The Economics of Dumping from Electronic Computers

By D. Kershaw and S. Vajda

We assume that it is known that a job takes a time H
on an automatic computer to complete, provided no
breakdown of the computer occurs. We also assume
that the probability of a breakdown occurring during a
small time interval At is At/A4, so that the probability
of its working for at least ¢ hours without a breakdown
is exp (— t/4). With this assumption, 4 is the average
time interval between breakdowns.

The possibility of a breakdown before the job is
finished, and the resulting loss of time spent on com-
puting, suggests that it might be advisable to arrange for
intermediate results to be punched out (““dumped™) at
some intervals. The length of such intervals will depend
on H, A, the time the punching out takes, and on the
frequency of such intermediate output. It will be
assumed here that the time of punching out is inde-
pendent of the stage of the computation reached, and
will be denoted by K. It will also be assumed that there
is no intermediate input, and that the output of the
final result at the end of the production time takes the
same time K. The unit of time is irrelevant.

The time of the original input of information, and the
possibility of the input equipment breaking down,
will be ignored.

As the probability of a successful run of length of
at least 7 is exp (— #/A), the probability of a breakdown
occurring during the time interval (¢, 1 - dr) is

(H

After a breakdown we start again, and it is possible
that a further breakdown occurs during the same stage.
Denoting the expected total time lost during this stage,
due to any number of breakdowns, by X (), we have the
relation

1
- &Xp (— t/A)dt.

] t
XW =4[ r+ XOlexp (— 7/a)dr, (@)

so that X(t) = A(e'!t — 1) — ¢ 3)

Here A is the average time interval between break-
downs resulting from any cause whatsoever. If the
length of a run is taken to mean the time T during which
the computer works on a problem, together with the
time K for dumping, the expected time taken to complete
the run will be

X(T+ K) 4+ T K= AT 0 — 1] (@)

Now if a job takes a total computing time of H to
complete, we may ask when dumpings should take place
in order to minimize the total expected time taken. The
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following argument shows that dumpings should be
made after equal intervals of computing time.
Let dumpings be made at times ¢,, ,, ..., 1,_,, then
the expected time taken to complete the job is
n
A E [e(fi'*’i——l FK)A 1], ty = O,
i=1

t,— H. (5

Equating the partial derivatives of this expression

wrt. ¢, i=1,..., n—1, to zero gives the set of
equations:

eUi—tici KA . o(ti 1t “K)/A’ =1, n—1
and so L—t o =1t | —
. H
Le. tp = i—.

n
It can be shown that these values make (5) a minimum.
H .
Denoting " by T, the expected time taken to complete
the job is then

H i
AT[e‘T KA 1] = S, say. 6)
It is now necessary to find, for a given 4, H and K,
the time interval T which will minimize this expression
such that H/T is an integer. For convenience we
introduce the non-dimensional notation:

Y = T/A, L = K/A

H
making S = )-,[eYIL — 1] = S(Y). @)
The turning points of .S are given by
ds H
_ — . . Y- L
qy — 0= pal(Y — Dev it 1]
i.e. when l —Y=e YL ®)
d*s 2H H
T = Y__l Y L l TpYHL 9
A G Iy = Der fq a4 Terie ()
:[Z)./g = g e¥"L > 0 at a turning point
and so there is only one solution Y, of (8) giving a mini-
mum value of S = i -HYO’

This value of Y makes the number of intervals n to

be taken equal to g In general this number will not

0
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be integral, and the value of # to take will be the one of

H H .
[A YJ and [A YJ + 1 which makes S smaller ([x]
integral part of x).
done.

Table 1 gives a table of the solutions of (8) for varying
L =K/A,soif A=10, K=1, H= 10, then L = 0-1
and the solution of (8) in this case is Y = 0-3832,
leading ton = 2-6. ..

The number of intervals to take is then either 2 or 3,
depending on which gives the smaller value of S.

An example will show how this is

When n = %{ = 2 and the time interval T = 5 leads

to S = 16-44, computed from (6).

Similarly, when n = 3, it is found that S = 16-27
and so the minimum expected time taken in this case is
obtained when the job is divided into 3 intervals.

Table 1 can be used in this fashion to find the optimum
number of intervals for any job subject to the restriction
that 0-005 << K/4 < 0-2. But for a given machine of
known reliability and for a fixed dumping time it would
be more convenient to have a critical table showing the
range of H where a certain number of dumpings is
optimum.

