(5) Some characters needed by a program may be
lacking from its set of input-output characters.
Whether any character transliteration to available
characters is acceptable depends on the specific
application.

(4

~

It is clear that, given a program, some computers cannot
execute it in a feasible manner, because of gross inefhi-
ciency of operation or lack of a suitable terminal device.

The Nature of the Conversion

What is the basic nature of the translation of a program
from source to target language? Certain aspects of the
program must remain unchanged through the translation
process. The most important of these invariant aspects
are the essential algorithm (its “‘meaning” or “‘content™)
and the form and formats of the data. Among the most
important of the non-invariant aspects are the organiza-
tion of the program and data in both internal and
secondary storage. ‘“‘Invariant” and ‘‘non-invariant™
correspond at least approximately to our intuitive notions
of “‘machine-independent” and “‘machine-dependent”
respectively. It will be convenient to continue to use
these latter terms since they are more familiar.

The process of translation involves, though not
necessarily in sequential steps, the following:

¥202 Iudy 61 U0 1senb Aq €06 L £¥/S0E/P/v/8101e/|ulWwoo/wod dno-ojwapeoe//:sdiy wolj papeojumoq

UNCOL

(1) Selection from the program of those aspects which
require modification because of the characteristics
of the particular target machine (that is, the
machine which will actually execute the translated
program).

(2) Appropriate modifications of the program content
in accordance with:

(a) the logical structure of the target machine;

(b) the requirements for efficiency of execution on
the target machine;

(¢) the need for reliability checks.

(3) The expression of the modified program content in
the form of machine code for the target machine.

The task of analysing the original program is made
more difficult because of several factors:

(1) Existing languages for expressing programs are

not wholly explicit. There is information essential
to the program which is not expressed directly in
the program language. As an example, neither
FORTRAN nor ALGOL has provision for
expressing the number of digits required for a
variable. Sometimes non-explicit data is written
somewhere in a manual, as, for example, a col-
lating sequence (precedence of characters).
There is sometimes arbitrary and logically unneces-
sary information in a program formulated in an
existing program language. An example is the
sequence in which constants are stored; another is
the choice, in some instances, between fixed-point
and floating-point arithmetic.

Translation, then, involves adapting the machine-
dependent aspects of the program while preserving
unmodified the machine-independent aspects of the
program.

2)

The UNCOL Concept

The use of an intermediate language form called
UNCOL (SHARE ad hoc Committee on Universal
Languages, 1958 Steel, 1960) is the basis of one proposed
method of making programs convertible. The central
notion of UNCOL is that there is some form in which
any program can be expressed which is intermediate
between any problem-oriented language (POL) and any
machine language (ML). If UNCOL is to be practical,
the use of the intermediate language (UNCOL) form of
expressing a program must not result in a grossly
inefficient machine-language program.

We must agree at the outset that the programs with
which UNCOL must cope are programs which are
suitable for execution on more than one machine. It
would make no sense, for example, to talk of translating
a program which was written to diagnose malfunctions
of a specific computer.

One of the problems in applying the UNCOL concept
arises from the fact that the programs expressed in most
if not all existing POLs are not wholly machine-
independent. The UNCOL concept is based on the
idea that at least part of a program expressed in a POL

306

is machine-independent ; hence that aspect of the program
does not have to be changed when one translates the
program into machine code. If the UNCOL idea is to
be achieved, the process of translating from POL to
UNCOL must somehow separate the machine-independent
aspects of the program expressed in POL from the
machine-dependent aspects. The machine-dependent
aspects of the program may need to be organized
differently according to the computer chosen as the
target computer. A stumbling block in the UNCOL-
to-ML translation is that we do not in general have
methods (other than human ingenuity) for organizing or
adapting, for a particular computer, such machine-
dependent details as storage allocation, data organiza-
tion, etc.

A slightly different hypothesis for what UNCOL
might be would perhaps stimulate some useful ideas.
UNCOL might be a descriptive language which tells
how to extract the essential algorithm from a program
expressed in a POL and tells how to identify the informa-
tion that will have to be juggled to fit a particular
machine. UNCOL in this sense would be used for
writing an accompaniment to a program expressed in POL.

