Adaptation of the Jacobi Method for a Computer with

Magnetic-tape Backing Store

By B. A. Chartres

The Jacobi method for diagonalizing symmetric matrices requires, in its usual form, that the
matrix be held in a random-access store. Two variations of the method are described which make
it suitable for matrices held on a serial-access store, such as a magnetic tape. Techniques are
described for applying these methods to computers with from one to six magnetic-tape units.

1. Introduction

The Jacobi (Goldstine, Murray and von Neumann,
1959 Gregory, 1953; Householder, 1953; Pope and
Tompkins. 1957; Henrici, 1958; Forsythe and Henrici,
1960) and Givens (Givens, 1957; Wilkinson, 1958)
methods can well be described as the two most popular
methods for the computation, on automatic digital com-
puters. of the eigenvalues and eigenvectors of real sym-
metric matrices. The Jacobi iterative reduction to dia-
gonal form. and the reduction to tri-diagonal form which
forms the first stage of the Givens process, both involve
the application to the symmetric matrix of orthogonal
similarity transformations. Each individual transforma-
tion involves a re-calculation of all elements in two of
the rows and the two corresponding columns of the
matrix. This requires that the matrix be stored in a
store which allows immediate access to the affected
elements.

If the immediate-access working store of the computer
is not large enough to hold the whole matrix, then it is
necessary to store the matrix on a backing store, such
as a magnetic tape, and to bring into the working store
only that part of the matrix which is to be operated upon
at any one time. The problem of obtaining access to the
required rows and columns of the matrix then becomes
very acute—there appears to be no way of arranging
the matrix on a magnetic tape which will yield quick
access to the elements in the sequence required for the
conventional Jacobi and Givens methods.

Rollett and Wilkinson (1961) and Johansen (1961)
have developed techniques for applying the Givens
reduction to matrices stored row-by-row on magnetic
tape. In both these techniques all the operations
required to produce a complete column of zeros are
performed during a single scan of the matrix, the order
in which the individual operations are performed being
determined by the sequence in which the matrix elements
become available.

This paper describes an alternative solution applicable
to both the Jacobi and Givens methods. This is the
application of the very simple idea of replacing the
“two-sided™ similarity transformation* B = XAXT by
the “one-sided” operation B = XA4. Hence, instead of
operating on both the rows and columns of the matrix

* The superfix T indicates the transpose of a matrix.

51

A we operate on its rows only. This enables the cal-
culation to be organized in such a way that the elements
of A are operated upon in a systematic row-by-row order.

Two methods of applying the one-sided transformation
are proposed. The first method involves a 379, increase
in computation over the regular Jacobi method, while
the second is 37 9; shorter. When applied to the Givens
process the second method requires nearly twice as many
arithmetic operations as the usual procedure, while the
first method is twice as long again, whereas the tech-
niques of Rollett, Wilkinson and Johansen do not
involve any increase at all. Only the application to the
Jacobi method will therefore be described here.*

The technique described here was developed for the
computer SILLIAC which, at the time of writing, has a
1,024-word immediate-access store and a single magnetic-
tape unit which allows the tape to be read and written
while moving in either direction. Methods of applying
the technique to computers with from one to six tape
units that can read and write in the forward direction
only are also described in this paper.

2. Modifying the Jacobi Method

In the Jacobi method the symmetric matrix A4 is con-
verted to a diagonal matrix D by the transformation

WAWT = D (1
where W is the limit, as r goes to infinity, of the product
W, =VV, _,...V,V (2)

of simple orthogonal matrices V,. Thus D is the limit
of a sequence

Al* Az,A3. “ e
where A = A
A, = V,AVT (3)

Each ¥, is identical to the unit matrix except in the four
elements

v, == Vg, = €OS 0, (4)

Vyp = — Upg == Sin 0.

* A full description of the application of the technique described
in this paper to the Givens method is available in Technical Report
No. 8 of the Basser Computing Department, University of Sydney,
Sydney; ‘““Adaptation of the Jacobi and Givens methods for a
Computer with Magnetic-tape Backing Store.”

$202 YoJel\ g uo 3senb Aq 91.GGEE/ 1L G/L/G/eI01ME/|Ulod/ w00 dno-olwepeoe//:sdiy woij papeojumoq

Jacobi Method

Hence the transformation defined in equation (3) has the
effect of replacing both the pth and gth rows of 4, by
linear combinations of the two rows, and similarly for
the pth and gth columns. The pair (p, q) is chosen for
each r either in a purely cyclic manner, or in a cyclic
manner modified according to the relative magnitude of
the off-diagonal elements of A4, (see Henrici, 1958). The
angle 0, is chosen in each case in such a way that the
sequence of matrices A, A,, A;, ... converges to a
diagonal matrix. Normally 6, is chosen so that the
(p. q) element of A, is reduced to zero, this being the
choice which gives a maximum reduction in the sum of
squares of the off-diagonal elements.

For our purpose it is important to note that the multi-
plication of 4, on the left by ¥, has the effect of modi-
fying only the elements in the pth and gth rows of 4,,
while the multiplication on the right by ¥7T modifies
only the elements in the pth and gth columns; it is this
necessity to modify elements according to both row and
column arrangement that makes it necessary in the
standard Jacobi method to have effectively random access
to the elements of A,.

We express equation (1) in the form

W4 = DW (1)
preserving equations (2) and (4). The modified form (1)
suggests the modification to equation (3)

Ar'%l h Vl‘Ar (3/)
If we denote the ith row of A4, by a'/) we have the trans-
formation relations

roly
al;

(5)

) " gi
a) cos 0 — a sin 0 }
D gMsin 6 4 a

al — ay)sin 0 + a’ cos 0

with relations of identical form connecting the rows of
W.and W, .

