
Conference Proceedings
On 17-18 April 1962 the Northampton College of Advanced Technology,

London, in co-operation with The British Computer Society, held a con-

ference on

Automatic programming languages for
business and science

Complete Proceedings of Sessions 1 and 3 of this conference are published

on the following 33 pages of this issue. It is hoped to publish the Pro-

ceedings of Sessions 2 and 4 in the October issue.

Current developments in commercial automatic programming

By A. d'Agapeyeff

This paper discusses the progress made in certain aspects of commercial automatic programming,
presents a progress report on the major commercial languages, and offers some hopes and
expectations for the future.

Introduction

It is of course quite impossible, in the time available, to
give a complete survey of current developments even
supposing one had the ability to do so. I intend,
therefore, to confine myself to three headings, namely:

(i) progress in certain aspects of commercial auto-
matic programming;

(ii) progress report on the major commercial lan-
guages ;

(iii) a look at the future.

Before continuing it is perhaps necessary to give a
warning that this paper does not consist of a repetition
of the silver-lined platitudes which tend to occur on these
occasions. It will instead attempt to provoke a little
realism, of which there appears to be some need. At the
same time it is not to be taken as in any way a denial
of the importance of automatic programming, or of the
great urgency that exists in attaining its objectives.

Progress in Certain Aspects of Commercial Automatic
Programming

It' is seldom that anyone attempts to consider what
are the different aspects of a commercial automatic pro-
gramming system. Most interest is usually concentrated

on the language as such (e.g. the grammatical rules or
the particular facilities that are currently in fashion).
Thus arguments rage as to whether one should say

c := a + b, or

ADD a TO b GIVING c

although this is not of the slightest real importance to
the compiler, providing that the intended meaning is
known precisely.

Yet a programming language obviously amounts to
more than a few tasteful pieces of notation. We can
perhaps best appreciate this by considering the four
questions that ought to be, but seldom are, asked of any
such system:

(i) What are the properties that units of data may be
given and how, if at all, are these to be declared?

(ii) What are the procedural facilities available?
How are these denoted and how can they be com-
bined into program statements?

(iii) How is communication obtained with the object
program, after it has been compiled, and how is
it to be debugged ?

(iv) Is the compiler available to the user on his own
machine and, if so, how is it operated?

107

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/2/107/340809 by guest on 13 M
arch 2024



Commercial automatic programming
The properties of data

It is, of course, the available properties of the data
which to a large extent determine the power of an auto-
matic programming system, and distinguish commercial
from mathematical languages.

Consider the function of moving data within the
internal store. In a mathematical language the problem
is trivial because the unit which may be moved is very
restricted, often to the contents of a single machine word.
But in a commercial language this limitation is not
acceptable. There, data units will occur in a variety of
shapes and sizes, for example:

(i) Fixed Length Units (i.e. those which on each
occurrence will always be of the same length) may
vary widely in size and will tend not to fit com-
fortably into a given number of words or other
physical unit of the machine. Generally the
move will be performed by a simple loop, but
there are some awkward points such as what to fill
in the destination if the source is the smaller in size;

(ii) Static Variable Length Units (i.e. those whose
length may vary when they are individually
created but will not change subsequently) are
more difficult to handle. Essentially the loop will
have two controlling variables whose value will
be determined at the moment of execution. There
are again awkward points such as the detection
of overflow in the destination (and deciding what
to do when it occurs, since this will only be
discovered at run time);

(iii) Dynamically Variable Length Units (i.e. those
which expand and contract to fit the data placed
in them) are even more difficult. They have all
the problems of (ii), together with the need to
find and allot space when they expand.

It is clear, therefore, that a simple MOVE is less
innocuous than it might seem at first. Actually the
above remarks assumed that it was not possible to move
data between different classes of units. The absence of
this restriction, and the performance of editing functions
during the process, can make the whole thing very
complicated for the compiler indeed.