An Alternative Concept

There are techniques other than the UNCOL inter-
mediate language idea for performing the conversion of
a program from one language to another. If we have a
program expressed in some source language and if

(1) we have sufficient additional information to render
the program unambiguous (in a practical sense);

(2) we know how to separate the information con-
tained in the source language into machine-
independent and target-machine-dependent com-
ponents;

(3) we know how to arrange the machine-dependent
information to achieve suitable efficiency of opera-
tion of the program on a given target machine:

then we can write a translation algorithm for converting
the program in the particular source language into the
particular target language. One such translator is
needed for each source language to target language pair.
These translation algorithms are our current conven-
tional compilers.

If, however, we also had a metalanguage in which we
could completely describe a source language, then a
translator could be written which would convert a
program written in an ‘‘describable” source language
into a particular target language. One such translator
would be needed for each target language.

If we had a metalanguage in which we could completely
describe the target language (implied here is a complete
description of the characteristics of the target computer)
instead of the source language, then a translator could be
written which would convert a program in a particular
source language into any describable target language.
One such translator would be needed for each source
language.

¥202 Iudy 61 U0 1senb Aq €06 L £¥/S0E/P/v/8101e/|ulWwoo/wod dno-ojwapeoe//:sdiy wolj papeojumoq

UNCOL

If we had metalanguages for completely describing
both the source language and the target language, then
a translator could be written which would convert a
program expressed in any describable source language
into a program expressed in any describable target
language. This would indeed be a wuniversal translator
from any describable source language to any describable
target language.

In a sense we have metalanguages for ‘“‘describing™
other languages. But they are operational or algorithmic
rather than descriptive. For example, the translator
from FORTRAN language to IBM 704 machine-code
contains in some sense a description of the FORTRAN
language. Such an algorithmic metalanguage appears to
be universal, in that it can contain the description of
any POL.

One can consider the POL-to-UNCOL translator as
the metalinguistic description of the source language,
and the UNCOL-to-ML (machine language) translator
as the metalinguistic description of the target language.
Looked at in this way, the UNCOL concept is a universal
translator. One cannot help feeling that in this universal
translation process based on operational metalanguages,
the task of preparing operational descriptions of the
source and target languages is much more laborious than
preparing straight descriptions. But at present we don’t
even know how to make straight descriptions: we don’t
have the descriptive metalanguages we need.

A recent development by Sibley (1961) is a noteworthy
step in the direction of making a ““universal” translator.
His program, called the “SLANG Processor,” accepts
as input: (1) a program expressed in a language which is
supposedly machine-independent and is similar in many
respects to ALGOL-58, and (2) a description of a com-
puter. The SLANG processor then converts the program
into machine-code for the described computer. At the
present stage of development his system lacks generality,
his program language being specifically designed for
expressing compiling programs. His computer descrip-
tion language will nicely accommodate computers having
the general characteristics of current IBM computers,
but has not enough provisions for dealing with thc whole
class of commercially available machines.

The Translation Process

Challenging though the alternatives to the inter-
mediate algorithmic language might be, the intermediate
language or UNCOL approach appears at present to be
the most promising and is the one that we will investigate
further in the remainder of this paper. First, let us con-
sider the process of going from a POL version of a
program to an ML version, and observe what kinds of
information are introduced at the several steps. These
steps are outlined graphically in Fig. 1.

A program expressed in some problem-oriented
language is to be translated into UNCOL. One such
translator is envisioned for each POL. In this transla-
tion process the translator will very likely have to supply

307

Program in
POL

POL-to-UNCOL translation
(H— process performed by trans-
lator#1 (program)

Program in
raw UNCOL form

optional human revision to
compensate for translator’s
deficiencies

Program in
revised UNCOL form
for dissemination

translator

optional human aid to l

Program in
UNCOL form, edited
for a selected computer

N UNCOL-to-ML translation pro-
NS | cess performed by translatorz2

Program in
raw ML form
with symbolic addresses

optional human manipulation:
segmenting and storage
assignments, etc.