Of course, the sequence of matrices 4,, r = 1, 2, . . .,
no longer converges to a diagonal matrix. Rather it
converges to a matrix which can be expressed in the
form DW where D is diagonal and W is orthogonal,
ji.e. to a matrix whose rows form a non-normalized
orthogonal set. We must, therefore, now choose the
angles 6, such that the sequence 4, converges to a matrix
with orthogonal rows. There are two ways of doing
this:; one yields exactly the same set of angles 0, as does
the Jacobi method when applied to the same matrix,
the other yields the set of angles that would be used if
the Jacobi method were applied to the matrix 42.

Method I

We compute the sequence of matrix pairs (4,, W),
r=1,2,..., defined by

A, |~ VA,
Wr -1 VrWr (6)
with 4, = A, W, = I. This calculation is performed by

constructing the combined matrix (4, /) and performing
the operations on it.

52

Then, at every value of r. the product
AWI = W AWT (7)

is a symmetric matrix similar to 4. Consequently. if
we choose the angles 6, exactly as in the Jacobi process.
we are carrying out what is essentially the same trans-
formations on A, except that we are keeping the trans-
formed A in a factored form.

Now the calculation of 6, involves the (p.p). (4. q)
and (p. q) elements of W, AWT. In the regular Jacobi
method these are immediately available. but in our
modified method they must be computed as scalar pro-
ducts of the pth and gth rows of 4, and W, . This does
not affect the problem of obtaining access to the matrix
elements, for the rows whose scalar products are required
are the very rows upon which we are about to operate.

The process terminates when A4, W I is a diagonal matrix
D, i.e. when the rows of 4, and W, form a bi-orthogonal
set. As W, is orthogonal, this implies that 4, — DWW,
i.e. each row of A, is a scalar multiple of the corre-
sponding row of W,. This requirement can be used as a
check on the accuracy of the computation. The eigen-
vectors of 4 are the rows of W, while the eigenvalues
are the elements of D. Hence each row of A4, is an
eigenvector scaled by its corresponding eigenvalue.

In the conventional Jacobi method each transforma-
tion A, — A, , involves two multiplications for each
modified element, hence 4n multiplications altogether
(4n elements are modified, but they are equal in pairs).
If the eigenvectors are to be calculated as well as the
eigenvalues, an additional 4n multiplications are required
to calculate the modified elements of the matrix W..

In our method each transformation involves two rows,
each containing 2n elements, hence 81 multiplications
are required. In addition, we must form three scalar
products of rows of n elements, involving another 3n
multiplications. The number of operations is therefore
379, greater than in the regular method when the eigen-
vectors are required. In Method I, unlike the standard
Jacobi method, no reduction in number of operations
is possible when the eigenvectors are not wanted.

Method 11

This method is based on the equations

A, ,=V,A,

B AAT)
hence B, ,— VBV 9)
We compute the sequence 4,.r = 1,2, with 4, — 4,

and choose the angles 6, in such a way that B, converges
to a diagonal matrix. The technique is therefore essen-
tially the diagonalization of the matrix B — 42 by the
normal Jacobi method. using the very same rotations
that would be used for this purpose by the commonly
used method, but carrying out all the calculations on
the matrix A.

The procedure for performing the rth step is to form
from A, the elements b,,. b, and b, of B, This

$202 YoJel\ g uo 3senb Aq 91.GGEE/ 1L G/L/G/eI01ME/|Ulod/ w00 dno-olwepeoe//:sdiy woij papeojumoq

Jacobi Method

involves forming the norm* (sum of squares of elements)
of the pth and gth rows of A4,, and the scalar product
between the pth and qth rows, a total of 3n multiplica-
tions. From these numbers we compute the angle 6, in
the normal way. then replace the pth and gth rows of
A, by their appropriate linear combinations according
to eqn. (5). so obtaining A, ,; this latter operation
involving 41 multiplications.

The reduction is terminated when all pairs of rows of
A, are mutually orthogonal, i.e. when A4 is of the form
DW. The orthogonal matrix W that appears here is
identical to the product of the matrices V, that have
been used to bring A to this form—this is a consequence
of the symmetry of 4. It is because it uses this fact,
and thereby eliminates the need to compute W separately,
that Method 11 is simpler than Method I. It should be
noted that. although the elementary matrices V, are
different. the matrix W is the same in the two methods,
for the eigenvectors of 42 are identical to those of A.
We now have the eigenvectors as the (suitably nor-
malized) rows of W, and the eigenvalues as the square
roots of the norms of these rows.

We have estimated the number of operations required
for each transformation as 7n, but the 3n which are
used to calculate the angle 8, can be reduced to n by the
simple expedient of recording the norm of each row as
an additional item along with the row. Whenever we
operate on two rows with eqn. (5) we then also
re-calculate their norms from the formulaet :

rp pp P4 qq

buu—l) _ h(r) . b(r) bu‘ 1)

bl = b\ cos? 8 — 2b4) cos 6 sin 6 -~ b)) sin> 6
} (10)
qq rp qq rp °
As the repeated use of this formula can result in a
gradual accumulation of error in the row norms, especi-
ally in those which are becoming the smaller eigen-
values of the matrix B, and as the rate of convergence
can be drastically reduced by errors in the computation
of the angles 6,. it is wise to recompute the norm of
each row from the elements of the row after, say, every
sweep through the matrix. In any case. it should be
possible to carry out this re-calculation sufficiently
infrequently for us to estimate the number of operations
per step as Sn in place of 7n. This is to be compared
with the 8n required by the usual Jacobi method when
the eigenvectors are required. or 4n when they are not.
On the grounds of speed alone Method Il is therefore
to be preferred to Method 1. However, Method 11 has
three weaknesses not shared by Method 1. The first is
that, in yielding the eigenvalues as scaling factors associ-
ated with the eigenvectors, it yields only their magni-
tudes and not their signs. (In essence, they are obtained
as the square roots of the eigenvalues of A42%) This
difficulty can be met by augmenting the matrix 4 with
a column of the unit matrix. In Method I we used the

* This is not a true “"norm’ according to the rigorous definition
of the word. The term is used here for convenience, no more
suitable word being available.

* Equations (10) are immediate consequences of equations (5)
and the definition of by, byq, and bp,.

