Chebyshev Methods for Ordinary Differential Equations

By L. Fox

The solution of linear ordinary differential systems, with polynomial coefficients, can be
approximated by a finite polynomial or a finite Chebyshev series. The computation can be per-
formed so that the solution satisfies exactly a perturbed differential system, the perturbations being
computed multiples of one or more Chebyshev polynomials. An upper bound to the errors in the
solution can often be estimated by approximate solution of the differential system satisfied by the
error. Various devices are used to make the errors smaller, including a priori integration of the
given differential equation and proper choice of the resulting constants of integration. The paper
discusses various aspects of these topics, for both initial-value and boundary-value problems, and

also suggests a method for automatic computation.

Introduction

1. Two methods have been proposed for solving
ordinary differential equations which take advantage of
the special properties of Chebyshev polynomials. For
best convenience the equations are linear with poly-
nomial coefficients, though they can often be adapted to
other linear equations and, by iterative techniques, to
non-linear equations. Here we consider only the
favourable case, since our aim is to compare and contrast
the two methods and to suggest some possible improve-
ments in both.

Lanczos (1938) approximates to the solution by a
polynomial, and determines the coefficients in that
polynomial which satisfies the original differential
equation perturbed by a small term or terms which are
calculated as part of the process. The error satisfies a
similar differential equation and its approximate solution
can sometimes be obtained to provide an upper bound
for the error. In other cases he increases the degree of
the polynomial and compares results.

2. Clenshaw (1957) prefers to calculate directly the
coeflicients of the Chebyshev series, effectively approxi-
mating to the solution of an infinite set of equations for
the coefficients by assuming that terms beyond a certain
point are negligible and concentrating on the resulting
finite set. He measures the accuracy of the result by
estimating the number of figures to which his computed
coefficients agree with those of the infinite Chebyshev
series, which gives a bound to the rounding error, and
adding the remainder term assessed by examining the
rate of convergence of the series. If necessary he also
repeats the computation with more coefficients included
in the calculation, and often prefers to do this to
guarantee more closely the maximum error of a finite
series obtained by truncation to a smaller number of
terms.

In this paper we compare with that of Lanczos a
modification of the Clenshaw process, for obtaining a
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finite approximation without truncating a higher-order
approximation, and for this purpose we perform the
arithmetic so accurately that the coefficients obtained
can be regarded as exact solutions of the finite process
used to find them. The arithmetic of the two methods
is quite different, but we show that, in the absence of
rounding error, and with careful attention in the Clen-
shaw process to the details of the reduction to a finite
set of equations, the two methods give identical results.
In the following we drop the term ““modification’ applied
to our version of Clenshaw’s method, since its persistent
use might imply a completely different numerical tech-
nique. The main difference is in the method of estimating
the error, and we refer to this briefly in the penultimate
section of the paper.

3. We also consider delayed procedures, in which the
methods are applied to integrated forms of the differential
equation, showing that a certain device of Clenshaw is
effectively equivalent to integration but also needs care
for best accuracy. The delayed process is often advan-
tageous, producing significantly better approximations
for the same degree of polynomial, and the error analysis
also is often simplified. Finally we suggest a process
which may have extra advantages for automatic com-
putation, and comment on some remarks of Clenshaw
(1957), on the connection between his process and the
number of convergent Chebyshev expansions which
satisfy the differential equation.

The Lanczos Method

4. The ILanczos method has been described in the
literature, and a particularly valuable account is con-
tained in his book Applied Analysis (Lanczos, 1957).
We give here the relevant details for the sake of complete-
ness, for subsequent comparison with Clenshaw’s method,
and also to suggest a possible re-organization of the
computation. An example will provide the details more
conveniently.
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We consider the differential system
20+ x)y" +r=0, »0) =1, (1)

and seek a polynomial approximation to the solution in
the range 0 << x << 1. If we assume

. + allx" H (2)

y=ay+ax -+ ..

substitute in (1), and equate to zero the coefficients of
the various powers of x, we find the equations

2r— Da, .y + 2ra, = 0, r=12,...n
‘ } 3)

2n -+ 1a, =0

of which the last equation refers to the coefficient of x".
These equations have no non-trivial solution, but we can
provide one by adding a suitable polynomial to the right-
hand side of the differential equation (1). Lanczos
suggests the term 77}%(x) (the Chebyshev* polynomial
T(x) is appropriate for this range), so that to the right
of (3) we add the corresponding terms 7C$, where C{
denotes the coefficient of x* in T#(x). All the coefficients
can be calculated as multiples of =, and the value of =
is then obtained from the initial condition, in this case
a, = 1.

5. For the solution of (3) Lanczos considers the super-
position of the partial solutions which we would obtain
if on the right of the differential equation we put in turn
the terms 1, x, x2,...x" The corresponding partial
solutions for y are polynomials of corresponding degree,
called by Lanczos the canonical polynomials Q,(x), and
the final solution is expressed formally as

=13 CPO,x), @)
r=0

the value of = being obtained from the initial condition
associated with the differential equation.

This method has the advantage that the Q, poly-
nomials are independent of the degree n of the poly-
nomial finally selected, and if we decide for some reason
to increase n by one or more we merely compute the
additional polynomial or polynomials, introducing the
coefficients C{” only at this advanced stage.

6. This does not give directly, however, the required
values of the coefficients in (2), and it seems to me pre-
ferable to reformulate slightly this idea. It is equivalent
to solving the equations with right-hand sides equal in
turn to the columns of the unit matrix, so that we can
write the matrix equation

a—A 'C, (5)
where a has components a,, a,, ..., C the components
CO V... and the successive columns of A~!, an

upper triangular matrix, are independent of each other,
the order of 4! depending on the finally selected ».

Here, for example, we find, for the first five columns
of A, the results

* The Chebyshev polynomials are T,,(x) == cos nf), Tj(x) = cos n¢,
where 0 = cos “lx, ¢ == cos 1 (2x — 1).
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A1 =
B L2 42 6.4.2 8.6.4.2
U301 7531 0 7.53.1 79.7.5.3.1
1 4 6.4 8.6.4
T3 753 753 9.7.5.3
1 6 8.6
P . - |,
°5 7.5 79.7.5 ©)
a 8
7 9.7
B
i R

Then with n = 4, so that C has components (1, —32,
160, —256, 128), we find 7 = 315/87163 — 0-00361 and
the approximation

1

Y= %7163 (87163 — 43424 x + 30048 x>

— 16640x3 + 4480x?), )
which satisfies exactly the system
2(1 + x)y" + y = 7T¥(x). with »(0) = 1
and n = 4 in this case. (8)

7. The difference z between the solutions of (1) and (8)
satisfies the system

2(1 + x)z" + z = — 7T;¥(x), z(0) = 0, ®)

and Lanczos suggests possibilities for finding approxi-
mate solutions of such equations. We can find an
approximate particular integral z; of (9) by first writing
cos 0§ = 2x — 1, so that the differential equation becomes

dz
2(3 -+ cos 9)(79 — z,sin 0 = 7 sin 6 cos nd

= ;{sin (n+ 1) —sin (n — DO}.  (10)

