ALP: An Autocode List-Processing Language

By D. C. Cooper and H. Whitfield

This paper describes an addition to the Mercury Autocode language which enables it to deal with

problems requiring list-processing techniques.

The new autocode instructions are described and

an example is given of a recursive routine.

1. Introduction

The purpose of this paper is to describe an addition to
the Mercury Autocode Language so that it may deal
with problems requiring list-processing techniques as
used in such languages as IPL (Newell and Tonge, 1960)
and LISP (McCarthy, 1960; Woodward and Jenkins,
1961). The number of extra Autocode instructions has
been kept to a minimum (11) so that this extension is
very easily learnt and forms an easy introduction to this
technique. The scheme to be described has been imple-
mented on Mercury as an addition to the Autocode, but
at present it operates only on cells in the fast store of
Mercury and there is thus a restriction to a total of about
500 cells. This of course precludes the use of the scheme
in most problems in which it might be useful, but in
later machines, such as Atlas or Orion, this scheme could
form a powerful addition to the Autocode.

The scheme is designed in the form of eleven instruc-
tions added to the existing Autocode Language (Brooker,
1958) so that Autocode instructions may be inter-
mingled with these new symbol-manipulating instruc-
tions. Only a desirable minimum of new instructions is
included, but subroutines to perform more complicated
list manceuvres, such as copying tree structures or
joining lists, may easily be built up from these. As one
of the authors (D. C. C.) has already produced an IPL
interpreter for Mercury it is probable that the language
is biased in this direction rather than in the direction of
other symbol-manipulation languages.

Even with the storage limitations of Mercury, it has
been possible to write a program to perform analytic
differentiation of algebraic expressions written in a
generalized form of the Mercury Autocode Language.
The ALP system has also proved useful in the writing of
a statistical survey program. This involved the pro-
gramming of a simple compiler for which the user defines
in a simple verbal language the information on punched
cards and the questions he wishes to ask.

It is assumed in the following paragraphs that the
reader is familiar with the broad outline of the Mercury
Autocode Language.

2. Cells, Symbols and Links

The storage available in the computer is divided up
into cells which consist of two parts, a symbol and a link
(a cell will usually occupy one word in the computer).

Symbols are the fundamental units which are manipu-
lated by the language. A number of symbols may be
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joined together to form a /ist, and the symbols on these
lists may be manipulated by means of the new instruc-
tions provided. Thus we can find whether a given
symbol is on a list; and then we could delete this symbol
from the list or perhaps add another symbol either before
it or after it. The interpretation of the symbol is left
entirely to the programmer (there is no internal marking
as to whether a symbol is local or regional, as there is
in IPL).

A symbol in ALP consists of a number of fields each
of which is capable of holding the address of any cell.
However, any other desired meaning may be attached to
the symbol. In any particular implementation of the
language there will be a maximum number of fields
allowed. It is not necessary to use all the fields and it is
possible to refer to any one or more of the fields separately.
(The present version of ALP, written to operate in the
fast store of Mercury, allows up to three fields of ten
bits each.)

The link of a cell is the address of the next cell on the
list. If the cell referred to is the last cell on a list its link
is made 0 (zero) to signify this. A link of I is used for
a special purpose (see Section 7).

3. Representation of Symbols

In an ALP program, whenever we wish to refer to a
symbol we write its fields separated by the character /.
If the first field only is being referred to we can write
this alone, and similarly with two fields if they are the
first two, etc.

Thus the following are all allowable forms for referring
to symbols in an ALP program:

1/20/-4
3
A/l/B23
1/*/]
1
*/%/C)
I/R
The meaning of the character in any field is as follows:

(A) An Integer (in Mercury this must be in the range
—512 to 511 or 0 to 1,023 according to the pro-
grammer’s interpretation). The value of this
integer is taken as the relevant field of the symbol.

(B) A main or special variable. The address of the
variable is taken as the relevant field of the symbol.
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(C) Anindex. The contents of the index specified are
taken as the relevant field of the symbol.

(D) An Asterisk. This field is to be ignored in the
instruction.