53

complete unit matrix, obtaining (WA, W) from (A, I).
and then determined the eigenvalues from the ratio of
corresponding elements in WA and W. Obviously, it is
not necessary for this purpose to compute the whole
matrix W. If we augment A4 with the first column alone
of the unit matrix we will obtain the first column of W
and, except for any rows of W which may have a zero
element in this column, can then determine the sign of
the eigenvalue associated with each row.

A second weakness of Method II lies in the fact that
all eigenvectors are obtained scaled by their corre-
sponding eigenvalues. Consequently the eigenvector
associated with a zero eigenvalue is not obtained at all,
while eigenvectors associated with very small eigenvalues
are obtained very inaccurately. This difficulty, if antici-
pated, can be avoided by adding a suitable multiple of
the unit matrix to 4 so as to shift all eigenvalues away
from the origin.

The third* source of difficulty with Method 11 is, like
the first, also due to the squaring of the eigenvalues. If
the matrix 4 has two eigenvalues of equal magnitude
but opposite sign these become, on squaring, a multiple
eigenvalue of 42, The corresponding eigenvectors, as
calculated, are then unlikely to be eigenvectors of A,
but will lie in the space spanned by the corresponding
two eigenvectors of 4. This trouble also can be avoided.
if foreseen, by a shift of origin.

3. Applications to Non-symmetric and Rectangular
Matrices

As neither of our two methods, when considered purely
as an algorithm, is explicitly dependent upon the sym-
metry of the matrix A—in fact thcy both destroy this
symmetry in the first transformation—Ilet us consider
what their effect is when applied to non-symmetric
matrices. Of course, we will not obtain the eigenvalues
of a non-symmetric matrix in this way, but it is of
interest to see what we will obtain.

Let us, very briefly, analyse the two methods again in
terms of a non-symmetric A4.

Method I

We choose W so that rows of WA are orthogonal to
rows of W. When operating on rows p and ¢ we can
choose #, so that either row p of WA is orthogonal to
row g of W, or row g of WA is orthogonal to row p of
W. If A is symmetric it makes no difference which
choice we make—if one pair is orthogonal the other
will be too—but this is not so in the case of a non-
symmetric matrix. In terms of the product WAWT, we
make only one of the two off-diagonal elements (p. ¢)
and (g, p) zero. By choosing, say, always that element
which is below the diagonal, we are striving to make
WAWT a triangular matrix.

Method | therefore provides us with a technique for
triangulating non-symmetric matrices by the methods
studied by Greenstadt (1955), Lotkin (1956), Causey

* T am indebted to the referee for pointing out this fact.

$202 YoJel\ g uo 3senb Aq 91.GGEE/ 1L G/L/G/eI01ME/|Ulod/ w00 dno-olwepeoe//:sdiy woij papeojumoq

Jacobi Method

(1958) and Dimsdale (1958), using a serial-access store.
Of course, it is also necessary to use unitary trans-
formations in place of the orthogonal ones we have
been speaking of. If the difficulties at present being
experienced in ensuring the convergence of these methods
are overcome, this application of our method may
become of importance.

Method I1-

As we are essentially diagonalizing the matrix B = 447
which is always symmetric, the method will converge
for non-symmetric matrices and will yield the singular
values* of A (i.e. the square roots of the eigenvalues of
B). We will have performed the transformation

WA = DX

where now the orthogonal matrix X is not identical to W.
The rows of W are the eigenvectors of 447, while the
rows of X are the eigenvectors of 47A.

Method 11, unlike Method 1, can also be applied to a
rectangular matrix 4. As in the case of a non-sym-
metric square matrix, it yields the eigenvalues and vectors
of the symmetric matrices 474 and A47. The technique
may therefore have a useful application in factor analysis,
operating directly on the scores instead of the correlation
matrix, and also in the analysis of under- and over-
determined systems of linear equations.

4. A Variation in the Sequencing of Transformations

The sequence in which the off-diagonal elements a,,
are selected for elimination in the Jacobi method is
normally either that of their magnitude or in the fixed
sequence:

(poq) = (1,2), (1. 3). (1,).
(2,3),(2,4),....(2,n),
3,4),...
...(n—1,n).

In this ““cyclic” (see Henrici, 1958) method every sub-
diagonal element is chosen once in an iterationf of
n(n — 1)/2 transformations.

In our modification of the Jacobi method we can use
precisely the same sequencing, but now p and g represent
the two rows of the matrix upon which we perform the
transformation. However, as we shall see in the next
section, this particular cyclic arrangement cannot be
efficiently programmed for use in computers which have
only a small number of tape units, unless the tapes can

* Householder (1958) uses the term “‘singular values” for the
positive square roots of the eigenvalues of 447, while Forsythe and
Henrici (1960) call them the “principal values.”” The largest
singular value is the “‘spectral norm.”

+ We shall use the term iteration to indicate a complete cycling
through all off-diagonal elements of the matrix. The term sweep
will mean a process in which the entire matrix is transferred from
one magnetic tape to another. One iteration generally consists of
1 sweeps.

54

be read and written while moving in both the forward
and backward directions.

An alternative sequencing, which can be more effi-
ciently programmed, consists of choosing the pairs of
rows in the order

gq=p—+lLp+2....on1.2....p—1
forp=12,...n

ie.

(p.q) = (1,2), (1, 3), ... (1l.im — 1). (1. n.
(2.3),(2,4),....(2,n), (2, 1).
(3,4),(3.5).....(3, 1), (3.2).
(n,1),(n,2),....(n,n—2). (n.n—1).

In one iteration we perform n(n — 1) transformations,

and every pair of rows is operated upon twice. We shall
therefore call this method the double-iteration method
and the conventional cyclic arrangement the single-
iteration method.

