
FACT

FACT programs, others ARGUS programs, other
Algebraic compiler programs, etc. Test data for the
programs, the programs themselves, and parameters
controlling printout of information during operation,
are stored on a single tape along with the PTS System.
PTS then loads one of the programs, distributes test
data for the program to various tapes, inserts derails
into the program, then turns the first program on. The
program operates (not in the interpretive mode) up to
the first derail, at which point it is interrupted to call
upon other sections of PTS to print whatever is required
in whatever format is desired, and then returns to the
program, which goes on to the next derail. This process
repeats until the program is complete, whereupon the
next program is loaded, etc. This process continues in
what appears to the casual observer to be a single
program. The output is normally put on magnetic tape
and printed later, parallel processed with some other
operation. The same system is used for FACT programs
except that the printouts may be provided by FACT'S
own report writer.

The system permits an hour's computer time to provide
checkout information for a large number of pro-
grammers, and this computer time is preciously guarded.
Checked out programs are placed on a master tape ready
to be scheduled for production use. The Executive
Scheduler is provided with information about the
programs to be run during a particular schedule period.

In the case of FACT programs, label information about
the tapes containing the necessary files is provided to
the scheduler. The scheduler checks all this information
to insure that the programs can indeed run together,
selects them from the program tape, puts them in
machine-language form on a production-run tape, and
prints out a schedule summarizing all this information
in a form suitable for use at the console by the machine
operator. The actual production is done under control
of the Executive Monitor. This is a program which has
been designed to fit less than 600 registers. It involves,
of course, many overlays. Without such an Executive
Monitor, efficient parallel processing would be impossible.
As machines get faster and faster, more and more time
is devoted to tape changes and setting up programs.
With the advent of parallel processing it becomes
practicable to operate several programs simultaneously,
and the need for perfect organization becomes more
necessary. The Executive Monitor provides for loading
programs, turning them on and itself off, releasing
programs that have terminated, and loading and turning
on other programs, setting restart points and auto-
matically restarting one or more programs as needed,
performing the necessary rereads when a read error is
discovered and it is desired to use orthotronic control to
correct the read. There are several other functions
performed by the Executive Monitor which are described
in greater detail in our Executive Manual.

DISCUSSION

Session 1: 17 April 1962 (Morning)

The Chairman (Mr. D. W. Hooper, President, The British
Computer Society): This morning we start another of the very
successful conferences which have been held here with the
co-operation of the College authorities, and 1 shall immediately
ask Dr. Tait to open the proceedings.

Dr. J. S. Tait (Principal of Northampton College of Advanced
Technology, London): There were several reasons why it gave
me great pleasure to be asked by the Mathematics Department
to welcome you to the College. One is that it is always thought
that I am the principal of a college in a Midlands town which
manufactures boots and shoes, and you can see that we are
not so very far from St. Paul's. Secondly, we are glad to
see you here because so many experiments in education are
going on, and new universities and technical colleges are
being created. By coming here you have the opportunity to
see that the facilities in terms of lecture rooms, laboratories,
and equipment are first class, and you already know about
the stature of the academic staff. Thirdly, the spectrum of
knowledge in the technical world seems to be doubling every
ten years, but in mathematics it seems to be doubling every
few months and it is only by having regular conferences of
this kind that one can hope to keep up to date. I do not
regard you as strangers. Your Committee meets here once
a month and I am sure that the caretakers believe that they
are members of the academic staff of the college. It is with
great pleasure that I welcome you this morning. (Applause.)

The Chairman: There are many of you who will know
more about the subject of automatic programming languages
for business and science than I do myself. There are those
who are here to learn and to hear what others have to say,
but I hope that that will not inhibit them from making any
contributions they like to the discussions. 1 hope that
discussion will be varied and, if necessary, provocative.

Some people have believed, and still hope, that in this
subject are to be found early solutions of many problems,
particularly in business. Many users and potential users
hope that all their program worries will soon be at an end,
if they adopt the techniques about which you will be hearing.
Others are more like the Frenchman who, when asked his
opinion of COBOL, said: "C'est magnifique, mais ce n'est
pas la guerre."

Mr. A. d'Agapeyeff then presented his paper on "Current
Developments in Commercial Automatic Programming," p. 107.

Mr. R. T. Street (Honeywell Controls): I want to raise a
point on the dynamic variable-length units. I should have
thought that, in spite of the criticism and the lack of recog-
nition of these requirements in various languages, this par-
ticular point is actually to do with the systems, in so far as
the person who i's using these languages should know before-
hand precisely what maximum length of image is likely to

119

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/2/119/340823 by guest on 13 M
arch 2024



Discussion (Session J)

be used in any system which he is to put into operation.
Can the author say whether he regards that as»a serious point
or not?

Mr. d'Agapeyeff: Perhaps variable-length units of data are
not required because the systems analyst ought to know the
actual length of the data images. I think that this is not so,
and that it is a mistake when it is assumed. Several firms
have commercial programs in which they cannot judge what
the length of the units will be, and if they are forced to give
some figure, they may be wasting tape by being over-cautious
about the maximum. Consider address fields—the average
number of characters is probably about 20, but the figure
might rise to 100. The distributors of the products of a
wholesale chemist, for instance, would have thousands of
items on some of their accounts, whereas the average number
may be 10 or 20 items. It would not be sensible to operate
with standardized lengths in such a case.