4. The Instructions

Most of the new instructions refer, either directly by
name or indirectly by referring to an index containing
the name, to a cell which is usually regarded as the head
cell of a list; they also refer either to a symbol specified
in any of the forms of Section 3, or to a set of one, two,
or more indices specified as in Section 3 where only
forms (C) and (D) would be allowed. The former would
be used in those instructions which write a symbol into
a cell, and the latter in those instructions which read a
symbol out of a cell. We see, therefore, that all manipula-
tion of symbols is done via the indices.

In the definitions of the instructions which follow we
use the following conventions:

cell stands for the name of the cell operated on. It
is specified by writing in the instruction.

(1) A main or special variable.
This is the actual cell to be operated on.

(i1) An index.

The content of the index is taken as the address
of the cell to be operated on.

Examples A B44 C(1 -3)J T

stands for the symbol to be written into some
specified cell and may be specified in any of the
forms of Section 3.

Examples A/B/20 1/3/J 1/*/K A 1 J/L/M

symbol

indices stands for the one, two or more indices into
which the relevant fields of the symbol of the
specified cell are to be written.
Examples 1/]JJK */J T/Q */*/R

index  stands for any index into which the name of a
cell to be found will be written.

label stands for any label number of the current

chapter.

The actual instructions are:
TO LIST (cell, symbol)

The symbol in the specified cell is replaced by the given
symbol. If any field of the given symbol is undefined
the corresponding field of the cell is unaltered.

FROM LIST (cell, indices)

The relevant fields of the symbol of the specified cell
are transferred to the indices named.

PUSHDOWN (cell, symbol)

The given symbol is placed in the specified cell, the
symbol originally in that cell being transferred to a new
cell which is inserted on the list after the specified cell.
Effectively all cells on the list whose head cell is the
specified cell are moved one down the list, and the given
symbol added at the top of the list. The required new
cell is taken from a separate list formed of all available
spare cells and referred to as the Available Space List.

ALP
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Table 1
The Effect of the List-Processing Instructions,

TO LIST, FROM LIST, PUSHDOWN, POP UP,
INSERT AFTER

LIST —  INSTRUCTION LIST
BEFORE | AFTER
S, TO LIST (cell, S Only alters those
S, symbol) | S,  fields of the cell
S; S; | which are defined
in S
S,  FROM LIST S, S, is transferred
S, ' (cell, indices) S, to the indices
S3 . S3; | named

S, | PUSHDOWN S  Undefined fields

S, (cell, symbol) | S, of S will be left
S, 'S,  containing junk
S;

S, | POP UP (cell, ‘ S, S, is transferred

S, | indices) S, to the indices

Sy named

S, . INSERT S, Undefined fields

S. | AFTER (cell, | S | of S will be left

S; | symbol) .S, | containing junk
S3

POP UP (cell, indices)

The relevant fields of the symbol in the specified cell
are transferred to the indices named; the symbol in the
cell after the specified cell is then transferred to the
specified cell, and its link altered to jump over this next
cell, which is then returned to the Available Space List.
Effectively the symbol in the specified cell is read out,
and then all the remaining cells on the list whose head
cell is the specified cell are moved up one.

For the effect if the specified cell is already the last
cell of a list, see Section 7.

INSERT AFTER (cell, symbol)

A new cell is obtained from the Available Space List,
its symbol is set equal to the given symbol, and it is then
inserted on the list after the given cell.

The effect of these five instructions is summarized in
Table 1 where S refers to the symbol named in the
instruction and where, before the instruction is obeyed,
S, is the symbol in the specified cell and S, S; . . . the
symbols in succeeding cells.

FIND (cell, index, label, symbol)

The list beginning with the specified cell is searched to
see if it contains the specified symbol (any fields absent
in the symbol are ignored in the test). If such a cell is
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found the name of this cell (or of the first such cell if
more than one exists) is left in the specified index, and
control passes to the next instruction. If no such cell
exists the name of the last cell on the list is left in the
index, and control is transferred to the specified label.

LINK (cell, index, label)

If the specified cell is not the last cell of a list the name
of the next cell is placed in the index, and control passes
to the next instruction. If it is the last cell of a list the
name of that cell is placed in the index, and control is
transferred to the specified label.