The double-iteration method may appear at first
acquaintance to be somewhat inefficient in that the
operations performed upon any given pair of rows do
not occur at equally spaced intervals, but it is not so.
Consider, for example, the first and second rows. The
pair (1, 2) is operated upon in the first and again in the
(2n — 2)th transformation (see first and second rows of
the table above). This suggests that the second trans-
formation upon this pair, appearing so soon after the
first, is, in a sense, a wasted operation. However, a
count of the operations performed upon each row shows
that, between the appearance of the pair (1, 2) and the
pair (2, 1) in the table, both rows 1 and 2 are ortho-
gonalized once with respect to each of the other n — 2
rows of the matrix. Similarly, between (2, 1) and (1. 2).
although a much larger total number of operations is
performed, again both rows 1 and 2 are orthogonalized
once with respect to each of the other n — 2 rows.
Hence, although the orthogonalizations of the pair (1, 2)
do not occur at equally spaced intervals of time, they do
occur at precisely those times at which they will be most
effective. It can easily be seen that the very same
reasoning applies also to all other pairs of rows.

Techniques for applying both the single and double-
iteration schemes are outlined in the following section.

5. Sequencing the Magnetic-tape Operations

Let us first indicate the sequence of operations for
carrying out the double-iteration scheme. To provide
a specific example we will consider a matrix of order
seven. (We choose a small matrix, for which the method
would be inefficient, in order to simplify the exposition.)
We start with the matrix recorded row by row on a
single tape, which we call the input tape. We shall

$202 YoJel\ g uo 3senb Aq 91.GGEE/ 1L G/L/G/eI01ME/|Ulod/ w00 dno-olwepeoe//:sdiy woij papeojumoq

Jacobi Method

assume that each row forms a single block, or a whole
number of blocks, on the tape. This enables us to speak
of *“reading a row” and ‘“‘writing a row” as single
operations.

The first six row operations involve the row pairs (1, 2),
(1,3), (1,4), (1,5), (1,6), (1,7). Hence we read row I,
then read each of the other rows in turn, perform the
operation, and write it on the output tape. After com-
pleting this sweep we write row | on the output tape.
Thus the first sweep has transferred the matrix from one
tape to another with a cyclic permutation of its rows
from the sequence 1, 2, 3,4,5,6,7,t02,3,4,5,6,7, 1.

If we now rewind both tapes and repeat exactly the
same procedure, but with the roles of the two tapes
reversed, we will perform operations on the row pairs
(2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (2, 1) and will leave the
rows in the sequence 3, 4, 5, 6, 7, 1, 2. Obviously seven
such sweeps constitute one complete double-iteration, as
defined earlier, and also restore the rows to their original
sequence.

If the computer has two tape units we would use them
in the manner described above. If the computer has
only a single tape unit we can simulate two tapes on the
one by using alternate blocks for input and output.
We start with the rows of the matrix recorded on
alternate blocks as follows:

1-2-3-4-5-6-7

where the hyphens indicate spaces* left for recording the
output of the first sweep.

On the first sweep down the tape row 1 is held in the
store while the other rows are read, operated upon,
then written in the following block. While operating
on row 7 we rewind the tape which now has the format

. 2-3-4-5-6-

The new row 7 is then recorded in the first block, row 1
in the third, then row 2 is read from the fourth block
and held in the store while rows 3, 4, 5 and 6 are read,
operated upon, and recorded. The arithmetic unit must
now wait while the tape, which has the following format,
is being rewound:

7-1---3-4-5-6

Rows 7 and | are then each read, operated upon, and
recorded in the following block. Then row 2 is recorded
in the sixth block, and so on. It can be seen that some
computation is done during alternate rewind operations.
If the entire process is followed through it will be seen
that eight and one half sweeps of the tape are required
to perform a complete double-iteration, and that the
tape will be left in the form

4-5-6-71-2-3

* On most computers it is not possible to leave such gaps on
the tape, but the same result can be obtained by recording blocks
of the appropriate number of words. If the design of the magnetic-
tape system is such that the recording of a block may corrupt the
neighbouring block it may be necessary to have short **protector™
blocks recorded between those which carry the matrix rows.

55

with the reading head lying between rows 7 and 1 ready
to start another iteration. The number of rewind opera-
tions therefore differs by a negligible amount from the
number required when two tape units are available, but,
of course, each rewind extends over twice the length of
tape. We therefore deduce that in a computer that does
not allow of autonomous tape operations (apart from
rewind) a single tape unit is less efficient than a pair
only in that approximately twice as much time is spent
in rewind operations.

If the computer has four tape units we can eliminate
completely the wastage of time in rewind operations by
storing only one half of the rows of the matrix on each
tape. Let us refer to the four tapes as 4, B, C and D,
and let us start with rows 1, 2, 3, 4 on tape 4 and 5. 6
and 7 on B. In the first sweep we transfer rows 2. 3.4, 5
to tape C and rows 6, 7, 1 to D. Then, for example, in
the first sweep, as soon as row 4 has been read. rewinding
of tape A4 is commenced and the input is switched to B.
At the end of the first sweep, when tape B starts rewind-
ing, tape 4 should be fully rewound and ready to act
as an output tape. Similar reasoning applies to tapes
C and D.

The amount of computation involved in each row
operation is of the order of five arithmetic operation
times* per element, and, for the performance of each
row operation, we must read one row from tape and
write one on tape. Thus, for each step, we perform on
each element of the matrix five arithmetic operations
and two tape transfers. If the two tape transfers take
very much less time than the five arithmetic operations,
then the computation is “‘computer bound” and any
questions of making optimum use of the tapes are
irrelevant. In this case either one, two or four tape units
used in the manner described above would be approxi-
mately equally efficient, and the program will be quite
simple. Conversely, if the computation is “‘tape bound,”
then our technique is hardly suitable at all unless the
computer has a large number of tapes and can operate
at least one half of them simultaneously. We shall not
discuss the details of such a situation.