The properties of data will have a similar influence
on most of the other operators or verbs in the language.
This has particular significance when the desired
attribute is contrary to that pertaining on the actual
machine. Thus arithmetic on decimal numbers having
a fractional part is thoroughly unpleasant on fixed-word
binary machines.

Nevertheless, despite these difficulties considerable
progress has been made toward giving the user the kind
of data properties he requires. Unfortunately this
progress has not been matched by an improvement in
machine design so that few, if any, of the languages have
achieved all of the following.

(a) The arbitrary grouping of different classes of unit,
allowing their occurrence to be optional or for the
repetition in variable-length lists.

(b) The input and output of arbitrary types of records,
or other conglomerations of data units, having
flexible formats, editing conventions and repre-
sentations.

(c) The manipulation of individual characters, with
the number and position of the characters being
determined at run time.

(d) The dynamic renaming or grouping of data units.
Yet users do need these facilities. It is not always

acknowledged that getting the main files on to the
computer, before any processing is done, may constitute
the largest single operation in many applications.
Furthermore, these files will have a separate independent
existence apart from the several programs which refer
to them.

Progress has also been made in declaring the data
properties in such a way as to imply a number of neces-
sary procedures to the compiler. For example, if one
declares both the layout of some record to be printed,
and the printed record, the compiler may deduce the
necessary conversion and editing processes. It is here,
in the area of input and output, that some languages
have approached the aim of being problem-orientated.

Procedures
The procedure division constitutes the language form,

and is dominated by the rules of grammar and the
facilities available. This is the area which has been the
cause for the fable that anyone can now program com-
puters, but it also provides the grounds for refuting this
claim.

At first sight it does appear easy to write down simple
English language statements, and for the management
to follow what has been written. (A friend of mine was
complaining bitterly the other day that his life was a lot
easier when he programmed in machine code,-and the
management could not pretend they knew what was
going on.) The unpleasant truth is, of course, that none
of the major languages are as easy to learn as a really
simple machine code, such as the Elliott 803. They are
all full of rules and exceptions, although once these have
been learnt, programs may be much easier to write and
above all to document. That is in fact the point: one is
still programming, albeit in a more natural way, and
skill is still necessary if anything worth while is to be
achieved.

The worst feature of most procedure divisions is the
lack of adequate facilities to define new functions.
These are necessary to the user because, sooner or later,
he is bound to come across a situation which the
compiler-writers had not envisaged. In these circum-
stances he may well find that either he literally cannot
do what he wants, or he must do it in a most cumbersome
or unnatural way. Here ALGOL is greatly in advance
of any existing commercial language.

Communication with the Object Program
This aspect has received scant attention from either

manufacturers or the users. All too often there is a

108

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/2/107/340809 by guest on 13 M
arch 2024



Commercial automatic programming

blithe assumption that one compiles a program and that
is the end of the matter.

Consider two obvious requirements.
(i) It should be possible to write routines referring to

data which will be identified at run time. For
example, one would like to produce a routine to
handle inquiries to any data unit within a given
record, without having to print out the entire
record each time. At present this cannot be done
by a single generalized routine because the data
description is not available during the program
run (it would not, however, be impossible to print
out a coded data description which the user would
put in with his inquiry).

(ii) It also should be possible to choose what routines
are required in a given program run so that only
those are loaded on to the machine.

In regard to debugging, the only really acceptable
form of tracing the execution of a program is that of the
language in which the program was originally written.
This is a very difficult problem which has not yet been
solved in practice, but 1 am convinced it is both possible
and feasible, although expensive, in terms of compiler
effort.

Using the Compiler

Most of the current language systems allow the user
to obtain a copy of the compiler, but there are often
restrictions as to the size of machine on which it will run.
The actual process of compilation is generally somewhat
lengthy, and after it has been completed (assuming no
source errors have been found which would probably
necessitate starting all over again) voluminous paper is
produced reporting on the object program. Naturally
none of this information means anything to the user
unless he knows at least the assembly code, if not a good
deal about the machine and the methods of compilation.