The solution is obviously periodic, and we try
zZ; = gl(g)ei(n +18 _i_ g;(@)e“” -I)eq (1 I)

with the assumption that the derivatives of g, and g,
are negligible, at least in comparison with n. We then
find

—ir
§17 2i(n + 1)(3 -+ cos 6) — sin 6

i
5T
= — . 12
£2 2i(n — 1)(3 + cos ) — sin 0 (12)
To the particular integral we must add a term Ay, where
v is a solution of the homogeneous differential equation,
and find the arbitrary constant 4 from the condition

z=1z1+ Ay = 0atx = 0. 13)
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The point x = 0 corresponds to cos § == — 1, sin § = 0,
and here

- 1) 1 T

=D 4n> — 1y

so that 4 — (— 1y, (14)

4n> — 1y
We can now assert that the maximum error is hardly
likely to exceed

T 1 1 1
D R S T 1
Tmax 4{112 — 1 2m—+1) " 2n— l)}’ (15)

which for n == 4 has the value 7/12=0-00030. The
point x = 1 is special, since here =, = g, — g,. with a

T l 1
i R SO . At thi
maximum value of 4{2(” T 2n 1)} t this

point we would expect to find =< = 0-00012

-
2(n*—1)
in this case. These general and special predictions are
confirmed by the following errors, the differences between
the true » = (1 + x) ~ Y2 and the approximation (7):

x 0-:00-1 02 0-3 04 0:50:60-7 0-8 0:9 1-0
10520 --2 =16 =23 —17 —6 —4 —7 —2 —7 -8,
(16)

8. This analysis breaks down if the coefficient of z’,
in the equation for the error, vanishes at any point in
the range, though it will still be valid for values of x
sufficiently remote from this. Sometimes, also, a single
7-term will not suffice. since one or n.ore equations are
still unsatisfied. These points are illustrated by the
approximate solution in the range (0, 1) of the equation

X2 — =0, (1) = 1, (17)

whose exact solution is e' ¥ '
gives the equations

The assumption (2)

"ao ::O
*a| jj0

ra, —a, ; — 0, r==12...n—1 (18)
na, = 0

of which the last equation refers to the coefficient of
x"1. We should therefore need to add a term =T}
to the differential equation, but @, can then be determined
from two equations of the set (18) (in Lanczos’ phrase-
ology a is “*overdetermined”) so that we take =, 7% | -~
701, as perturbations, the extra equation for a,. that is
the second of (18), and the boundary condition giving
two linear equations for the determination of =, and 7.
In passing we note the desirability of keeping as large as
possible the order of the perturbing Chebyshev poly-
nomials, so that we prefer this perturbation, for example.
rather than any other combination such as 7,7} ., +
Y ER
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We then find

a
—~1 0 0 0 ] [70CO = 7, CO,
1 5 f|> 24 TOCfIZ) e TICEIZ—? 1
5 3 &L (19)
[ 4 —,—‘—2—..‘l PPN
1}» coee 7l(jII”—‘]l >
with the extra equation
—a; = Tocle) — 7, Gy, (20)
and the boundary condition
>a,=1. 2D
0

With n = 4 we calculate 7o = — 27/2907 == — 0-0093 .. .,
7y == 32/2907 = 0-0110. . ., and

y (59 — 2464x — 1465632 — 1344013

2907

-+ 4096.x4). (22)
9. The error satisfies the differential system
X%z —z = — 7o THx) — 7, T% (x), =(1) — 0, (23)

and it is easy to see that, since |z| is a maximum at x — 0
or x == 1 or whenever z* = 0, we have the certainty that ||
cannot exceed the maximum of |7oT,*(x)| |7, T% (x)].
With 7, and 7, of opposite sign, as here, the maximum
is at x =0 where z = (— 1)(7y — 7,). in this case
—0-0203, the value of —1(0).

10. When the maximum error or its close estimate
can be obtained by these processes, in terms of the
parameters of type 7, it is clear that we do not need to
calculate more than one or two of the individual a,
until the value of # has been decided, quantities like Xa,
being obtained by summing the columns of the matrix.
The computation of the = process, in this matrix form,
is therefore easily arranged and not excessive.

I1. Similar techniques can be used for second-order
equations. For example the function 1 = e¥* satisfies
the system

¥ —=2(1 = 2x2)y =0, »0)=1, 1(0) =0,
and we seek an even solution with the approximation

(25)

(24)
P g A Nt - agxt L ayx

which already satisfies the second given condition.
Substitution in (24) gives the equations

2a, — 2ay =0 ]
2r2r—1a,, — 2a,, , — 4a,, 4 =0, '
r=23,...n (26)
—2(12" - 4(12,],,2 =0 |
—4da,, =0 Js

the last equation corresponding to the coefficient of

¥202 Iudy 61 U0 1senb Aq €L0ZE /8L E/P/v/e101 e/ |ulWwoo/woo dno-ojwapeoe//:sdiy woli papeojumoq



Chebyshev Methods

Table 1
N ] — 1 1 13 43 771 4641 -1 T ) o ]
ay R S TR - My VR v R TG G
1 1 32 87 2877 @ @
a, ,_i _‘,g 7% 'ﬁ ‘764 .. T()Czn e ‘ZCZN:I
Lo 5T 147
4 zl% 1? ' ;? (27)
1 1
*4 v8 . e .
I ia
a,, VR TzC(z”,;' :)

252

x="72 The first equation represents a single over-
determination, and we must also satisfy the first given
condition, so that we must add the terms 7,7,,  »(x) -
7oT5,(x) on the right of the differential equation.

We then find equation 27 (see Table 1).

Taking 2n = 10 we calculate 7o = — 0-00066 . . .,
T, = — 0-00003 . . .,and

y=1-+1-0003161x% = 0-4974742x* + 0-1745248x°
+ 0-0304575x8 + 0-0155269x'°, (28)

in which the coefficients, for simplicity, are given as
rounded versions, to seven decimals, of their exact
fractional values.

12. The error analysis for this case is more difficult,
but we can get a good estimate by solving iteratively the
equation

z" _2(1 + 2'Y2)‘ - 70T2n - TZTZII 2 (29)
in the form
Z;‘, = 2(1 + 2-\‘2)21‘ -1 7-()T2n7 (30)

and neglecting the 7, term, since 7, is here very much
smaller than =,. We may note, however, that the
inclusion of 7, increases only slightly the complexity of
the analysis.

With z, = 0 we find, by double integration and satis-
faction of z(0) = 0, the next term

‘] 2T2n B T2n-3~2
47042 —1 7 2n + D2n =+ 2)

:l:

TlrrZ
T =2 C}
1
— (__ nool
C=(=1y s (D

For the next iterate the part involving the double integral
of 2(1 -+ 2x?) multiplying the T terms will be of order

E

n # and can reasonably be neglected. The C term will,
however, make significant contribution here and in
later terms. The first four contributions to the total are
found to be

& (e b e ).

x6 11X 211x10 12
(o0~ 630 se00 ~ a62) O
and they are decreasing quite rapidly. The total contri-
bution is, of course, Ce*, but such knowledge is not
generally available and is in any case unnecessary.