The most interesting situation is that in which the
arithmetic operations and the tape transfers take approxi-
mately equal times. Maximum efficiency can then be
achieved only if tape transfers can be carried out simul-
taneously with arithmetic computation. If one tape
transfer takes the same or less time than 2-5 operation
times, then the two operations of reading a row and
writing a row can be performed consecutively during
one row operation. If a single tape transfer takes
longer than 2-5 operation times then, for maximum
efficiency, we shall want to carry out two tape operations,
one writing and the other reading, simultaneously with
each other and with an arithmetic computation.

The sequencing of operations when either one or two
tape operations can be carried out autonomously is the

* We define an ‘‘operation time™ as the time for one multi-
plication plus an addition and the associated “book-keeping”
instructions.

$202 YoJel\ g uo 3senb Aq 91.GGEE/ 1L G/L/G/eI01ME/|Ulod/ w00 dno-olwepeoe//:sdiy woij papeojumoq

Jacobi Method
Table 1

Sequencing the Double-iteration Algorithm on Four Magnetic-tape Units

COLUMN
NO. (D ‘ (2) ‘ (3) (4) (5) : (6) (7) (8)
STEP OPERATE INPUT } OUTPUT INPUT OUTPUT | OPERATE | INPUT OUTPUT
NUMBER | ON ROWS ROW } ROW TAPE TAPE ON BLOCKS | BLOCK BLOCK
| — 1 —_ A — — a —
2 — 2 — A — — b —
3 1,2 3 — A - a. b c —
4 1.3 4 2 A C b, c d a
5 1.4 5 3 \ B C e, d a b
6 1.5 6 4 | B C d,a b c
7 1.6 7 5 B C a b c d
8 1.7 2 6 C D b, ¢ d a
9 — 3 7 C D — a b
10 2.3 4 | C D d,.a b c
11 2.4 5 3 C A a. b c d
12 2.5 6 4 D A b, c d a
13 2.6 7 5 D A c.d a b
14 2,7 1 6 D A d a b c
15 2,1 3 7 A B a b c d
16 — 4] A B d a
17 3.4 5 2 A B Cooe,d a b
18 3.5 6 4 A C d a b c
19 3,6 7 5 B C a. b c d
20 3,7 1 6 B C b, c d a
21 3.1 2 7 B C c.d a b
22 3.2 4 1 C D d,a b c
23 — 5 2 C D — c d
24 4.5 6 3 C D b, c d a
25 i 4.6 7 5 C A e, d a b
26 4.7 | 6 D A d, a b c
27 4,1 2 7 D A a, b c d

same and is illustrated in columns 1 to 5 of Table 1.
As there is some overlap between input and output
operations of consecutive sweeps (due to the fact that
rows are read in before they are required and written
after being operated upon) we find in our example that
a tape unit occasionally has to act as an input tape imme-
diately after its use as an output tape, leaving no time
for rewind: for example, tape C between steps 7 and 8
in Table I. However, this effect is due to the small size
of the matrix we have taken as an example. During the
rewinding of an output tape in preparation for its use as
an input tape a total of tn-3 rows are read from (and
written on) other tapes. Hence, with large matrices the
rewind operation needs to be only a few per cent faster
than the reading and writing operations. It can also be
seen from Table 1 that there are exactly three steps in
each sweep (i.e. three steps out of n, where n is the
number of rows in the matrix) in which the two tapes
being operated upon are both members of the same
pair. Thus. in the first sweep, tapes C and D are both
operated upon in steps 8, 9 and 10. In all other steps

56

of each sweep we use one tape of the pair 4 and B.
together with one of the pair C and D. It follows that
a computer, in which the tapes are in two groups such
that only one tape of each group can be used at one
time, is very nearly as efficient for our purposes as one
in which any two tapes can be used simultaneously.

In order to be able to carry out an arithmetic operation
on two rows, read a row and write a row, all simul-
taneously, we need to reserve four blocks of storage in
the working store, each large enough to hold one row
of the matrix. We shall refer to these blocks as a, b, ¢
and d. From the point of view of the efficiency of the
magnetic-tape operations it is unimportant how we
organize the use of the four blocks of data in the main
store, but this organization is important from the point
of view of the simplicity of the program. The organiza-
tion of the program is greatly simplified by arranging
that, whenever two rows are operated upon, their posi-
tions in the store are interchanged. That is, if row 1
is in block a and row 2 is in b, then after operating upon
these two rows we leave the new row 1 in b and the new

$202 YoJel\ g uo 3senb Aq 91.GGEE/ 1L G/L/G/eI01ME/|Ulod/ w00 dno-olwepeoe//:sdiy woij papeojumoq

Jacobi Method

row 2 in a. As the operation consists of replacing each
pair of elements by a pair of linear combinations of the
same two elements. it is just as easy to interchange the
rows in this way as it is to leave them in place.

The last three columns of Table 1 show the way in
which the four storage blocks are used. For example,
in step 3 we have row | in @, row 2 in b and row 3 being
read into c¢. After the operation on rows | and 2 has
been performed. we will have the new row 2 in @ and the
new row | in h. Hence in step 4 we read out row 2
from a and operate on rows | and 3 in b and c.

It can now be seen how very simple the procedure is.
The four blocks a. b, ¢ and d are always used in exactly
that order as both input and output blocks. Hence
the input program must cycle through the four blocks
(see column 7 in Table 1), giving a cycle of length four,
and also through the four tape units with a cycle of
length 2n (see column 4). The output program has an
identical cyclic structure, but is ““out of phase” with the
input program by a fixed amount. The arithmetic
program is also based upon a double cycle. It cycles
through the four pairs (a, b), (b, ¢), (c,d), and (d, a)
with a cycle of length four, but also counts cycles of
length n so as to inhibit every nth operation.* Note
that an inhibited operation step is counted as a normal
step in determining the cycling through the blocks.

There is no break whatsoever in any of these cycles
as we finish one iteration and start another; the only
complications are in starting and stopping the entire
process. The first few steps differ from the others in
that we inhibit the arithmetic procedure in step 1 (it is
automatically inhibited in step 2), and the output pro-
cedure in steps I to 3. However, if we start with tapes
A. C and D rewound and tape B located at the end of the
file (i.e. at the end of the last row of the matrix), we can
then allow the first few steps to be the same as all the
others.