L

|
M

Program in
revised ML form with
symbolic addresses

routine assembly:
assignment of absolute
addresses

v

Program in
ML form with
absolute addresses

Fig. 1.—Steps in the process of transforming a program from
POL to ML via UNCOL

information which is not rendered explicitly in the POL
version of the program, but which is included in a user’s
manual associated with the POL. An example is the
collating sequence (analogous to alphabetic sequence)
for the assumed set of input and output characters.
Furthermore, since the goal of UNCOL is to maximize
the independence of a program from any particular
machine, this translator has the task of discovering those
elements of the program, expressed in POL, which are
machine-dependent. That such machine-dependent

¥202 Iudy 61 U0 1senb Aq €06 L £¥/S0E/P/v/8101e/|ulWwoo/wod dno-ojwapeoe//:sdiy wolj papeojumoq

UNCOL

elements exist should be apparent from the fact that most
POLs are designed with a specific computer in mind.
For example, data or file descriptions which are obviously
constrained to fit a specific machine word-length will
have to be somehow re-expressed in a form independent
of machine word-length.

The UNCOL version of a program, then, is to be a
representation of a program in essentially (if not totally)
machine-independent form. The essential algorithm
should be in a canonic form that does not impose any
arbitrary sequence on steps that from the standpoint of
logic could be executed simultaneously. As many as
possible of the machine-dependent aspects should be
expressed in the form of parameters (such as: input-
output channel numbers, input-output character set),
to which actual values will be assigned by the UNCOL-
to-ML translator.

UNCOL should provide for the expression of informa-
tion which is not logically essential to the procedure,
but which can sometimes be used by the UNCOL-to-
ML translator to improve the efficiency of the resulting
machine-coded program. Such information, which we
might term ‘‘side information,” might embrace such
things as: (1) approximate probabilities of following the
various paths at a decision or branch point, and (2) seg-
menting points, to be used in case the entire program
will not fit in the internal memory of the target machine.

It is to be expected that deficiencies will exist in the
POL-to-UNCOL translation process. Hence provision
is needed for optional manipulation, by humans, of the
UNCOL output of the translator in order to compensate
for the deficiencies. Examples of such deficiencies are:
the resulting operating inefficiency of the translated
program, inability of the translator 1o identify machine-
dependent aspects, and lack of provision in the POL to
express relative frequencies of choosing among alternate
paths. If storage assignments in the ultimate (machine-
language) version of the program are to be performed
mechanically (later in the translation process), then by
this stage the interdependencies of the various parts of
the program must be known. Either they must be
derivable (which is unlikely), or expressed in the POL
(which is also unlikely), or inserted by a human.

At this stage, the program is “published” in UNCOL
form and is ready to be adapted for some selected com-
puter. This adaptation might best be done in two steps,
of which the last is the conventional assembly. In this
way a form of the program will exist which is in machine
language but without actual addresses: thus a human
can have the opportunity to influence the assignment of
actual storage locations, and the segmenting of the
program into parts in case it becomes necessary.

Bridging the gap between the UNCOL version and
the machine language before assembly (“symbolic
machine language’) is the task of a second translation
program, the UNCOL-to-ML translator. This trans-
lator must fill in the gaps, in the UNCOL version of the
program, which represent machine-dependent para-
meters, such as: input-output unit assignments, and list

308

of available characters. The UNCOL-to-ML translator
is also to be concerned with supplying the coded values
of “logical” entries in tables and with determining table
format. Upon this translation process (humanly-aided
if need be) falls the task of utilizing unique machine
features, such as a program interrupt system, and manual
controls (such as break-point switches). Before the
translator is applied, however, human aid may be
desirable or necessary in choosing some of the machine-
dependent parameters: for example, equating those
characters assumed existent by the program to those
actually available on the chosen computer’s terminal
equipment. Finally, the translator must transform the
essential algorithm into symbolic machine language, and
perhaps impose some further ordering upon the parts of
the algorithm in order to reduce it to the number of
computations that may be carried out simultaneously
on the selected machine. The output of the translator
is subject to human manipulation, as mentioned above.
before it is put through a routine assembly process.