SETLINK (cell, cell)

The link of the first cell is set equal to the name of the
second cell, i.e. if the first cell is the last cell of a list
and the second cell the first cell of another list, then
these two lists are joined to form one list.

NEWCELL (Index)
A new cell is removed from the Available Space List,
and its name left in the index.

ERASE (cell)

All the cells of the list headed by the specified cell are
returned to the Available Space List. Care should be
taken if the head cell is referred to by its actual name,
e.g. W since the head cell itself is also returned and may
not then be used again in the program.

ADDSPACE («, B)

« and B may each be any Autocode main or special
variable. This instruction is used to add cells to the
Auvailable Space List, which starts initially with no cells.
All the cells, counting forwards from « to B, are added
to the Available Space List. Thus if we wish to use the
main variables 40 to 4479 in a list-processing program,
we would have the instruction ADDSPACE (40, 4479)
together with the directive A—479. (By making use of
the fact that, in Mercury, the primed special variables
immediately follow the main variables, we could also
include those in our Available Space List by means of
the instruction ADDSPACE (40, Z').)

When a list-processing instruction calls for a new cell
and the Available Space List is exhausted, we get fault
40 (e.g. in Mercury a jump to label 100 of the current
chapter, if that exists, or a loop stop with, in either case,
SAC containing 40).

The address of the first cell on the Available Space
List is kept in a special register (in Mercury in half-
register 46).

This is the directive which must be placed at the head
of all chapters containing any of these list-processing
instructions. It causes all the necessary closed sub-
routines to be inserted at the end of the chapter.

In Mercury all the above instructions, except ADD-
SPACE, are compiled into a cue of from 2 to 9 machine
orders. For the ADDSPACE instruction a cue of
6 machine orders, to bring the required subroutine to
page 15, is inserted in the program. The closed sub-
routines inserted into the chapter by the ALP directive
consist of 154 machine orders.
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5. Simple Examples

Two simple examples may make the actual form of
these instructions clearer.

(A) Delete from the list named in I all cells which
have the integer 1 as the second field of their symbol:
leave a count in J of how many such cells there were.

J=20

22) FIND (/, I, 21, */1)
POP UP (/)
J=J+1
JUMP 22

21)

(B) Interchange the symbol in cell W with the symbol

in the last cell of list W.
LINK (W, I, 10)
8) LINK (/, 1, 9)
JUMP 8
9) FROM LIST (/, R/S/T)
FROM LIST (W, O/P/Q)
TO LIST (1, O/P/Q)
TO LIST (W, R/S|T)
10)
6. Example of a Recursive Routine

Copy the tree structure whose head cell is named in /:
leave the name of the head cell of the copy in J.

By a tree structure we mean a list whose members are
either pure symbols (to be copied as they stand) or are
the names of sublists which are to be copied and the
name of the copy to be inserted on the copied list. Each
sublist may in its turn contain the names of sublists, and
so on, but it is important that the name of no sublist
occurs more than once.

This is a simple example of a recursive routine, i.e. we
shall write a routine to copy a list and, if on this list we
encounter the name of a sublist, we shall call in the main
routine as a subroutine of itself. In order that this
process should work, we must take care of two things.
First the “return address” for the routine must be
preserved before we call in the main routine; and since
the main routine being used as a subroutine may again
call in itself, this preservation of the return address must
be in a list of return addresses which we may call a
pushdown list. Secondly, any contents of indices, such
as the address of the current cell being copied, which
have to be preserved over the routine when it is called
in as a subroutine, must also be preserved in a pushdown
list. Both these objects are easily achieved with the
PUSHDOWN instruction.

We use Z as the head cell of the list of return addresses,
i.e. the standard entry to the routine, assuming its first
instruction is labelled 1 is

T) = return label number
PUSHDOWN (Z,T)
JUMP 1

and the standard exit from the routine will be
POP UP (Z.T)
JUMP (T)
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There is one more point to be settled. In the first
paragraph above we mentioned the two different kinds
of symbols on the lists. There is no such distinction built
into ALP (as there is in such languages as IPL): all
interpretations of the symbol are left to the programmer.
For the purpose of this example we therefore adopt the
convention that if the third field of a symbol is —1,
then this symbol is the name of a sublist, the address of
the head cell of the sublist being in the second field of
the symbol.