The error is probably a maximum at x = I, and for
its estimate we have

o 3
e T T @dn? = I — 1)

(— 1! ‘
T l"(l + 1-33 +0-35 -+ 0-03):', (33)

giving, for n = 5, the result
Zmax = 002875 = — 0-000018. (34)

The accuracy of this prediction is verified by the follow-
ing table of errors:

x 00 01 02 03 04 05
106z 0 -3 -9 —13 —11 -7

06 07 08 09 10
-5 =9 —1I5 —15 —18. (35)

13. The approximation (28) is clearly not the best
possible result, its error being of one sign, and the
reason for this becomes apparent from inspection of (31).
It is clear that, instead of satisfying exactly the boundary
condition »(0) = 1, we would do better to satisfy

(—1)"rg

1O =ap = 1 — 4o

= 0-99999312,  (36)
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so that C is zero in (31). We then find the result

1 = 0-9999931 -+ 1-0003092x% - 0-4974708x*
-+ 0-1745236x% — 0-0304573x8 + 0-0155268x19, (37)

with the following smaller errors:

x 00 01 02 03 04 05
106 —7 4 —2 —5 3 2
06 07 08 09 1-0
45 42 -2 o 1. ©®

Lanczos (1957) has made similar comments with other
error analysis for first-order equations, and a similar
device can improve somewhat the approximation (7)
for the problem of Section 6.

The Clenshaw Method

14. Clenshaw finds directly the coefficients of the
Chebyshev series, or at least approximations to them, by
assuming such an expansion for y, with coefficients a9,
and similar expansions for the derivatives, with coeffi-
cients a'* for the sth derivative. In this way he avoids
the necessity for differentiating Chebyshev polynomials.
and can relate the coefficients of type a' to those of
type a* D by integration formulae. The product of
powers of x with Chebyshev polynomials is expressible
in terms of Chebyshev polynomials, so that it is possible
to substitute in the differential equation, equate to zero
successive coefficients of the polynomials, and solve the
resulting infinite set of algebraic equations by truncation
to a finite set.

The finite set is solved conveniently by a recurrence
process, almost equivalent to standard *‘back substitu-
tion,” since the matrix of coefficients is triangular or
almost triangular.

15. For example, in the problem of Section 4 we take

v o= 3d0TE - aOTF +aP'TE + ...

Vo= 1aVTE — a VT +aPT% - ...

(39)

substitute in the differential equation (1), and determine
equations for the coefficients, given by

300 10 1 40)
1ag ta\) +— tap’ =0 (40)
3aV - bl 4l = adl® =0, r—1,2,... ' .
In addition we have the general integral relation
al = 4ra® + a" |, 41)
and if we use this in (40), to give
Q2r 4+ 1)a® = — 340 — gl | (42)

we can apply (42) and (41), in turn, to obtain a!” and
a\ | in terms of coefficients of higher order in the two
series.

Starting at some point r = n, with the assumption
a® — 1,4 = 0, and all terms of higher order assumed
negligible, we can calculate all the coefficients and finally
determine an appropriate multiplying factor so that the
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Table 2
; kroy (rn
0 145488/35 —52992/35
1 —12528/35 —13488/35
2 1616/35 —576/7
3 —48/7 16
4 1 0

initial condition is satisfied. Starting with n = 4, for
example, we find the results of Table 2.
The boundary condition gives

=1, (43)
so that we multiply the results of Table 2 by 35/87163,
and have the solution
1
- % ® %
= 87163(72744T0 125287 - 161673
— 240T% + 35T%)

= 0-83457T¢ — 0-14373T7F — 0-01854T%
— 0-00275T3F - 0-000407%.

1a0 — a®¥ — 4 — a? — a? — ...

q
)

(44)

rounded to five decimals.

16. We note two interesting points. First, this result
is identical with the polynomial approximation (7), and
the multiplying factor is equal to 7/9 of that process.
In fact, if we deliberately truncate the assumptions (39)
at T, for y. and TF_, for 3, so that »’ is exactly the
derivative of v, the set of equations (40) is finite, the last
two of them having the form

@2n — Ha'®, = —3a"

i
n-1 n—1
8

2n + Ha® =0 ].

45)

By adding the constant 7 to the right of the last equation,
which is equivalent to adding 77% to the right of the
differential equation, and proceeding with the recurrence
as before, we find all the results of Table 2 multiplied by
1/9, and the multiplying factor is then exactly the 7 of
the polynomial method.

17. Second, we observe the good convergence of the
Chebyshev series, with coefficients much smaller than
those of the polynomial. We must, however, remember
that the coefficients in (44) are only approximations to
those of the infinite series, so that although the trend
of the coefficients indicates that the next two terms of
that series, to five decimals, are something like
—0-00006T% + 0-000017%, the maximum discrepancy
between our approximation (44) and the true solution
cannot be estimated at about 7 > 10 3.

As we have seen the error is as much as 23 < 105,
and this can be reduced only by using a larger value of n
to find more accurate approximations to the Chebyshev
coefficients.  (We refer in Section 45 to Clenshaw’s
method of assessing the number of figures in the
approximate coefficients which agree with those of the
infinite series.)
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For example, if we take n = 5 we find

T — — 231/339323 == — 0-00068, and
1 == 0-834621T% — 0-143733TF - 0-0185197%
— 0-002652T% - 0-0004137% — 0-000062T%, (46)

with significant changes, for example, in the fourth
decimal of a;. The analysis of Section 7 would give
maximum error of 0-00004, and an error at x — | of
little more than 0-00001. These figures are confirmed.
as good upper estimates, by the following table of errors:

x 00 01 02 03 04 05
1052 0 +1 +3 +2 -1 =2

06 07 08 09 1-0
—1 41 42 4+l 0. (@)

18. The Clenshaw method will need to combine
solutions, as in the Lanczos process, whenever any
equation is left unsatisfied, and the same problem will
affect both methods in the same way. For example, the
problem of Section 8, with the assumption (39) for the
solution, gives for the coefficients the equations

1 1 3 |
G ST | D R ¢ D B (1) N
6 749 T g% % 0
1 1 7 1
e DT (D IS | INNT Y D R (S |
161 T4 T e T gh a0 - (48)
1 1 3 1 1
oD Ty T () D () (D)
160,,:,4 1 4ar—3 8ar~2 ' 4ar—-—1 ! 16ar

—a%,= 0, r=0,1....;,
the integrating equations

al’ | = 4ra® - a\l (49)

and the boundary condition

1al) - d® ) - = (50)

Again it is convenient to express @' in the third of (48)
in terms of 4{'’, and ¢, from (49), giving the general
equation

1 1 7 1 1
4D [ 0 ) N s ) I BN ¢ § B T (0)
]6a’14 - 40,,;,3 i léa’ 12 4ar-rl T 4(’ an l)ar 1
—a%, =0, r=20,1,.... (51)

Similar treatment of the second of (48) gives

1 1 7

g s S oy

6% a9 T ed 0, (52)

and we note that the term in a{” has disappeared. We
can calculate all the coefficients by recurrence, from
r=n down to r = 1, using in turn (51) and (49). The
coefficient af’ then comes from the first of (48), and two
equations, (50) and (52), remain unsatisfied. We there-
fore need two independent trial solutions, and a linear
combination of them will yield the final solution.