General Principles for the UNCOL Language

Let us consider further what seem to be the guiding
principles on which UNCOL should be based. Itappears
that casting UNCOL in the form of a language for a
hypothetical machine would cause it to contain informa-
tion which is unnecessary, and also unduly restrict the
freedom to manipulate the program. For example, the
mere fact that instruction steps have been written usually
implies an assumption that the length of the quantities
being processed will not exceed the word length of the
machine. Also, the computation of intermediate
variables may be indicated when, in fact, for some
machines, they need never be computed explicitly (i.e.
stored). This indicates that UNCOL should not be a
hypothetical machine language wherein all expressions
are imperative statements (commands).

To repeat what has been said before, the machine-
independent part of a program which UNCOL must
express are: (1) the essential algorithm. and (2) the forms
and formats of the datainvolved. The essential algorithm
is the algorithm expressed in a manner which does not
impose any arbitrary sequence on steps that are inde-
pendent of each other, and hence from a logical stand-
point can be executed simultaneously. The forms of
data include whatever is theoretically necessary to com-
pute with the data: the types of quantities represented.
their units, their precisions, the hierarchical relations
between them, etc. The formats of the data are con-
cerned with the relative positions in which input and
output data appear on some physical medium. But if
format description is to be kept machine-independent, it
must not be in terms of the physical characteristics of a
specific unit of input-output equipment.

The details of an algorithm are not necessarily machine-
independent, hence it is important where machine inde-
pendence is desired that the algorithm be expressed on a
level high enough to avoid machine-dependent detail.

¥202 Iudy 61 U0 1senb Aq €06 L £¥/S0E/P/v/8101e/|ulWwoo/wod dno-ojwapeoe//:sdiy wolj papeojumoq

UNCOL

This level of expression to avoid machine dependence,
however, is a relative thing rather than a universal
constant. It depends on the collective abilities of the
class of machines we seek independence of. (This is an
admittedly vague notion at present.) Various parts of
a program may have to be expressed in UNCOL at
different levels of detail, depending on the POL-to-
UNCOL translator’s ability to discern the intent of the
program. Perhaps only the lowest level will be truly
universal, and we may be forced to resort to it to accom-
modate some unusual POL expression.

To give the maximum leeway for rearranging an
algorithm for a selected target machine, we would like
the algorithm to be expressed at the highest possible level
of abstraction. The exact way in which an expression is
factored for computation, for example, will be influenced
by the actual instructions available on the target machine.
We are without a satisfactory procedure for inspecting
an algorithm and re-expressing it at a higher level of
abstraction. (It could in theory be accomplished by
looking up correspondences in a table of equivalent
expressions, but the size of this table would be enormous.)
It follows that any intermediate language such as
UNCOL should not force us (except in rare cases) to
re-express an algorithm in more detailed terms (i.e. at
a lower level of abstraction) than the original algorithm
in the source language.

Ideally UNCOL should provide us with the freedom
to adjust the speed-versus-storage emphasis. Other
things being equal, the most economical choice for the
speed-storage ratio is that which utilizes all the storage
capacity of the target machine. The choice of expres-
sions for UNCOL should not unnecessarily restrict our
freedom to rearrange the program in an attempt to
achieve the optimum ratio.

An efficient result of an UNCOL-10-ML translation
might require human aid. To make the human’s job
easier, the expressions in UNCOL—at least the ones the
human has to manipulate—should be in a form readily
understood and amenable to manipulation.

Efficiency

In practice there are concepts, known to the algorithm
writer. which can contribute to improving the efficiency
of an algorithm when it is adapted for a specific com-
puter. Examples of such concepts are: the earliest and
latest times in a program when a specific variable is used.
and points at which a program can be segmented or
overlaid to conserve storage. In theory, such concepts
are deducible by inspection of the algorithm, but in
many cases the methods for performing this mechanical
deduction are either unknown or inadequate. Hence.
it is a practical rather than a logical necessity that
UNCOL have the ability to express information about
the algorithm which will contribute to the construction
of an efficient program for a specific computer.

Producing an efficient machine-language program
from one expressed in UNCOL is likely to be a difficult

309

task because of our poorly-developed understanding of
algorithms. Techniques are sorely needed for finding
the fastest algorithm within specific constraints.