It is at this point that the full flavour of the "Alice
in Wonderland" situation we are now in becomes
apparent. A great deal of time and money is spent to
support the claim that "any fool can program this
computer." The realization that it takes a special kind
of fool to compile or debug it is left until Alice awakes,
by which time she has presumably paid the bill!*

Progress Report on the Major Commercial Languages
COBOL

One must, of course, start with COBOL if for no
other reason than because sooner or later, for good or ill,
we are all going to be concerned with it.

In view of all the publicity and argument I presume
that everyone has heard of COBOL: how it was started
by the American Defense Department in conjunction
with the majority of American manufacturers; how
pressure was put on its acceptance by the Defense
Department (the largest single user of computers in the

* It takes a wise man to be a fool at court—Ed.

world) through their insistence that they would not buy
any computer which did not have a compiler for it.

It was natural for the American manufacturers to press
for the universal adoption of COBOL due to the large
expenditure they were committed to by its implementa-
tion. It is true that some were a little cool towards it
at first, but all now seem reconciled.

The opposition to COBOL depended on the attitude
of I.B.M. much in the same way as does the opposition
to ALGOL. I.B.M. have announced that they will not
implement their own system called COMMERCIAL
TRANSLATOR for any new machine. If this means
they are going over entirely to COBOL then that will in
my opinion be decisive. But up to now the acceptance
of the language among American user groups, such as
the SHARE organization, has not been as widespread
as the originators would have wished.

As for COBOL itself, the language has made progress.
The 1961 version is much tidier and better described
than in 1960. A more realistic attitude has been taken
to the degree of commonality across machines that can
be obtained, and a definite attempt has been made to
get everyone to implement the same language and so
end the profusion of COBOL-like dialects that followed
the 1960 publication.

Yet a number of problems remain. The language is
still not specified with a sufficient degree of precision.
It lacks a means of defining new functions of adequate
generality. Further, although the next report is not due
until 1963, there is a very real difficulty in preventing new
versions, in so far as they are a change rather than an
extension to previous ones, from causing the kind of
confusion the language was designed to prevent.

Nevertheless COBOL, unlike ALGOL, is a complete
programming system and in this, and the ideas it has
introduced, it does represent a considerable achievement.
Many of those in this country (myself included) who
were engaged in designing a different language learnt a
great deal from it. It is already available here, mostly
in forms only approximately to the 1960 report, but the
1961 compilers will soon be available from across the
Atlantic.

FACT
This is the language of Minneapolis-Honeywell and

is currently working on their 800, newly installed at
Moor House.* It is an untidy language, poorly sup-
ported by both its general and reference manuals.

But the looks of FACT belie its power. For FACT
is a real programming tool which is aimed at the
important practical problems of the user. It has tackled
file processing in a big way, although the rules may be
confusing at first, and it has probably the most powerful
facilities for input and output of any existing language.
Like COBOL it lacks, however, a suitable means of
defining new functions.

* More complete details of FACT will be found in the paper
by Dr. R. F. Clippinger beginning on p. 112 of this issue.—ED.

109

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/2/107/340809 by guest on 13 M
arch 2024



Commercial automatic programming

In comparing FACT to languages developed in the
U.K. it must be remembered that it involved an effort
of at least an order of magnitude greater than was ever
available on a home project of this kind. There are some
220,000 three-address instructions in the compiler, and
the mind boggles at how such a program was ever
organized and debugged. I believe this has been a
problem, and that work still continues on completing
final points.

COMMERCIAL TRANSLATOR
This is a language of I.B.M.; it is currently working

on the 705 and 7070 systems and is committed for the
7090. It is a simple but elegant language supported by
an excellent manual. It contains both adequate means
for defining new functions and other facilities not yet
available in COBOL, but rather surprisingly it does not
allow variable-length fields.