To start. therefore, we rewind tapes C and D, read in
the matrix from the primary input medium (cards,
paper tape. etc.) copying the first half on to tape 4, then
rewinding tape 4 while copying the second half on to
tape B. then start immediately on the first step of our
procedure by setting up the appropriate “*phase” in each
of the programmed cycles.

We must now consider the problem of obtaining access
to the complete matrix after the computation has ter-
minated. The most efficient way of testing for conver-
gence is to keep a running count of the number of
consecutive operations which were unnecessary because
the rows were already orthogonal. This count is set to
zero whenever a non-zero angle 6, is used, and is
increased by unity otherwise. Then when the count
reaches n(n — 1) we know that all pairs of rows are
orthogonal. hence the procedure has terminated. The
program may therefore stop at any point within an

* This cycling of three different programs through a group of
four blocks in the store is a procedure which appears to be very
amenable to the use of an automatic indexing facility of the nature

of the “‘control words™ used in the IBM Stretch (see Blaauw, 1959)
and the “record definition words™ of the IBM 7070 computer.

57

iteration. Then if either 4 or B was the tape last used
as an output tape, we will have on tapes C and D a
complete copy of the matrix with the rows permuted.
but still in cyclic order. Similarly. if either C or D was
last used as output we obtain a complete copy from A
and B.

The ordering of the rows will be important if an
attempt has been made to choose the angles of rotation
so that the eigenvalues are ordered according to magni-
tude.®* In such a case the ordering can be restored if
we keep a record of the total number of sweeps that
have been completed. Each sweep cyclically permutes
the rows by one place.

6. Sequencing Tape Operations for the Single-Iteration
Scheme

The single-iteration scheme operates on row pairs in
the sequence

(1.2), (1, 3), (1, 4),....(l.n)
(2.3),(2.4), ...
.. (m—1.n)

where each line represents a sweep. One iteration is
therefore made up of n sweeps, as in the double-iteration
method, but successive sweeps involve a decreasing
number of rows. After the rth sweep rows 1 to r play
no further role and only the remaining n-r rows remain
active. For efficient use of magnetic tape it is therefore
necessary to arrange that the rows are successively placed
on an “inactive file” which plays no further role in the
current iteration. To simplify starting the next iteration
this inactive file should have the same format as the
original matrix.

In a multi-tape computer the inactive file can be a
separate tape and we can therefore still devise an effi-
cient program. The single-iteration method, however.
appears to be rather inefficient on a one-tape computer
unless the machine has the facility of being able to read
and write while the tape is moving in either direction.
The following method was devised for the SILLIAC.
which has a single tape unit which allows of reading
and writing in both directions, but does not allow of
simultaneous tape transfers and arithmetic operations.

We start with the rows of the matrix recorded on alter-
nate blocks on the tape, thus:

1-2-3-4-5-6-7-

(as before, we are using a seven row matrix as an
example). and we reserve three blocks of storage in
working store. called a, b and ¢. To begin the first
sweep we read row 1 into a, row 2 into b, then operate
on these two rows. Rows 3,4, 5. 6 and 7 are now read.
in turn, into ¢, operated upon with row 1 (which is in a).

* A technique for obtaining the eigenvalues in an ordered
sequence is described in: B. A. Chartres, “*Computing Extreme
Eigenvalues of Real Symmetric Matrices.” Technical Report
No. 9, Basser Computing Department, University of Sydney.

$202 YoJel\ g uo 3senb Aq 91.GGEE/ 1L G/L/G/eI01ME/|Ulod/ w00 dno-olwepeoe//:sdiy woij papeojumoq

Jacobi Method

then written back on to the tape in the succeeding empty chosen pairs of rows is not quite the same as the usual
block position. single-iteration scheme, being:
At the end of the first sweep we still have row 1 in a,
2 in b, and the tape is as follows: (1.2). (1, 3). (1. 4), (1.
2,n), 2, n—1),....(2.5.

SRR (3.4).(3,5),....(3.n.

In the second sweep, which is performed with the tape @, n), ... etc.
moving in the reverse direction, we read each of the T
rows 7, 6, 5, 4, and 3, in turn, into ¢, operate upon it The difference should have no effect on the rate of
with row 2 (which is in b) and write it back on to the convergence.
tape in the position it originally occupied. Then we A count of the number of operations involved shows
write row 2 and row 1 back into their original positions. that there are n(n — 1)/2 row operations performed per
The configuration of the tape is now exactly the same iteration, each operation involving one read and one
as it was originally, and we have completed two sweeps. write operation. In addition there are »/2 additional
The tape is now moved forward again to the beginning read operations, n/2 write operations, 4n blocks on the
of row 3, the count number kept by the program to tape are moved over in wasted motion. and only one
indicate the number of rows which are active is reduced rewind is performed. The method is therefore con-
by two, and exactly the same procedure is repeated over siderably more efficient than the methods described
again. earlier for the double-iteration procedure on one-tape

When the number of active rows has been reduced to and two-tape machines. The increased efficiency is, of
two or three (depending upon whether the original course, due to our using the ability of SILLIAC to
number of rows was even or odd) the procedure is read and write on tapes in both the backward and for-
changed, for now the calculation can be done entirely ward direction, thereby eliminating unnecessary rewind
within the working store. At the end of the iteration operations.
the tape is rewound and a second interation started. It An adaptation of this method to a computer in which
should be noted that the sequence in which we have the tape transfers are autonomous and bi-directional is