Reliability Checks

We would like somehow to provide for reliability of
program operation in the face of errors of various kinds.
As far as the reliable execution of the computation or
algorithm is concerned, the methods of detecting and
compensating for machine errors are very machine
dependent. UNCOL might accommodate expressions
to indicate the timing and nature of reliability checks
and compensations to be performed, while leaving the
implementation of these checks to the UNCOL-to-
ML translator. Specific machine reliability checks
might better be provided in another way, however: by
executing the machine-language program under control
of a supervisory routine which contains a reliability
control routine (to which control would be sent by an
automatic interrupt system, or by periodic branch
instructions inserted by the UNCOL-to-ML translator).

Reliability checks concerned with input data (that is,
checks for correct format, sequence, quantity of data,
legal symbols, etc.), on the other hand, appear to be
more dependent on the nature of the input data than on
the machine; hence, input data checks are more appro-
priately considered as part of the machine-independent
procedure.

The Input-Output Problem

Perhaps the biggest stumbling block in developing
UNCOL is the devising of expressions which pertain to
formats of input-output data and designations of data
movement. The content of such expressions is not
wholly independent of machine design. The wide
variety of input-output designs in machines may require
a corresponding variety or flexibility in UNCOL expres-
sions concerned with input-output.

A promising approach to the designation in UNCOL
of input-output transfers (data movement) appears to
be to mark or label each of the following:

(1) which data is read in:

(2) which data is put out;

(3) the earliest points in the procedure at which the
input data could logically be moved into the com-
puter: this will usually be at the very beginning of
the procedure:

(4) the carliest possible points in the procedure at
which the output data could logically be moved
out of the computer: this will ordinarily be after
one coherent unit of data, such as a page of print,
or a complete display, has been made up.

Different input data may have differing “‘earliest input
points.” or times; similarly, different output data may
have differing “earliest output points,” or times. It will
be the task of the UNCOL-to-ML translator to devise
an appropriate set of input commands lying time-wise

¥202 Iudy 61 U0 1senb Aq €06 L £¥/S0E/P/v/8101e/|ulWwoo/wod dno-ojwapeoe//:sdiy wolj papeojumoq

UNCOL

between the earliest possible points and the points at
which the data is needed. It must also devise the
appropriate output commands lying between the times
the data is computed and the end of the procedure.

The formats of input data or output data, or both,
may be a part of the program to be expressed in UNCOL.
Such things as input card formats, displayed configura-
tions, and arrangement of printed output pages may be
an essential and fixed requirement on a program.
Furthermore, they are not usually independent of any
machine; they imply the presence of specific terminal
equipment. There exists the problem of expressing these
specific input-output formats in as general a manner as
possible.

Severe difficulties may exist because of the differences
in the sets of characters available at the various stages of
translation from POL to ML. The sets of characters
of a POL, an ML, and UNCOL itself may not coincide.
The first difficulty is that, in translating a program from
POL to UNCOL to ML, the translators must trans-
literate from one character set to the next. This
transliteration problem may be compounded by the
lack of needed characters on the computers in which the
translators operate. The second difficulty is concerned
with how UNCOL can represent a specific (POL)
character which is not in the UNCOL character set. It
might be done by substituting for the character its
English name. This in effect maps any character not
directly expressible in UNCOL into combinations of the
26 letters (and space). Alternatively, UNCOL might be
provided with a very large character set embracing most
of the characters which are likely to be met in programs.
The third difficulty is that if the intent of a program to
be translated is to produce an output at least partially
composed of characters which are not available on the
target machine, then it is questionable whether an
acceptable translation is possible at all. For example,
it may not be sensible to attempt to translate and run
a program whose output is a table containing U.S.
dollar values, on a machine which has no dollar sign.

Making UNCOL Extendible

It has become commonplace to say that a program
language should be extendible: that is, it should be able
to accommodate new expressions and new concepts.
To what extent does it make sense to speak of UNCOL
being extendible ?

Extending a program language to encompass a new
expression is done by defining a new expression in terms
of the existing ones. Such a definition is constructed
according to the rules of the language. It appears that
the class of definition which may be made is limited to
those specifically provided for by the rules. This limita-
tion applies even if a new rule can be constructed (in
accordance with the rules already extant). To put it
another way, all expressions in a language are reducible
by the language rules (syntax) to terms which cannot be
further defined in the language (without using circular

310

definitions). These undefined terms cannot be changed
by expressions in the language. Hence, all provisions
for constructing definitions are mere matters of con-
venience: they do not permit the expressions of concepts
which could not be expressed without the definition.