19. The nature of the starting conditions is of some
importance. We might, for example, start first with
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Table 3
] a‘,”’ a)’ r a‘,o) a,(.”
1625 425
0 58 128 —— —
0 24 3
587 128
I 44 32 = 2
! 12 3
2 2 48 2 %’ 54
55
3 4 16 2
3 2 16
4 1 0 4 1 1
a? =1, a” =0, and all higher coefficients assumed
zero, and then perhaps with @' = 1, ¢ — 1, with all

higher coefficients neglected. We then find, for n = 4,
the results of Table 3.

For the factors 4 and B multiplying the respective
solutions we compute the values A4 — — 1056/30915,
B = 1296/30915, and then

1= (13251T% - 16932T% -+ 22087T%

— 1716T% - 240T%)
== 0-4286T% + 0-5477T% -~ 0-0714T%
— 0-05557% -- 0-00787%, (53)
which has an error at x = 0 of amount 0-0156.
20. The 7-method applied to Clenshaw’s process,
starting with a finite approximation, that is truncating
(39) after 77 and the corresponding expression for the

derivative after 7,%_,, would lead to a finite set of equa-
tions for the coefficients, of which the last three are

1
30915

_I1_a(h 1,01 1 0 0 __
iedy Ly T Ztanf)'Z N 1(” - 2)05112 - af, )I =0
14D L1 0) 0
4an -1 4(” - l)afl—l - aiz) "'“ 0 (54)
1nad® =0

Since we need two 7-terms, and the finite expansion
gives a term in x" ! in the differential equation, we take
the form 7,75 | -~ 7,T% which means that =, and 7,
are inserted respectively on the right of the last two
equations of (54). The two trial solutions then corre-
spond exactly to the starting conditions

al = 1,a"=0,a", = 1,4, —=0; (55)

n—1
and if they are multiplied respectively by 4 and B, to

satisfy the remaining equations, the resulting finite
solution satisfies exactly the system

X — v = TE(x) 4 7oTHx), (1) = 1,
nA (n — 1)B
T 4 To — T4 (56)

and is identical with the corresponding result for the
Lanczos polynomial method.
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Table 4
¥ a‘,“’ a',' ) r ‘,0’ a‘,1>
0 58 128 0 ~3—25 —8
1 44 32 1 —5 —32
2 2 —48 2 —4 12
3 —4 16 3 1 0
4 1 0

We find the results of Table 4, with n = 4.
Satisfaction of the two remaining equations gives
A = 32/2907, B = —36/2907, and

1

R - * * *
1= 29O./.(l243T0 = 158877 +~ 208T%

— 164T% - 32T%)
== 0-4276T§ - 0-5463TF -+ 0-07167T%

— 0-0564T% - 0-01107%. (57

We see from (56) that 7, = 32/2907, 7, = — 27/2907.
as before, and the error analysis is also identical in all
respects with the polynomial method of Section 8.

21. The analysis of the previous result (53) is more
complicated, but we can see that the expression for the
derivative, obtained from Table 3 and the multiplying
factors, cannot be exactly the derivative of (53). It is
. L 1 .
in fact the derivative of y -+ 2687‘;“; we have effectively
started at n = 5, with an extra term, and our solution
satisfies exactly the system

1 d .
263,( CT)CTS‘
(1) =1. (58)
The maximum error is now estimated less conveniently.

22. If we carry out the 7-process with an extra term,
properly as in Section 20, we find

y = 0-4277T% + 0-5465T% + 0-0713T%
— 0-0554T% + 0-0077T% + 0-0021T*%,

5 I
+ —B) THL - BT —

Xy — = (A 3 T3

(59)

which gives rise to a term 0-01617T% - 0-0026T¢ on
the right-hand side of the differential equation, and has
a somewhat smaller maximum error than the approxi-
mation (53).

23. For second-order equations the possible choice in
starting the Clenshaw process can be settled in a similar
manner, and generally with advantage, by borrowing
the idea of the 7-method. For the example of Section 11,
for instance, we assume the expansions

R 0 ! 0 | 0 )
v =1aPTy + aOT, + a?T, + . ..
.1' — a(ll)Tl ",L agl)T:; + c ..

V' =1aPTy + aPT, + ... >

(60)

and produce for solution the equations
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| 0 0 _
1ay) — 24 — a =0
a? — 540 — a® = 0

Q) 440 __ 40 40
a, 4@ — af?, —d”, =0, r-

(61)
2.3,...

together with the integrating equations

} (©2)

and the remaining boundary condition

r0) = 1a® — a0 —a® — .= 1.

(2)
a,

(I () I, Y (1)
a,), — a' — 2rd}

— 42 L gD
P 2)61,

(63)

Inspection reveals an overdeterminacy in the first of
(61) and, with the boundary condition still to be satisfied,
two trial solutions and a linear combination thereof are
necessary. Clenshaw (1957) starts the first solution with
a® — 1, @ =0 and all higher coefficients assumed
negligible. For the second he states that the obvious
a® — 0, a{y = 1 gives a result too similar to the first.
making their combination uncertain through ill-con-
ditioning, and therefore takes a{3 = 1, a{? = 10. His
final result (corrected here for an unnecessary rounding
error in his determination of the equations for the
constants) is

1 — 1:75338750T, - 0-850391587, — 0- 105208687,
1-0-00872210T + 0-00054344 T
+ 0000027127, — 0-000001187,,.

with a maximum error at x = 1 of about 2-3

(64)
-~ 10 7.

24. The 7-method would have no starting problem.
For a polynomial of degree 2n we would truncate (60)
after 7,,, T5,_, and T,,_, respectively. the last three
equations of the set (61) would be
a(?.%l) -2 7 40(2(2,)__2 - a(2(1)1)74 - a(z(l)l) =0

(coefficient of T,, »)

0 0
— 4dy) — af) , = 7, { (65)
(coefficient of T,,) '
- a(l(l)z) = T2 3

(coefficient of T, )

and we have added 7,T,, = 7,7,,., to the right-hand
side of the differential equation. With n = 5 we find
the Chebyshev rearrangement of the result (28) of the
polynomial method, and with n = 6 we find

v = 1-75338727T, + 0-85039147T, - 0- 105208677,
4+ 0-008722107, -+ 0-00054344 T

-+ 0-000027047 ", -+~ 0-000001247,,  (66)
with 7= — 3:2 x 10 3, 7,= — 1-2 x 10°¢, and the
coefficients correctly rounded to eight decimals. The

error at x = 1 is 6-0 > 10~7, confirming incidentally
the estimate (33) which gives exactly this result.

25. Clenshaw’s result (64) is somewhat more accurate
than (66), but when we examine his process more closely
we find that it is effectively equivalent to adding an

¥202 Iudy 61 U0 1senb Aq €L0ZE /8L E/P/v/e101 e/ |ulWwoo/woo dno-ojwapeoe//:sdiy woli papeojumoq



Chebyshev Methods

extra term. Indeed, a term in T4 in the function is
necessary to make it possible for the second derivative
to have a term in T,,. We find that Clenshaw has
effectively added to the right-hand side of the differential
equation the terms

B
~%4(5T16 — 384T, -+ 5T,) 4+ AT4.
with B=3-1 > 10-° A= —2-0 > 1076, (67)
5
has satisfied the boundary condition »(0) = 1 + §84B'
5
and gave v — =BT 4(x) as the solution, 1 being a

364
polynomial of degree fourteen.