Table 2

Sequencing the Single-iteration Algorithm on Six Magnetic-tape Units

o (1 (2) » @ (5) (6) @ ®
STEP OPERATE INPUT OUTPUT i INPUT . OUTPUT “ OPERATE INPUT OUTPUT i
NUMBER ON ROWS ROW ROW ‘ TAPE TAPE ON BLOCKS | BLOCK BLOCK
| — 1 — | E — — a —
2 — 2 — E — — b — ,
3 1,2 3 — E — a b c —
4 1,3 4 2 E A b, c d a
5 1.4 5 3 F A e, d a b
6 1.5 6 4 F A d,a b c
7 1.6 7 5 F B ab ¢ d
8 1,7 2 6 A B b, ¢ d a
9 —_— 3 7 A B — a b
10 2.3 4 1 A E d.a b c
11 2.4 5 3 B C ab | c d
12 2.5 6 4 B C b, c d a
13 2.6 7 5 B C ¢, d a b
14 2,7 3 6 C D d.a b ¢
15 — 4 7 C D c d
16 3.4 5 2 C E b, c d a
17 3.5 6 4 D A c.d a b
18 [3.6 7 5 D A d, a c
19 | 3.7 4 6 A B a.b ¢ d
b0 I — 5 7 A B — d a
21 4,5 6 3 B E e, d a b ‘
|

9)]
oo

$202 YoJel\ g uo 3senb Aq 91.GGEE/ 1L G/L/G/eI01ME/|Ulod/ w00 dno-olwepeoe//:sdiy woij papeojumoq

Jacobi Method

easily deduced. The arithmetic unit can be kept con-
tinuously engaged if the tape transfer rate is sufficiently
fast to enable one block to be read, one written, and one
passed over during one row operation. That is, the
tape transfer rate should be such that three words can
be transferred during five arithmetic operation times. A
full description of this adaptation does not appear to be
warranted.

For computers able to read and write in only the
forward direction, the methods described earlier for the
double-iteration system on two-tape and four-tape
machines can be adapted for the single-iteration scheme
by using an additional tape unit for the “inactive file.”
Table 2 shows the scheme of Table 1 adapted for the
single-iteration procedure on a six-tape computer. The
six tapes have been labelled A, B, C, D, E and F, with
tapes E and F being used for the inactive file, and there-
fore also for the initial input. If only one tape had been
used for the inactive file there would be a delay while
the tape was rewinding between steps 7 and 10, and a
similar delay at the end of the iteration. As this delay
occurs only twice in each iteration, a five-tape machine
would be very little less efficient than the six-tape
computer.

The scheme of Table 2 can be continued until there
are only four active rows left. Then the remainder of
the iteration should be carried out entirely within the
working store. The very same simple cycling of the
input, output and arithmetic programs among the four
storage blocks can be seen in Table 2 as in Table 1.

To summarize the applicability of the schemes we have
described two different computer configurations:

(1) For a computer which can read and write on its
tapes in both directions, a highly efficient procedure
using the single-iteration scheme (slightly modified)
exists which employs only one tape unit. This
procedure is ideal even for a multi-tape computer
with autonomous tape operations.

For a computer in which the tapes will operate only in
the forward direction the following remarks apply,
irrespective of whether the tape operations are auton-
omous or not.

(2) For a one-tape or two-tape computer the double-
iteration scheme is applicable. A rewind over 2n
rows in the first case and » in the second case is
required every sweep.

(3) For three-tape computers we can use the single-
iteration scheme, using one tape for the inactive
file, the other two as in (2) above. The amount of
time wastage in rewinds is the same as in (2).

(4) For four-tape computers the procedure of Table 1,
based on the double-iteration scheme, involves no
time wastage in rewind. This method would be
preferable to method (3), on such a computer.

(5) For five-tape and six-tape computers the single-
iteration scheme of Table 2 can be used, but it
does not appear to have any advantage over
method (4), which would use only four of the tapes.

59

7. Summary of Conclusions

We have proposed two methods of carrying out the
Jacobi diagonalization procedure for symmetric real
matrices. The first method is equivalent to the normal
Jacobi process, differing from it only in that the trans-
formed matrix is held in a factored form. The second
method, which requires less than one half as many
arithmetic operations, is equivalent to the application
of the standard Jacobi process to the square of the
matrix.

The methods are specially adapted for the use of a
magnetic-tape backing store in conjunction with an
immediate-access store which need be only large enough
to hold a few rows of the matrix. Procedures have been
described for a computer with from one to six tape units.
A computer which is able to read and write on its tapes
with the tape moving in either the forward or backward
direction, can be programmed to make very efficient
use of a single tape unit. For computers with mono-
directional tapes, six tape units are required for optimum
efficiency.

Owing to the necessity of organizing access to the
matrix rows in a regular manner, the selection of off-
diagonal elements for elimination must be performed in
a certain pre-determined sequence. The number of tape
units required for most efficient operation can be reduced
from six to four by using a sequence which differs from
the one customarily employed. For the same reason,
by-passing the elimination of elements which are already
much smaller than the average will not save any time.
though it should still be done in order to minimize the
rate of accumulation of rounding errors.

If the transfer of data between the main store and the
tapes can be performed simultaneously with the carrying
out of independent arithmetic operations. then the
computer can be kept continuously supplied with the
data it needs if the effective data transfer rate is as fast
as one word transferred to every 25 arithmetic operation
times. (An ‘“‘arithmetic operation time” is the time for
one multiplication, plus one addition, plus the asso-
ciated book-keeping instructions.) This transfer rate
can be achieved either through a single channel operating
at the stated speed, or through two channels. one
reading from and the other writing on tape. each
operating at one half that speed. Our second method.
which is the faster one, will then be somewhat faster
than the usual Jacobi method.

The second method, when used for the calculation of
both eigenvalues and eigenvectors, is both faster and
uses less total storage space than the regular Jacobi
procedure, and may therefore be preferable to it even
when the entire calculation is performed within the main
working store.

This work was performed in part at the School of
Physics, University of Sydney, and in part in the Division
of Applied Mathematics, Brown University, where it
was supported by a grant from the International Business
Machines Corporation.

$202 YoJel\ g uo 3senb Aq 91.GGEE/ 1L G/L/G/eI01ME/|Ulod/ w00 dno-olwepeoe//:sdiy woij papeojumoq

Jacobi Method

References

BLaauw, G. A. (1959). *Indexing and Control-Word Techniques,” /BM J. Research and Development, Vol. 3, pp. 288-301.