While UNCOL can be made extendible in the sense
just described: that is, of constructing definitions, what
good is this? It can afford economy of expression for
concepts which must be repeatedly expressed. It in effect
permits a shorthand notation for use within UNCOL
only. Without a corresponding modification in existing
POL-to-UNCOL translators, such translators will not
embody such shorthand expressions in their UNCOL
output; future translators could, of course, make use of
them. Similarly, without a corresponding modification
in UNCOL-to-ML translators, any shorthand expressions
will not be acceptable to such translators, hence the
shorthand expressions will have to be replaced by their
definitions (which are in undefined terms, terms that
are understood by the UNCOL-to-ML translators). It
would appear that the introduction of shorthand expres-
sions (via the construction of definitions) in UNCOL
will have no effect on a program translated from POL-
to-UNCOL-to-ML, hence the value of such expressions
is limited to a possible economy of notation in UNCOL
itself.

The Nature of UNCOL

Let us consider briefly the possible nature of UNCOL
as an intermediate language. Some of the possibilities
are as follows:

(1) Some variation of Turing-machine language,
suitably extended to include description of aspects
of a program other than the internal computations.
A machine language for some hypothetical machine
having the characteristics of present-day general-
purpose computers; again with some extension of
the language to treat the non-algorithmic aspects
of a program.

A problem-oriented language, like ALGOL, which
reflects to some extent the general nature of
present-day computers.

As broad as possible a problem-oriented language,
perhaps like LISP (McCarthy, 1960; Woodward
and Jenkins, 1961) which does not reflect to any
significant degree the nature of computing
machines.

A language composed of the above-mentioned
languages, thus having the capability of expressing
program sequences at a variety of levels of
abstraction.

2

3)

(4)

%

It is this author’s conviction that at least the algorithmic
part of UNCOL will have to be able to represent a
program segment at any one of several levels of abstrac-
tion (i.e. those mentioned as items 1, 2, and 4 above).
The expression in languages above the Turing-machine
level are short, conventional notations for those Turing-
machine programs which we have found useful. (This

¥202 Iudy 61 U0 1senb Aq €06 L £¥/S0E/P/v/8101e/|ulWwoo/wod dno-ojwapeoe//:sdiy wolj papeojumoq

UNCOL

is a relatively small percentage of the astronomical
number of possible Turing-machine programs.) These
higher-level expressions by no means include all the
machine actions which could conceivably be useful. In
other words, there is no way to describe some program
actions other than to resort to Turing-machine language.
Why isn’t extended Turing-machine language alone
satisfactory as an UNCOL? While such a language
might be theoretically adequate for expressing a program,
there is a real and unanswered question as to whether a
satisfactory translation could be made from it into a
machine language. This translation process involves
the discovering of a group of UNCOL expressions which
corresponds to a yet smaller group of machine-language
instructions. (Although it would be possible to simulate
a Turing-like machine on any general-purpose digital
computer, the execution of one or more computer
instructions for each Turing-like machine instruction
would result in gross and intolerable inefficiency.)

The Feasibility of UNCOL

Arguments as to whether or not UNCOL is feasible
can be categorized into questions of universality, questions
of efficiency, and questions of analysability.

As far as computations internal to a machine are con-
cerned, any UNCOL which can express the basic com-
puting steps of a Turing-machine is universal. It can
then represent any computation that any deterministic
computing machine (past, present, or future) can do.

It appears that UNCOL must represent at least some
of the machine-dependent aspects of a program, such as
input and output characters. If it cannot represent all
the characters used in all present and future POLS, then
UNCOL’s universality is open to question. An UNCOL
designed to accommodate those machine-dependent
parts of programs expressed in current POLs, for current
machines, might not encompass the capabilities of
future POLs and machines.