The actual program is as follows, where we assume
that it was entered by the standard entry sequence above.

1) NEWCELL (/) Obtain a new cell for head of
copy.

S=J S'is used to move down the copy.
6) FROM LIST
(1, PIQ/R)
JUMP 7, R = —1
PUSHDOWN Symbol is name of sublist. Save
(Y, 1lJ/R) the indices /J R and S in 2 cells

PUSHDOWN (Y, S) of pushdown list Y.

I1=20 Set 7 = name of sublist.
T) =2 k
PUSHDOWN (Z, T) - Copy sublist.
JUMP |
2) POP UP (Y, S) Recover name of copy of last
cell.
INSERT AFTER In copy place name of copy of
(S, */J—1) sublist.
POP UP (Y, I/J/R) Recover I, J and R.
JUMP 3
7) INSERT AFTER Not name of sublist.
(S, P/O/R)

3) LINK (S, S. 4)
4) LINK (1. 1. 5)
JUMP 6

Move S on to last cell copied.
Move one down original list.
If list not finished go to test and
copy next cell;
5) POP UP (Z,7) otherwise exit.

JUMP (T)

Two further points about this routine should be noted.
First, although it makes use of cells Y and Z, these cells
are not normally destroyed by the routine. Secondly,
it might be thought that an extra blank cell would be
at the head of every copied list, since we first generate a
blank cell by NEWCELL (/) and the first symbol of the
list is inserted after it. However, this is not so; a special
marker is put into any cell generated by the NEWCELL
instruction, and the INSERT AFTER instruction will
then act on this special marked cell as if the instruction
were TO LIST. This point will be made clearer in the
next section.

7. Private Termination Cells

The ALP language as described in the previous sections
is a simple language to learn and to use. However, there
is one more complicated feature which must be brought
in to deal with certain situations which, in fact, have
already been mentioned briefly (see definition of POP
UP and also the end of this section).
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Consider examples (A) and (B) of Section 6. In these
examples the POP UP instruction was used to delete
the symbol in a known cell of a list. This is satisfactory
unless the cell happens to be the last cell of a list. In this
case what is to happen? What should happen is that
the previous cell is marked with a zero in its link as the
last cell on the list, and then the deleted cell can be
returned to che Available Space List. However, this is
impossible, as the POP UP instruction does not know
the name of the cell linking into the specified cell.

The solution adopted is similar to that of IPL. The
cell is not returned to the Available Space List; instead
a special marker of 1 is placed in its link. This marker,
in effect, signals the fact that this cell does not really
exist, and that the previous cell is really the last cell of
the list. If, at some future instruction. this private
termination cell (to be denoted by ptc) can be returned
to the Available Space List and the previous cell marked
as a terminating cell, this is done. For example, this
operation may arise when a LINK instruction is applied
to the true last cell of the list, so that the name of the ptc
should occur as output. This is not done; instead the
ptc is returned to the Available Space List, the link of
the previous cell is set to zero, and the LINK instruction
signals that we have reached the last cell on the list.

It should be emphasized that all this is automatic and,
in fact, in normal circumstances, there is no need to
worry at all about this “non-existent cell”; the list-
processing routines will deal correctly with it. However,
it may be important to know exactly how each of the
instructions deals with a ptc, and so a list of these
properties follows.

TO LIST (cell, symbol)

If the cell is a ptc the action taken is exactly as normal
but, in addition, the link of 1 is changed to 0 so that the
cell is no longer a ptc but is marked as the last cell of
the list.

FROM LIST (cell, indices)

It will normally be an error if the cell is a ptc. How-
ever, if it is, junk will be left in the indices specified.
(On Mercury the B test register is also set > 0.)

PUSHDOWN (cell, symbol)

If the specified cell is a ptc then the symbol is simply
placed in the cell, and the ptc marker of 1 in the link
changed to the terminating mark zero; i.e. the instruction
acts exactly as if it were a TO LIST instruction in this
case.