The inclusion of the extra term with the 7 process
involves a perturbation of amount 7474 + 7,76 On
the right of the differential equation, and we find
To==— 13 107°% 7,== — 0-4 x 107, and a result

1= 1-753387666 T, + 0-850391659T -~ 0- 1052086947,
00087221057, - 0-000543438 T -+ 0-000027114 T4
- 0-000001126T,, -+ 0-000000044 T ,, (68)

the estimate (33) of maximum error giving the value
—1-8 ~ 10 8. This method of including the extra
term. in fact, gives a full extra correct figure.

The device of Section 13, of course, could be used
also in the -application of Clenshaw’s method to reduce
the error still further.

The Integrated Equations

26. The 7-method, with either process, ensures that
the differential equation is satisfied within small and
known amounts. FError analysis of the kinds indicated
in Sections 7 and 12 may then sometimes give the error
in the approximate solution. This error may involve
several T terms, as for example in (31), through the
single or double integration of the T terms in the per-
turbed differential equation. The inclusion of an
arbitrary constant, also as in (31), may be a further
substantial factor whose elimination, as in (36), involves
extra work.

We may therefore get better results by applying the 7
process to integrated forms of the original differential
equation, so that boundary conditions are already
satisfied and the minimum number of 7T terms is neces-
sary in the perturbation.

27. Lanczos has already effectively observed this fact
but. instead of integrating the original equation, sug-
gested the incorporation of terms like (d/dx)T(x) as per-
turbation of the original. This seems unnecessary and
unduly complicated, involving the coefficients of the
Chebyshev polynomials of the second kind, and it would
appear, in fact, that the integration can always be
performed. Clenshaw also sometimes carries out an
integration, but in a disguised way which, as we shall
see, needs care to give best results.
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The Lanczos Integration

28. We consider first the problem presented by
equation (1), and integrate the equation to produce

21 = x)y — f_w/x =2, (69)
0

the constant on the right being adjusted to satisfy the
initial condition 1(0) = 1. The assumption (2) then
gives the equations

c=1,2....
I R n (70)

The coefficients on the left are multiples of those of the
set (3) coming from the original differential equation.
but for the non-trivial solution of (70) we now add the
term 777, ;(x) to the right of (69), since the last of (70)
refers to the coefficient of x7 !, We can find all the
coefficients in terms of =, and its value then comes from
the satisfaction of the first of (70), perturbed by 7C{” .
so that our approximation does not satisfy exactly the
correct boundary condition.

With n = 4 we find 7 = 126/725339 = 17-4 > 10 7,
and the solution

v =0-999913 — 0-495614x -~ 0-336968x"
— 0-183528x3 -+~ 0-049411x*. 1

The errors, considerably smaller than those of the
previous method given in (16), are as follows:

x 00 01 02 03 04 05
105z -9 -8 —1 —+ +5 0

06 07 08 09 10
-5 =5 0 4 —4 (72

We note the expected increase in the number of changes
of sign. and the fact that the error satisfies the equation
.

21 - x)z — J‘:d.\' — — 7T¥(x), (73)

0

with a value of —7/2==9 > 10 5 at x = In fact

the error is almost exactly TT%(x) every-

1

where. 2l =)

29. Similar methods can be applied to second-order
equations, and it seems a permanent feature of the
polynomial method that the resulting equations for the
coefficients are the same apart from constant factors.
For the example of equation (24), with the assumption
(25), a single integration gives

. 2J'(1 = 2x)rdy == 0, (74)
0
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and, if the second term in (74) is called g(x). a second
integration gives

y— J‘.g(x)(/.\‘ =1, (75)
0
and the boundary conditions are satisfied.
The equations for the coefficients become
ag =1 "
a, —ay — 0
1

azp — 2’(27’.“’1’)(202, 2T 402/‘ 4) 0

r=2.3...n (76)

1
- (:277¥‘727)(2171 tili)(zalu T 4”2;1 2) =0

1
@n — dy2n — ytam 0
which may be compared with (26) for the original
equation. By inserting terms on the right we can find
all the coefficients without satisfying the first two of (76).
so that two 7-terms are needed. and they must include a
coefficient of x2' 4, represented by the last of (76).

The choice depends on our requirements. If we
must satisfy exactly the condition 10) =1 we take
x (7,75, 2+ 74T5,), which we note will tend to mini-
mize the error in the neighbourhood of the origin.
Otherwise we take 7,7,, , -~ 7575, 5, and accept an
error of 74, — 7, at the origin, with the probability of a
more uniform error distribution. (The same choice.
incidentally, existed in the previous example, and we
took the second alternative.)

30. The first choice gives a result

¥ =1+ 0:9999999x2 -+ 0-4997978x* L 0-1682347x
-+ 0-0374490x% + 0-0127904x10, (77)

with 79 ==4-4 « 10 ¢, 7,=1:4 % 10" 7, and a maxi-
mum error of 10 > 10 ® at x = 1. This is about half

the maximum error of the previous result (28).

The second choice gives

= 0-9999989 +- 1-0000773x2 -~ 0-499]135x*
-+ 0-1703526x° + 0-0348576x8
=+ 0-0138807x!0,

with 7, = —4 1078, 7,—~ —1-1 ~ 10 ¢, and a
very small error, distributed even more favourably than
that obtained by the special device of Section 13. The
errors are as follows, in units of the seventh decimal,
showing that this process has produced a solution with
a whole figure better than that of (28) and at least half a
figure better than that of 37):

X 00 01 02 03 04

107z 11 +4 9 _9 .3
06 07 08
~2 1 2

(78)

0-5
11
0-9
8

1-0

12, (79)
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The Clenshaw Integration

31. The same integration processes can of course be
used to produce directly the coefficients of a finite
Chebyshev series, and there are several points of interest.
First, the choice of perturbing terms involving only the
T, or T% polynomials is more convenient than terms
involving powers of x. Second, the equations for the
coefficients coming from the integrated equations are
usually more complicated than those from the original.
For example. the coefficient of T',(x) on the left of (75) is

(r—Dal®, — 2(r - 2)al® 5

B
4t — 1)

2028+ DA™ — 2(r — 2)al?

— (r— Da® .

(80)

which should be compared for complexity with the
third of (61).

32. The extra complexity may be negligible. however.
if the equation has a special form. and in this case a
single integration corresponds to a device used by
Clenshaw for removing coefficients of the highest
derivative. In Clenshaw (1957) he examines the
differential system

X171 4= 16xy = 0, 1(0) —

1,1(0) — 0. (81)

and obtains, for coefficients of expansions in T poly-
nomials, the equations

(a2 L 42) oath (0)
2((1,-4 1 a, l) T ar 8(0, -

= a® )= 0. (82)

He then observes, by changing r to r - 2 in (82), sub-
tracting the two equations and using integrating relations
like

() () L Y1) o
a’, —ar | = 2ra ) s =2,

(83)

that the coefficients of type a'? disappear, and he finds
the equation

(r = (@, +ab) + 8@, —a”,) - 0. (84)

Now this disappearance must be equivalent to an
integration, and inspection shows that (84) will also be
obtained by integrating (81) in the form

Ry
Xy —+ J 16x1 = constant, (85)
0
and using known Chebyshev expressions for products
and integrals. The constant in (85) should be zero in
virtue of the initial conditions, giving Clenshaw’s
equation (84).