COMMERCIAL TRANSLATOR does not have any-
thing approaching the facilities of FACT for input and
output. Presumably they are available on the systems
tape or otherwise as software packages, but it is in
consequence impossible to make a proper comparison
between the two languages. Actually they are both very
good in different ways, and if COBOL-63 combines the
best of both it will indeed be a step forward.

Languages developed in the U.K.
The remaining languages (except the last) are all home

products, and there will in consequence be no surprise
to find that they are either not working, or not on a par
with their American equivalents. Prospective users
of these languages should remember that, on past
experience, the compilers cannot be expected to be fully
debugged until at least six months after they are first
run—assuming that happy event ever occurs, which is
by no means certain in all cases due to the prevailing
difficulties of attaching magnetic tape to current British
machines.

RAPID WRITE
This is the language of I.C.T., developed initially for

the 1301 but now to be also implemented on the 1500,
although this machine has, of course, a COBOL compiler
supplied by R.C.A.

RAPIDWRITE is a subset of COBOL based chiefly
on the 1960 version but with some facilities apparently
introduced in anticipation of the 1961 report. Its chief
merit is the reduction of writing and punching obtained
by the use of pull cards for program statements, and
yet the compiler produces a full COBOL listing for
documentation purposes.

RAPIDWRITE in its minimum form (i.e. for the
smallest 1301 without magnetic tape) is likely to be the
first of the advanced home-made commercial compilers
that actually works. And, what is more, the compiler
will itself operate on the minimum machine.

NEBULA
This is the language of Ferranti designed originally

for the ORION but now to be also implemented' on
ATLAS. NEBULA has some very nice facilities, par-
ticularly in regard to input and output and the general
use of formulae. Unfortunately, like FACT, it has
grown a little untidy while the compiler has progressed,
and there are now a great many rules in the language.
It may well, however, prove to be a valuable tool once
it is working.

CLEO
This is the language of LEO Computers, designed for

LEO III, and is almost certainly the most recent language
to be specified. It is of particular interest due to its
having a combined aim toward both mathematical and
business purposes.

Only a preliminary report on CLEO has so far been
available, but this is impressive in so far as it goes.
The language might be described as being akin to both
FACT and ALGOL, in that there are features of the
former in the file processing and of the latter in the
other procedures.

FILECODE, and LANGUAGE H
We now come to the two English projects which are

actually working. FILECODE is the language imple-
mented on Sirius and promised for Pegasus; while
LANGUAGE H is working on the National-Elliott 405
and intended for the 315 and 803. Both are a little
primitive and their facilities cannot be compared to those
contained in the languages described above. FILE-
CODE would appear to be the major effort because it
incorporates a Data Division; without it LANGUAGE H
might be regarded as an elegant English-language
assembly code.

However, the simple fact that both languages work is
in itself grounds for congratulating their originators.
Both must be providing useful practical experience; and
one further admires the realistic way these projects were
tackled with the minimum of advanced promises.

ALGOL
Finally, in this section some mention might be made

of the work done towards extending ALGOL for com-
mercial purposes. Nobody now seems very interested
in this effort, but for myself, and I had some hand in it,
I still believe it could be valid and hope it will soon be
published.

ALGOL is a really elegant tool for programming, or
would be if those responsible for it would stop squabbling
long enough to complete it. There is no reason why
the language should not be extended to provide a unified
system for both business and mathematical purposes.
The difficulty of notation for business users could be
removed quite trivially, by including an alternative
"English" word fern. Furthermore, ALGOL is the

110

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/2/107/340809 by guest on 13 M
arch 2024



Commercial automatic programming

only existing language in which the processes of com-
pilation could be described with the precision that is
necessary if we are ever going to achieve a real com-
patibility across different machines.

A Look at the Future

It is perhaps a natural optimism that prevents one
looking at the future without some kind of hope. 1 would
therefore offer the following.