It remains to be seen whether a specific realization of
UNCOL can produce, in machine language, programs
having satisfactory operating efficiency. Since life
situations are rarely all black or all white, it is probable
that UNCOL will provide satisfactory efficiency in some
circumstances and not in others. For programs which
in POL form are essentially machine-independent (and
especially where the data can be described in machine-
independent form), and for programs which can be
readily separated into their machine-dependent aspects,
the conversion of such programs into relatively efficient
machine code should not be difficult. For programs
which are originally expressed in a POL heavily dependent
on a particular type of machine, it may not be possible
to translate them into machine-independent form (and
thence into machine code) without undue degrading of
their efficiency of execution.

The success of UNCOL also depends on the ability of
a translator mechanically to analyse into appropriate
constituents a program expressed in a POL. We are

311

unable to say at the moment what these appropriate
constituents are, other than to note that the machine-
dependent aspects must be distinguished from the
machine-independent ones.

With our present state of knowledge, it seems inappro-
priate to state categorically that UNCOL is, or is not.
feasible. It was the conviction of Holt and Turanski
(1960) that UNCOL was “‘unrealistic and unworkable.”
It is likely that their conviction resulted from their
having dealt primarily with programs that were heavily
dependent (particularly in terms of the data description)
on the characteristics of a specific machine. As we
discussed, the success of UNCOL depends crucially on
the ability to segregate the machine-dependent from the
machine-independent aspects of a program. They
perhaps felt that separating a programmed procedure
into machine-independent and machine-dependent parts
either was impossible or, if it were possible, would result
in intolerably poor operating efficiency of the resulting
program. In addition, they dealt largely with programs
which taxed the capabilities of the machines they had
available. Hence they probably felt that intolerable
operating inefficiencies would almost inevitably be intro-
duced by an UNCOL based on currently available
techniques.

Steel (1961) attempts to ease the task of devising an
UNCOL by limiting the scope of UNCOL to a set of
current computers (‘“‘priority class machines™). He
conceives UNCOL as a machine language for an
“UNCOL machine” having the composite charac-
teristics (but not the idiosyncrasies) of the priority-class
machines. A source program in UNCOL form is that
program in the machine language of the UNCOL
machine. A realization of the program on some real
machine is to be done by simulating the UNCOL
machine on the real machine. The source program
might be either compiled or interpreted for the real
machine. (The interpreter in this case should be
relatively simple since it is imitating the UNCOL
machine on a real machine having similar charac-
teristics.) This plan might indeed be workable for
priority-class machines, but, as Steel admits, it will
almost certainly be unsatisfactory for machines outside
the priority class.

Development of UNCOL

Having talked about the general approach to an
UNCOL, we must consider the next steps to be taken.

The next steps appear to be these:

(1) to analyse the constituents of computer programs,
in order to see what is the general nature of con-
cepts to be expressed by UNCOL (the author has
made some attempts to do this, but no results have
been published);

(2) to collect or devise a representative set of programs
to be used as a guide to developing UNCOL
expressions;

(3) to enumerate the things which UNCOL must

¥202 Iudy 61 U0 1senb Aq €06 L £¥/S0E/P/v/8101e/|ulWwoo/wod dno-ojwapeoe//:sdiy wolj papeojumoq

UNCOL

express, based on the results of steps (1) and (2) possible except to try to construct it. If an UNCOL
above. as well as on a study of the capabilities of can be developed along the lines presented here, it offers
some current advanced programming languages: the distinct possibility of being a high-level programming
(4) to suggest a suitable notation; language which has more capability and convenience
(5) to examine the problems of constructing trans- than any of the current ‘“advanced programming
lators. languages™ such as ALGOL.
The author does not pretend to offer in this paper any
It is by no means clear at this point that a satisfactory solutions to problems concerned with UNCOL, but he
UNCOL as outlined in this paper is possible. There hopes that he has made clearer the natures of some of
appears to be no way to decide whether this UNCOL is the problems involved.
References

Hort, A. W., and Turanskl, W. J. (1960). “Man-to-Machine Communication and Automatic Code Translation,” Proc. of
the 1960 Western Joint Computer Conf., p. 329.

IBM (1958). FORTRAN II Reference Manual for the IBM 704 Data Processing System.

McCarTHY, J. (1960). **Recursive Functions of Symbolic Expressions and their Computation by Machine, Part 1,”* Comumunica-
tions of the A.C.M., Vol. 3, p. 184.