A very important point, however, which becomes
obvious only when we use the 7-method, is that we do
not solve (85) exactly with our finite approximation, but
include perturbing terms on the right. The choice of
the ‘“‘constant” should depend on this fact. and the
correct choice will increase significantly the accuracy of
our approximation.

33. To see this we analyse closely the result given by
Clenshaw, computed here to extra figures. Only one
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recurrence is needed, and he starts at r = 10 with a{) = 1,
a{) =0, and higher coefficients assumed negligible.
Alternate use of (84) and (83) (with s = 1) produces all
the coefficients, and a single multiplying factor is used
to satisfy the condition 3(0) = 1. We find the solution
1= 0-0501358T, — 0-6652551T, — 0-2489761T,

— 0-0332397T, -+ 0-002301975 — 0-00009217 4, (86)

and this satisfies exactly the equation
Xy - Jpl6x_r = 7T 5(x), (87)
0

with = — 8/10860-5 == 0-00074.

We want, however, to have a zero on the right of (87),
at least at x = 0, so that we do better to satisfy exactly
the equation

Xy + J 16xv = 7(T)5 +— Tio)- (88)
0
This is quite easy to do. involving no change in technique,
and we find the result
v =0-0501271T, — 0-6652266T, -~ 0-2489857T,
— 0-0332534T, -~ 0-0023115T5 — 0-0000956T,, (89)

with 7 = —- 4/125461 == — 0-000032. The errors of
Clenshaw’s result (86) and the improved solution (89).
denoted respectively by I and 11, are as follows:

x 0-0 01 02 03 04 05

10°=(1) 0 —10 —33 —52 —54 —40
100z11) 0 —3 —9 —9 —3 4

06 07 08 09 10

~23 11 =1 =16 +23

S5 1 —1 5 1. (90)

34. We can, of course, integrate again, but the
Clenshaw process is now less attractive than that of
Lanczos. With the polynomial assumption

V= Gy - a>X? -+ agx*t - apx® + agx® -+ a,0x'%  (91)

the result (85) of a single integration has the factor
x2 on the left-hand side so that, if we want to solve
the singly integrated equation, we might put the
factor 7x2T,o(x) on the right-hand side, or perhaps
(T2 + Tho)-

If we defer the perturbation to the second integrated
equation we first write (85) in the form

AN j\‘JOl6.\_1 dx = v —+— g(x) = 0, (92)
then integrate again to find
s j o(x)dx = 1. (93)
0
the boundary condition 3(0) = 1 being then satisfied.

We might satisfy (93) exactly at the origin, with the
polynomial approximation, by adding 7x°T,, to its

327

right-hand side, or preferably we add 77, and tolerate
an error at the origin. The resulting equations are then

dy — 1 - T I
a, + ag — — 727
as -+ a, = 8407
ag - %a, — — 3584t r (94)
ag — +ag — -— 69127
ayo + isag — — 61447
sayg — 20487

and again it is interesting to note that these equations.
as well as those coming from the first integration, are
constant multiples of those obtained from the original
differential equation. The solutio 1, with

7 = — 1/363397 == — 0-0000028, is

v 0-9999972 — 3-9997909x% - 3-9974793x*
— 1-7667950x6 — 0-4226782x® — 0-0507214x'0, (95)

and its error distribution is as follows:

x 00 01 02 03 04 05
106z +3 +1 —2 -2 =1 =3

0-6 07 08 09 10
—3.

-1 -3 0 —2 (96)

35. The corresponding solution of the original
differential equation (81), written in the perturbed form
1
}'” - ’\j}'l “L‘ 161 = TT|0(.\'). (97)
N
=1 — 3-9996304x> - 3-9950109.x*
— 1-7591352x% -~ 0-4139142x8 — 0-0473045x'%, (98)

with 7 = — 32/21647 == — 0-0015, and its error distri-
bution is as follows:

x 00 01 02 03 04 05
106z 0 -3 -8 =5 =10 +26

06 07 08 09 10
+29 17 =2 —1 =5 (99

Inspection of the errors of (99). (90) and (96) shows a
significant increase in accuracy with each integration.
Moreover, because the Chebyshev perturbation terms
are of successively increasing order, the error changes
sign more often, and quantities like [g(x)dx, in the
equation for the error corresponding to (93), are likely
to be very small. The error of v in the approxima-
tion (95). for example, is in fact almost identical with
the perturbing term 77, and this approximation is
therefore very close to the best possible polynomial
solution of degree ten.

Alternative Elimination of a{

36. The polynomial method solves only for the
coefficients in the finite approximation to the required
function whereas, without integration, the Chebyshev

¥202 Iudy 61 U0 1senb Aq €L0ZE /8L E/P/v/e101 e/ |ulWwoo/woo dno-ojwapeoe//:sdiy woli papeojumoq



Chebyshev Methods

method finds the coefficients also in the relevant deri-
vatives. The latter is unnecessary if we extend the
relations between ¥ and ¢!, and find a set of algebraic
equations for the &' which can be solved by Gauss
climination. An increase in the order of the approxi-
mation merely adds extra rows and columns to the
matrix of coefficients, and the extra calculation is there-
fore reduced to a minimum. ‘‘Overdetermination” is
manifest in a more obvious way, and we ensure that the
redundant equations are those involving the 7 coefficients,
so that the latter can be omitted, if desired, or calculated
directly.

37. The relevant relations, for the 7T polynomials.
come from the integrating relations extended to the
point where, in the finite approximation, successive

terms vanish. We have
a a, -+ 2(r + Nal®,
= all A+ 2r 4 3)al® s 2(r = Da® . ..., (100)
so that ultimately
ald = 20(r + 1al%, — (r — 3)a®, ~ ...}, (101)

as far as a vanishing term. For the coefficients of the
second derivative we find similarly the formula

a® 40+ D+ 2)al?, 4 8(r = 2)(r + 4)a?,
= 12(r = 3)(r + 6)a¥¢ - . . .,

(102)

and the series terminates.

In the problem of Section 23, for example. we can
express the equations (61) in terms of the a® coeffi-
cients only, incorporate the boundary condition (63).
and produce the following simultaneous equations, of
which the first represents the boundary condition:

:
I [ 1 —1...=1"
-2 3 32 108 256 500...=0
—1 —4 47 192 480 960...=0
—1 —4 119 384 840...=0 - (103)
—1 —4 233 640...=0
-1 —4  359...=0
-1 —4...=0
—1...=0

Here. in any finite set drawn from (103), we have two
more equations than unknowns, the last two equations
referring to the coefficients of T5,(x) and T,,. 5(x). We
can clearly omit these equations from the set, and use
them to determine the “r-error” of our approximation.
For example, from the first six of the equations given
explicitly in (103) we can calculate all the a'”, and the
perturbing terms are just —(ay” -+ 4a\9)Ty, — a7,

The solution, of course, is identical with that of our
standard 7-method, and is the Chebyshev rearrangement
of the polynomial (28). with —(a{ - 449) and —a'{}
being identical with 7, and 7, respectively, of that
solution.