CAUSEY. R. L. (1958). *“Computing Eigenvalues of Non-Hermitian Matrices by Methods of Jacobi Type,” J. Soc. Industr. Appl.
Math., Vol. 6, pp. 172-81.

DiMsDALE. B. (1958). *“The Non-Convergence of a Characteristic Root Method,” J. Soc. Indust. Appl. Math., Vol. 6, pp. 23-5.

ForsyTHE. G. E.. and HeNRrIcI, P. (1960). “The Cyclic Jacobi Method for Computing the Principal Values of a Complex Matrix,™
Trans. Amer. Math. Soc., Vol. 94, pp. 1-23.

Givens., W. (1957). “The Characteristic Value-Vector Problem,” J. Assoc. Comput. Mach., Vol. 4, pp. 298-307.

GoLDSTINE. H. H., MURRAY, F. J., and voN NEUMANN, J. (1959). *The Jacobi Method for Real Symmetric Matrices,” J. Assoc.
Comput. Mach., Vol. 6, pp. 59-96.

GREENSTADT, J. (1955). **A Method for finding Roots of Arbitrary Matrices,” Math. Tab. Wash.,Vol. 9,pp.47-52.

GREGORY, R. T. (1953). **Computing Eigenvalues and Eigenvectors of a Symmetric Matrix on the ILLIAC,” Math. Tab. Wash.,
Vol. 7, pp. 215-20.

Henricr, P. (1958). *On the Speed of Convergence of Cyclic and Quasicyclic Jacobi Methods for Computing Eigenvalues of
Hermitian Matrices,” J. Soc. Indust. Appl. Math., Vol. 6, pp. 144-62.

HOUSEHOLDER, A. S. (1953). Principles of Numerical Analysis. New York: McGraw-Hill Book Co.

HOUSEHOLDER, A. S. (1958). “The Approximate Solution of Matrix Problems,” J. Assoc. Comput. Mach., Vol. 5, pp. 205-43.

JOHANSEN. D. E. (1961). A Modified Givens Method for the Eigenvalue Evaluation of Large Matrices,” J. Assoc. Comput.
Mach., Vol. 8, pp. 331-5.

LoTKIN, M. (1956). ‘*Characteristic Values of Arbitrary Matrices,” Quart. J. Appl. Math., Vol. 14, pp. 267-75.

PorE. D. A.. and Tompkins, C. B. (1957). **Maximizing Functions of Rotations,” J. Assoc. Comput. Mach., Vol. 4, pp. 459-66.

ROLLETT, J. S.. and WILKINSON, J. H. (1961). **An Efficient Scheme for the Co-diagonalization of a Symmetric Matrix by Givens’
Method in a Computer with a Two-level Store,” The Computer Journal, Vol. 4, pp. 177-80.

WILKINSON. J. H. (1958). **On the Calculation of Eigenvectors of Co-diagonal Matrices,” The Computer Journal, Vol. 1,

pp. 90-6.
Book Review
Theory of the Transmission and Processing of Information, the range 0 < x < p and f(x) might differ from the constant
by A. G. VITUsHKIN. Translated from the Russian by y;by less than € in the range i — l;i’l x < ifori = 1,2,....p.
RuTH FEINSTEIN, 1961, 206 pages. (London: Pergamon Then the polynomial could be 2’: w(x).y;. where ugx) — |
Press Limited, 100s.) i1
for i — 1 << x <_i and u;(x) = O elsewhere, so that A =1
This is a fragment of the mathematical theory of approxi- in this case. The numbers p and k& are taken as measuring
mation, following work of A. N. Kolmogorov and others. the “"complexity™ of the table, and the total number of binary
The title “Theory of Transmission and Processing of digits employed in it, i.e. np, is called the “'volume™ of the
Information”™ is misleading, being copied from the first table. Any set of values ». . . ., ¥, each of n binary digits
sentence of the Foreword. This states that the monograph is will define some function ¢(x) when used with a fixed decoding
connected with that theory: but the connection seems rather rule, and »” different such functions are possible, forming
weak. A better title appears at the head of alternate pages a “function space™ ®. If a set F of functions f(x) and a
of the text. viz. "Complexity of Tabulation Problems.”” The number € is given, there will be a certain smallest number N
author asserts that the formal definition of the concept of of functions ¢(x) which form an “e-net” of F, i.e. which
the complexity of a tabulation problem (i.e. the construction contain for any fin F, a representative ¢ serving to approxi-
of tables for functions) is required in the automatization of mate within € to f throughout G. Then log, N is called the
programming. but does not explain why. “e-entropy”” of the set F with respect to @, and it is shown
The monograph is concerned with estimating the ‘“‘com- that this is (within 1 unit) the volume of the smallest possible
plexity” of tables of certain general classes of functions. table for functions fin F.
A “table”™ of a function f(x), defined over a range G of The e-entropy depends on the properties assumed for the
values of x. is understood to mean an ordered set of quantities functions f(x) which comprise F, as well as on the set ® of
¥l Va. ¥, each represented to a finite accuracy of (say) approximating functions. An ““absolute’ e-entropy is defined
n binary digits, together with a “*decoding rule” whereby which is the lower bound of the above entropy with respect
any value of x in the range G is used to enter the table and to all possible sets @. Estimates are obtained for the absolute
yield a value ¢(x). This is to differ from f(x) by at most €, e-entropy for some general subspaces of analytic differentiable
the “accuracy™ of the table, for each x in G. This decoding functions of one or several variables.
rule is in general to be a polynomial in the variables y,, .. ., y,. These results appear to be of limited interest to users of
of degree at most A in each one, but its coefficients may depend digital computers.
in any way upon x. As a very simple example, G might be M. WOODGER.

60

$202 YoJel\ g uo 3senb Aq 91.GGEE/ 1L G/L/G/eI01ME/|Ulod/ w00 dno-olwepeoe//:sdiy woij papeojumoq