NAUR, P, et al. (1960). “‘Report on the Algorithmic Language ALGOL 60,” Communications of the A.C.M., Vol. 3, p. 299.

SHARE Ap-Hoc CoMMITTEE ON UNIVERSAL LANGUAGES (1958). “The Problems of Programming Communication with Changing
Machines,” Communications of the A.C.M., Vol. 1, No. 8, p. 12; and Vol. 1, No. 9, p. 9.

SiBLEY, R. A. (1961). *The Slang System,” Communications of the A.C.M., Vol. 4, p. 75.

SteeL, T. B. (1960). “UNCOL, Universal Computer-Oriented Language Revisited,” Datamation, Vol. 6, No. 1, p. 18.

SteeL, T. B. (1961). **A First Version of UNCOL,” Proc. of the 1961 Western Joint Computer Conf., p. 371.

WOODGER, M. (1960). “*An Introduction to ALGOL 60, The Computer Journal, Vol. 3, p. 67.

WoobpwaRrD, P. M., and JENKINS, D. P. (1961). *““Atoms and Lists,” The Computer Journal, Vol. 4, p. 47.

Book Review

Microanalysis of Socioeconomic Systems, by ORCUTT, GREEN- reliable estimates for the probabilities that a given individual
BERGER, KORBEL and RivLIN, 1961; 425 pp. (Harper will be born, die, marry, or have a child in a given month.
Brothers, New York, $8.) These probabilities are then used to set up a large sample for

This work is in five parts. The first part is introductory and initial data, representing about five thousand families.

outlines the problem of building a satisfactory model of an The simulation of the economic behaviour of these family

economic system based on the social u:it of a single indi- units depends not only on these demographic features of a

vidual. This is the problem considered in this book. The population, but also on their status in the total labour force,

second part gives the statistical details of the demographic their hire purchase debts, their assets, their demand for
problem proposed, and the third part discusses some exten- luxuries, higher education, and travel. Simple models incor-

sions to the problem. porating these factors are introduced in Part 111.

The fourth part gives the details of computer programs Part 1V is the section most interesting to professional com-
to solve such problems, and has a very detailed appendix puters. This section contains a general treatment of the
on the generation of random numbers, the generation of simulation of these large-scale micro-economic models, using
which is of great importance in the stochastic processes a very large high-speed computer. In this case, an 1.B.M. 704
involved. The fifth part outlines some conclusions reached with four magnetic-tape decks was used. Full details are
from experiments making use of the programs, and suggests given, with flow diagrams of the actual course of the calcula-
further possible extensions to this field of research. tion, for this model of the consumer section of the U.S.

Demography is the study of the statistical behaviour of the economy, which was set up in the preceding sectors.
population of a country. Here, at the micro-economic level, The connection with Markov processes is noted, but to
each person is defined by a group of data about such things bring the problem within practical bounds, a Monte Carlo
as age, sex, and marital state, at a given moment. These basic process is used to generate the behaviour of any household
units are then combined with other units representing other at any given time. All households in the initial data are
people on a semi-random basis, to produce a number of processed on magnetic tape, and this produces successive
other larger family units. These family units are assumed to predictions of the future state of the population at monthly
be capable of making decisions about the purchase of durable intervals.
commodities, higher education, travel, and other economic The last section discusses further the problems of obtaining
problems. One of the main objects of the research is to specific predictions from such micro-analytic models, by
simulate the behaviour of these decision-making units in the this approach based on simulation.
consumer section of the American economy. The work is invaluable to anyone concerned in the organiza-

The first step is to simulate the behaviour of these indi- tion and automatic processing of demographic data, and
vidual and family units by computer programs which imitate, should be of great interest to those engaged in building
on a stochastic basis, the birth and death of individuals, and economic models of any kind, and to all those who have to
marriage and divorce among families. Several chapters in build programs for projects with large quantities of data.
the second section are devoted to the problem of getting Lucy JOAN SLATER.

312

¥202 Iudy 61 U0 1senb Aq €06 L £¥/S0E/P/v/8101e/|ulWwoo/wod dno-ojwapeoe//:sdiy wolj papeojumoq