For solutions of larger or smaller order we merely
add or subtract rows and columns from the matrix in
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(103), omitting the last two equations in all cases, and
the omitted equations will determine the error. The
Gauss elimination process clearly facilitates the com-
putation, and this method is probably the easiest, of
those described in this paper, for automatic programming
and computing.

Additional Comment on Clenshaw’s Paper

38. In discussing the number of trial solutions, that
is the number of = terms needed for the solution of the
algebraic equations, Clenshaw relates this to the number
of convergent Chebyshev solutions of the differential
equation. For example he states that ‘“‘if the solution
sought is the only solution of the differential equation
with a convergent Chebyshev expansion, then a single
trial solution obtained by recurrence will yield this
required result when multiplied by a constant factor, . . ..
normally given by the satisfaction of a boundary con-
dition.”

Presumably he has in mind the homogeneous case.
but even here we cannot equate the number of trial
solutions to the number of complementary solutions of
the differential equation. The number expected by this
consideration is likely to be increased according to the
occurrence of various powers of x. For example, the
system

X3 — =0, (1) = 1. (104)

solved in Sections 8 and 18, has only the solution
y=-e'"" ' and yet two 7-terms are needed for the
recurrence solution of the algebraic equations.

39. The system

X2y =0,10) I, —l<x<1 (105)

has only the single solution 1 — ¢ **", and this needs
as many as three 7-terms. This fact becomes quite
obvious when we apply the method of Section 37, which
gives for the coefficients the equations

a(OO) ag)lb ag) a(ﬂh 02)4) L.
| 0 —1 0 I -1
1 1 1 3 0 0
0 3 4 1 8 -0 .
1 0 1 6 % 0 - (106)
1 0 i 8 —0 -
i 0 ! =0
1 0 =0
1 —0

Here truncation to a finite set leaves the last three
equations unsatisfied, so that three =-terms are involved.
Successive solutions of low order, with the perturbing
terms included, are as follows:

J' — TO’ %T() T ZILT.’.
v Ty —4Ty: — 26Ty + 4T, — T, (107)
= 515(61 7—‘O - 32T1 il 6T2)

6T, — %5 T3 -+ 10Ty
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40. The integrated equations yield similar information.
For example, we can solve (105) in the form

¥ Jr.\'z_l'(/,\‘ =1, (108)
0
and the coefficient of 7,(x) on the left of (108) is
1
a, — g’,(ar |\ 4, 3 — 4. — 4, 3),- (109)
reducing to
Lag + Ja, — ssa; forr=0. (110)
The equations are then
dg a, a, as dy
'é }Sz’ O 4'01({ 0 = 1
+ 1 0 0 —14 -0
0 ;]{ 1 *11({ 0 =0 ‘
i 0 r" I —+% =0 7 (111)
JI_ 0 AJJZ‘ 1 — 0
3 5 = 0
3% 0 . = 0
'51(; e e T 0

)

and again the last three of any finite set are unnecessary
except for determining the error. Stopping at a,, for
example, we find the solution

vy =1-024Ty — 0-256T, - 0-0327>,. (112)
which satisfies exactly the equation
L, 1 1 13
AN J‘O.\'_\([.\ = 1 - Tﬁ)TS — ﬁST4 - i‘jOT3. (113)

and again it is worth remarking that the error of (112)
differs, throughout the range, only very slightly from the
perturbing terms in (113), even for such a low-order
approximation.

The number of 7-terms needed is clearly connected
with the manner in which the matrix of coefficients
departs from a strict upper triangular form, and depends
on the power of x in the various coefficients of the
differential equation.

Boundary-Value Problems

41. So far all our examples, of second-order equations,
have involved one-point boundary conditions. The
treatment of boundary-value problems is very similar.
though the integrated forms have a slight extra compli-
cation. To illustrate the technique we use the simple
system

oy =x (114)
with various boundary conditions, and seek a polynomial
approximation of degree four.

42. First we take the conditions

2(0) = — 1, (1) =2 (115)
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substitute our approximation in (114), and determine
equations for the coefficients a,, given by

a,+ @ +2)r+ Da,.,=0 forr=1,=1forr="1,
(116)

We find that the equations can be satisfied exactly. and
non-trivially, if we add the terms 7;7% — 7,7% on the
right of the differential equation, and the parameters 7,
and 7, are determined from the satisfaction of the
boundary-condition equations

and with a5 — a, == 0.

a, — 1
Ay — ay — Ay — ay — Ay :‘2}. (17
Calculation gives the five-decimal result
v =4-96231 — x — 2-49104x2 — 0-39012x7
+0-13861x% (118)
which satisfies the system
¥+ r=x-+0-00108...7%--0-02085... 7% (119)

and has the following errors:

X 0-0 0-2 0-4 0-6 0-8 1-0
105z 332 330 255 126 32 0. (120)

The error in the derivative is. of course. zero at x — 0.
43. With the same differential equation. but with
boundary conditions

1(0) = 4-96563. (1) = 2. (121)

which give the same analytical solution, to five decimals.
as those of (115), the technique and equations are the
same, except that the first of (117) is replaced by
a, = 4-96563. We then find

b =4-96563 — 1-00213x — 2-49271x?
4+ 0-39053x% - 0-13869x4,  (122)

which satisfies exactly equation (119), with almost the
same values of 74 and 73, and has the following errors:

X 0-0 0-2 0-4 0-6 0-8 1-0
103z 0 +47  +32 28 —47 0. (123)

The error in the derivative at x — 0 is now 0-00213.

The Integrated Equations

44. As in the initial-value case we may find better
solutions by integrating the original equation and by
not insisting that either boundary condition is satisfied
exactly.

A first integration of (114) gives

Ry
3= J vdy = Ix? — a. (124)
0
where a is a constant equal to the value of 17(0). and if
the second term in (124) is denoted by g(x) a second
integration gives

v+ J‘yg(,\')d,\‘ = axd - ax -+ b, (125)
0

where the constant b is in fact the value of 1(0).
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Now in the initial-value case both a and b are known
immediately. In the boundary-value case we can deter-
mine them so that, at this stage, the boundary values are

satisfied. For example, with conditions (115) we have
a — — 1in (125). and if we put x = 1 in (125) we find
b+a-—+}t—=2—Gay+ ta, — a,

- 'zlua_; - Slda4 + .. ) (126)

With conditions (121) we know immediately b = 4-96563,
and can now determine a from (126).

But this is clearly unnecessary. We are going to
perturb (125) with 7-terms, and the boundary conditions
will be affected by these amounts. For a polynomial
approximation of degree four we shall need to use 7,7%
and 757%, and the equations for the coefficients relating
to the constant and the term in x can be taken to be the
“new” boundary conditions. With conditions (115),
for example, we use

a = — 1 -+ T(.,Cé” - TSC;”

Ay = ay — Ay — Ay — Ay = 2+ 7¢ + 75|,
while with conditions (121) the first of (127) is replaced
by

(127)

ap — 4-96563 — 7, — 7s. (128)

The other equations come from powers of x from two
to six, and in each case we find the six-decimal result

r o= 4-965566 — 0-996848x — 2-507378x?
-+ 0-398870x3 + 0-139859x%, (129)
with 7,=2-3 - 10 ° 75==6-6 » 10 5, and with the
following errors:

x 00 02
102 +6 1

0-4
=5

0-6
—5

0-3
—1

1-0

—7.  (130)

The error in the derivative at x = 0 is 315 x 10 7, but
the result (129) for the function is again virtually the
best possible, the errors being almost identical with
7sT%.