The critical values of H are those for which S(H, n) =
S(H, n + 1),

where  S(H, n) = An[exp (H/An + K/A) — 1],  (10)

1.e. the expected time taken for a job of length H with n
intervals.

The tables were constructed according to the following
argument.

Put b (H) = S(H,n-+1)— S(H, n) (11

then

H H
b(H) = eK/A(eA(m1> - eA7> < Ofor H>0, (12)

and as $,(0) = A(eXlI4 — 1) >0

<
and  @,[n(n - 1)A] = A[e" 4n +1 —en) — 1] <0

there is a zero of ¢,(H) in (0, ), H, say. Hence for a
job of length H,, the expected time taken is the same for
n and n + 1 intervals. It will now be shown that for
any H in the interval (H, H,) the optimum number of
outputs is a.

The number of intervals to be taken is the one of

[ H } and ': 1:[—i| + 1 which gives the smaller value

AY, AY,
of S(H, n).
AS Hn—l<H<Hn
‘ Hn-‘-l H Hn
then < - <

AY, ~AY, AY,

n n—1

Now Aﬁﬁ) gives rise to n and #n + 1 and ZYO

gives
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Table 1
| —Y=exp(— Y—1L)
L Y
0-005 0-0967
0-010 0-1348
0-015 0-1634
0-020 0-1869
0-025 0-2073
0-030 0-2254
0-035 0-2418
0-040 0-2568
0-045 0-2708
0-050 0-2838
0-055 0-2961
0-060 0-3076
0-065 0-3186
0-070 0-3290
0-075 0-3390
0-080 0-3485
0-085 0-3577
0-090 0-3665
0-095 0-3750
0-100 0-3832
0-105 0-3911
0-110 0-3988
0-115 0-4062
0-120 0-4134
0-125 0-4204
0-130 0-4272
0-135 0-4338
0-140 0-4402
0-145 0-4465
0-150 0-4526
0-155 0-4586
0-160 0-4644
0-165 0-4701
0-170 0-4757
0-175 0-4812
0-180 0-4865
0-185 0-4917
0-190 0-4968
0-195 0-5018
0-200 0-5068

H .
riseton — 1 and n, so — - isone of (n — 1), n, (n + 1).

It has been seen that ¢, (H ) decreases from the positive
value ¢,(0) = A(eX* — 1) in (0, H,), so that in (0, H,)

we have ¢, (H) > 0,ie S(H,n 4 1) > S(H, n). (13)
In the range (H, |, ), ¢,_(H) decreases from the

zero value ¢, (H, ), and so in (H,,. |, )
¢n— I(H) < 09
ie. S(H,n) < S(H,n — 1). (14)
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Table 2a
S(n) = An (exp (H/An + K/A) — 1)
A =10
K = 1-0000
H n S(n) T
1
5-377 8:922 8-922
2
9-361 15-297 18-183
3
13-256 21-577 31-605
4
17-123 27-826 51-244
5
20-977 34-062 80-040
6
24-824 40-291 122-284
7
28-667 46-515 184-270
8
32-507 52-736 275-226
9
36-345 58-956 408-692
10
40-183 65-174 604-532

Table 2b
S(n) = An(exp (H/An 4 K/4) — 1)
A=3
K=0-0167
H n S(n) T
|
0-431 0-483 0-483
2
0-747 0-833 0-870
3
1-057 1-178 1-291
4
1-365 1-520 1-754
5
1-672 1-862 2:266
6
1-978 2:203 2-832
7
2-284 2-543 3-459
8
2.590 2-883 4-152
9
2.895 3-224 4-919
10
3.201 3-564 5-769

The result is then that in (H,_,, H,), the number of
intervals to take is n.

Tables 2a and 2b are critical tables computed for
A =10, K=1, and 4 = 3, K=0-0167 (which may be
interpreted as 4 = 3 hours and K= 1 minute) respectively.

The example can be solved quickly by Table 2a. As
H = 10 lies between 9-361 and 13-256, the number of
intervals is read off as n = 3.

The second and third columns in Tables 2a, 2b
indicate the expected times taken, with and without
dumping, at the critical value of H respectively. If the
time taken for dumping is very small compared with
the average time between breakdowns, e.g. using mag-
netic tape or drum storage, then Table 2b shows, as
would be expected, that dumpings should be made
relatively more frequently.
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