POP UP (cell, indices)

If the specified cell is the last cell of a list (i.e. link is
zero) then, after transferring its symbol to the specified
indices, it is changed to a ptc by putting 1 as its link.
If the specified cell is already a ptc (normally this would
indicate an error) then junk will be left in the indices.
(On Mercury the B test register is also set > 0.)

INSERT AFTER (cell, symbol)

If the specified cell is a ptc then the symbol is simply
placed in the cell, and the ptc marker of 1 in the link is
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changed to a zero; i.e. the instruction acts exactly as if it
were a TO LIST instruction in this case.

LINK (cell, index, label)

If the cell after the specified cell is a ptc then it is
returned to the Available Space List, the link of the
specified cell is set to zero, and the LINK instruction
then behaves in the normal manner, assuming the
specified cell is the last cell of a list. If the specified cell
is a ptc (normally this would indicate some error) then
the name of the cell is left in the index, and the jump

occurs. (On Mercury the B test register is set > 0.)
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Book Review

Solutions Numériques des Equations Algébriques, by E. Durand.

(Paris : Masson et Cie, 1960, pp. 328, 65 N.F.)
Although the title of this book would lead one to believe that
it is concerned exclusively with algebraic equations, it is in
fact devoted to the solution of single equations in one variable
and both algebraic and transcendental equations are treated.
As far as algebraic equations are concerned, 1t is generally
assumed that the relevant polynomials are given explicitly;
the algebraic eigenproblem, in which the polynomial is
expressed in determinantal form, is to be covered in a second
volume.

Chapter 1 deals with expansions in power series, the
inversion of power series, expansions in continued fractions
and similar topics. The methods described here are not
likely to be very widely used in practice. Chapter 2 gives a
general survey of iterative methods with special reference to
first, sscond and third order processes. The problem of
multiple roots is treated in some detail. Chapter 3 is devoted
to transcendental equations and discusses the use of iterative
methods, particularly that of Newton, and inverse inter-
polation using the Bessel, Everett and Stirling formulae.

Chapters 4, 5, and 6 are of a more theoretical nature.
Chapter 4 discusses the division of polynomials by linear
and quadratic factors, the calculation of derivatives, the
calculation of the greatest common division and the deter-
mination of a polynomial of degree n passing through # points.
Chapter 5 is concerned mainly with transformations of poly-
nomial equations and also includes a discussion of the varia-
tion of the roots with respect to changes in the coefficient, a
most important consideration. Examples which have been
used by the reviewer are given as illustrations. Chapter 6
covers the localization of roots by the rule of Descartes and
by Sturm sequences. It also includes a most welcome
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elementary exposition of the Routh and Hurwitz stability
criteria.

The book concludes with chapters covering the methods
which are most commonly used in practice, those of Aitken—
Bernoulli, Graeffe and the most useful of the iterative
methods. The latter include the methods of Lin, Newton,
Bairstow, Laguerre and Muller; the last of these is rather
surprisingly classed as being of third order. The numerical
examples presented in connection with the iterative methods
are the most difficult of those given in the book. In a brief
assessment of the various methods, the author declares himself
in favour of the iterative methods when an automatic com-
puter is available, and with this opinion I agree.

This is probably the most comprehensive book which is
available on polynomial equations. I have for long taken
the view that in spite of the important position occupizd by
the Fundamental Theorem of Algebra in mathematics, the
practical problem of finding the zeros of polynomials is not
very profound. The book therefore loses very little in
presenting the subject-matter throughout in the most
elementary terms possible, though some readers may like to
supplement the material given here with some such work as
Ostrowski’s Solution of Equations and Systems of Equations.

Since the most important problem arising in practice is
that of the condition of polynomials, I would have welcomed
a discussion of the relevance of this to the accuracy attainable
with the various methods. This is particularly true of
deflation which is used in connection with most of the
iterative processes. Another omission is the Quotient-
Difference algorithms of Rutishauser, an assessment of
which would have been very valuable. However, these are
minor criticisms of a book which I am sure will prove popular
with numerical analysts. J. H. WILKINSON.
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