Note on Clenshaw’s Error Analysis

45. We remarked in the introduction that Clenshaw’s
original process seeks essentially to find the infinite
Chebyshev series, and in fact he uses the recurrence
process in such a way that he can estimate the number
of figures to which his computed coefficients agree with
those of the infinite series. The idea is originally due
to Miller (British Association Mathematical Tables,
1952), who used it to compute the Bessel function /,(x)
for fixed x and integer n from the recurrence relation

2n ‘
Iu l(-\’) o ?[n('\ﬁ) ne [n —I(X)* (131)
and it was applied by Fox (1954) in similar calculations.
Starting with /,, | = 0 and [,, = 1, for some large

value m of n, we recur backwards down to n = 0. The
result is a solution of (131), and we find an appropriate
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multiplying factor by satisfying an extra condition. such
as the known value of /, or the series

eX = [y + 21 =21, +— .... (132)

Miller’s analysis indicates, Fox states, and a private
communication from Dr. F. W. J. Olver shows. that if
we round off each value of the recurrence to the nearest
integer, thereby deliberately keeping systematically
erroneous end figures, then the number of correct signi-
ficant figures, after applying the multiplying factor. is
equal to the number of digits in the original rounded
coefficients, or the number of correct digits in the check
sum, whichever is less.

If this method is applied to the example of Section 15
we can decide that the maximum discrepancy between
the computed coefficients and those of the infinite series
is about 0-00020, giving a possible maximum rounding
error of about 0-0010, and a possible maximum error
in the fourth-order approximation of little more than
this. Olver shows that by a slightly deeper analysis he
can reduce this upper bound to agree quite closely with
the actual error of 0-00023. This analysis has not been
extended to the more complicated case when more than
one trial solution is necessary, and Clenshaw’s paper
gives no guide to estimation when the equations are
solved by other methods, such as iteration or Gauss
elimination.

In any case the 7-method has certain desirable features.
in the possibility of knowing something about the distri-
bution of the error, the fact that it may be of different
order at special points in the range, and in automatic
computation of the kind illustrated in Sections 36 and 37.

Summary and Conclusion

46. We have demonstrated the close relation between
the method of Lanczos, which produces for an approxi-
mate solution the coefficients of a polynomial, and that
of Clenshaw, which produces the coefficients of the
corresponding Chebyshev series, and have noted the
advantages, in improving Clenshaw’s process. of
adapting the ideas of Lanczos involved in a finite
approximation.

Whether we use the Lanczos or Clenshaw process for
the original equation will depend largely on the nature
of the problem. The equations for the coefficients of
the polynomial are usually less complicated. and often
have fewer terms, than those for the Chebyshev series.
On the other hand the magnitude of the polynomial
coefficients is usually greater than those of the Chebyshev
series, for the same precision, and this gives an advantage
to the Clenshaw method when high precision is required
and when many terms are needed, the latter situation
arising particularly when the function does not behave,
at some points of the range, very much like a polynomial.

With the integrated forms, however, the equations
for the Chebyshev coefficients will often be considerably
more complicated, while those for the polynomial are
effectively the same. Moreover, with the polynomial
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approximation we can more easily divide throughout two 7-terms, that the maximum error cannot exceed
by any power of x common to numerator and |7i] -+ |72]. The integrated form is
denominator. x

A tentative conclusion is that the production of the X — J (1 + 2x)r =0, (134)
Chebyshev series should be reserved for those problems . 0
needing many terms and great accuracy, particularly and in orld;r to be able to assess the error we must be
when the error estimation is difficult or impossible. For able to divide (134) by x*.  This means that, unlike the
in the latter case coefficients in the solutions of different process of Section 8, we must satisfy an extra condition,
orders have only small differences in the Chebyshev ¥ == 0, at the origin. Such a constraint may result in a
series compared with those in the polynomial, and the poorer solution and, perhaps more important, we see
variation with order is more easily observed. that to satisfy _

47. For most of the examples of this paper the process N 1 J"\(l = 2x)dx — 0 (135)
of integration has produced a more accurate result. : x2Jor T N

The conditions under which this will apply need investi-
gation, but we may remark tentatively that this is likely
whenever, as a result of integration, the final expression
for 1 in the new equation is multiplied by a function of x
of reasonable size in the range. In particular the method
may not succeed if this function vanishes. most probably
at one end of the range.

For example, in the problem of Section 8, defined by

the perturbation on the right must involve terms T7
and T*_,, whereas that of the original equation has the
“better” perturbation involving 7% and 77, |.

48. Each problem clearly merits some preliminary
mathematical investigation, but the examples of this
paper show that, at least in problems of reasonable size
and complication, both this investigation and the
corresponding error analysis are not prohibitive.

N ¢ = 0, 1(1) = 1, (133) I am grateful for valuable discussion with Mr. C. W.
’ ' ’ Clenshaw, Dr. F. W. J. Olver and Dr. J. C. P. Miller
we know immediately from the perturbed equation, with on much of the material of this paper.
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Book Review

Electronic Digital Computers, by G. D. SMirRNov (Translated mation about current Russian techniques, though the detail
by G. Segal). 1960, original Russian Edition 1958. is insufficient to satisfy the knowledgeable reader. One would
104 pages. (London: Pergamon Press Ltd., 42s. 0d.) like to know, for example, whether “peeping™ is the only

technique used for detection of program errors, and to have
more detail about the magnetic-tape units, which are said to
have a maximum tape speed of 2 metres/sec, and a packing
density of about 300 words/metre.

The book is a photo-litho reproduction of typescript. The
publishers explain that this form of reproduction is used
**...in the interests of speedily making available the infor-
mation contained in the publication”. Although this is an
admirable attitude to adopt for accounts of current research,
the reviewer is doubtful of the need for speedy translation of
general texts such as this. The translation is generally of a

. . . high standard, though there are a few puzzling things, as for
layman, later chapters discuss the design of logical elements example, *. . . magnetic tapes are made of combustible or

using both valve and transistor tec:‘hmques,.whlch_lmp.hes a incombustible film . . .
knowledge of electronics. There is some interesting infor- D. W. BARRON.
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This book attempts to cover the entire field of digital com-
puters—programming, logical design and construction—in
97 pages of text. The treatment is necessarily brief, but is in
many cases ill-balanced: for example, fifteen pages are devoted
to a discussion of systems of numeration and binary arith-
metic, whilst arithmetic units are dealt with in four pages
and input/output is dismissed in two. Sometimes a completely
erroneous impression is conveyed, as in the section on control
units, which is limited to a treatment of diode decoders.

It is not clear what type of reader the book is aimed at,
for although the first chapter appears to be intended for the
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