Hopes
(i) That business computers will cease to be rehashes

of the old arithmetic machines of von Neumann,
Wilkes and others, and come to be designed for
the tasks that face them. The Burroughs B5000
may show the trend by restricting users to the
source languages provided. Then presumably
one can stop the salesmen being interested in any
way with the form of the machine instruction
code, and make it suitable for the compiler-writers,

(ii) That certain manufacturers will lessen their
attempts to provide solutions to commercial
problems based on languages which are incom-
pletely specified, compilers which are not written,
and computers that do not exist; and that some
other manufacturers will discover there is a need
for commercial automatic programming,

(iii) That the profusion of committees working [sic]
towards the standardization of programming
languages, under such bodies as E.C.M.A.
(European Computer Manufacturers Associa-
tion), I.F.I.P. (International Federation for
Information Processing), and I.S.O. (International
Standards Organisation) will be combined into a
single effort. Such a combination to begin, as
belatedly a B.C.S. group is now engaged, by
deciding what exactly the standardization of
programming languages means.

(iv) That someone will write an interpreter for COBOL
of about 5,000 instructions, taking a few man-
months of effort, and then find the object programs
are so much shorter that, in certain circum-
stances, the result is actually more efficient than
present methods.

(v) That British users will come to realize that the
acquisition of these new and expensive forms of
office plant carry with them the responsibility of
learning something about them, and in particular
about programming per se; that the larger users
such as the banks, insurance companies, and the
nation-wide distributors will appreciate the need
to build their own programming systems, since
the manufacturers cannot be expected to cater for
all their individual requirements.

Expectation
So much for hope; expectation is another matter,

(i) I expect a standardization of languages, whatever
that may mean, to occur within the next year or
two, because that is what the salesmen want,
and they, after all, are the people who decide
these matters.

(ii) I expect COBOL to be accepted as the commercial
standard rather than a standard, due to a general
lack of appreciation of the importance of the
distinction between these two alternatives.

(iii) I expect this country to become more and more
dependent not only on American machines but
also on American programming systems. The
programming efforts on the two sides of the
Atlantic are so disproportionate as to make this
result inevitable. And perhaps that is what we
deserve, because certainly we are not now doing
sufficient to justify a separate existence, or even
possibly to call ourselves a home industry.

Bibliography
WILLEY, E. L., et al. (1961). Some Commercial Autocodes—A Comparative Study, AP1C Studies in Data Processing N o . 1

Academic Press.
D'AGAPEYEFF, A., et al. (1961). "A Critical Appraisal of COBOL," Annual Review in Automatic Programming, Vol. II.
D'AGAPEYEFF, A., et al. (1962). "Progress in Some Commercial Source Languages," Annual Review in Automatic Programming,

Vol. HI.
COBOL-61. Report published by Department of Defense, Washington D.C.
FACT Manual (Interim Edition). Minneapolis-Honeywell DSI-27E (1961).
I.B.M. COMMERCIAL TRANSLATOR. General Information Manual F28-8043 (1960).
I.C.T. RAPIDWRITE (Programming Manual). International Computers and Tabulators Limited. P.155/9.61/5M/SL, 1961.
HUMBY, E. (1962). "Rapidwrite—a New Approach to COBOL Readability," The Computer Journal, Vol. 4, p. 301.
NEBULA—a programming language for Commercial Data Processing, Ferranti LD12 (November 1960).
BRAUNHOLTZ, T. G. H., et al. (1961). "NEBULA: a Programming Language for Data Processing," The Computer Journal,

Vol. 4, p. 197.
CLEO—Leo Computers Limited, November 1961.
"FILECODE"—Ferranti Limited. C.5325.
EXPERIMENTAL DATA PROCESSING LANGUAGE, National Cash Register Co. (1960).
BACKUS, J. W., et al. (1961). "Report on the Algorithmic Language ALGOL 60," Annual Review in Automatic Programming,

Vol. II.
DUKSTRA, E. W. (May 1961). "Making a Translator for ALGOL 60," Automatic Programming Information, No. 7.

I l l

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/2/107/340809 by guest on 13 M
arch 2024