Mr. Street: To some extent I agree with the author, but on
the other hand the difficulties which arise through specifying
variable-length units probably involve slowing down the
actual machine processes which are involved internally, so
that costs would probably come down on the one hand and
increase on the other. In my opinion, to some extent they
would cancel each other out.

Mr. d'Agapeyeff: Mr. Street may be right, but we must
remember the time taken in organization. Machine time for
doing the calculations is likely to be negligible compared to
the time taken for organization within the program. It is
this that matters, and that is why, by having the kind of
machines we want, we can make savings. If it takes longer
to do the final bit of work, it might be a great gain in the
end because of the lack of program organization required
to get to that point.

Mr. P. J. H. King (Associated British Picture Corporation
Limited): I refer again to the need for commercial programming
systems to have facilities for variable-length records. I
disagree with the view expressed in the discussion that fixed-
length records are satisfactory, it being the function of the
systems analyst to determine the maximum record length
required. This is not, in fact, always possible. In ledger
processing, for example, it is often impossible to know the
number of entries you might have. Even if you knew, to
allocate the maximum space to each account on tape, in
order to allow for this, would be absurd, as some accounts
may only contain a trivial amount of data. Apart from the
pure waste aspect, a further disadvantage of fixed-length
record storage is that more tapes are required for a given
amount of data, and hence summarization becomes more
difficult.

We have recently put into practice a procedure for variable-
length storage of data giving a saving by a factor of three to
four over the fixed-length record procedure in terms of the
amount of tape required. It also has tremendous advantages
in terms of summarization. Whereas, with fixed-length
records, one tape was required for each quarter and hence
a comparison of two years data involved the use of eight tapes,
with variable-length records one tape carries data for one
year and the above comparison required only two tapes.
From a system-investigation aspect there is also a saving
since one is only concerned with the average record length
and not the maximum possible record length, and the former
is a much easier statistic to determine.

Mr. K. W. Lawrence (G.P.O.): Perhaps the author can
clarify what he said about variable-length records. I am
not clear whether he is criticizing COBOL for not dealing

with variable-length records, or whether he is saying that
there is some inherent problem which means that it will
never have such a facility.

Mr. d'Agapeyeff: I think that Mr. Lawrence has misunder-
stood me. I was not criticizing COBOL for not having
variable-length fields, as of course the language has these
and an extra generality of levels within records. But it is
here that we have the fault of present machines.

Let us consider the sort of thing which the user wants
to do. He wants variable-length blocks on tapes. This
makes it very difficult for a compiler to work with fixed-length
blocks. The user then wants a number of records to a block.
Since the position of each record is uncertain we need a
map of the block (Fig. 1).

A B Bi RECORD

1 1 t
1

RECORD

A: Number of records.
B: Record address.

Fig. 1.—Block map

Next, the user wants variable-length field inside his
records. Now we do not know where each field will start
so we need a map of each record (Fig. 2). Finally, he may

J K I.

1

Variable
Field

t

Variable
Field

t

J: Length of fixed part.
K: Number of variable-length fields.
L: Address of variable-length fields.

Fig. 2.—Record map (part)

want variable-length fields within a list (i.e. of repeated
items), in which case we do not know the starting point of
each item within the list, even after evaluating the subscript,
and further mapping or searching is required.

Thus, whatever you do when you finally get to the required
field is of no consequence, because of all the time spent in
getting there. We must look to logical designers to help us
alleviate this problem.

Mr. C. Strachey (Private Consultant): The point about
variable-length records as against fixed-length records is a
rather good illustration of a general point about all
compilers and in particular about all commercial compilers.
It is the influence of the desire for efficiency, in the
sense of having a run-time program which is fast, en what
people think should be the language, or how the compiler
should do its work.

It is quite clear to me that a language which has the ability
to have variable-length fields as well as fixed-length fields is
a very powerful language, for there is absolutely no reason
to use the variable-length field unless you want to. If the
compiler is such that variable-length field operation is bound
to be less efficient, that is to say, it would take longer than
a fixed-length field, then, in circumstances where you can

120

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/2/119/340823 by guest on 13 M
arch 2024



Discussion (Session 1)

tolerate the loss of space involved in using a fixed-length
field, it is best to use fixed-length.

There is relatively little difficulty about this sort of opera-
tion, provided that you have enough core store in the machine.
Unfortunately, practically all the machines made in this
country have a totally inadequate amount of core store.
This is partly the result and partly the cause of the fact that
our manufacturers are so backward in the development of
compilers. You will perhaps see what I mean if you consider
the problems of trying to run the compiler we have been dis-
cussing, which has 220,000 three-address instructions, in a
machine which has a store for only 1,000 single-address
instructions. It would obviously be foolhardy in the extreme
even to attempt such a task. When this is coupled with the
demand that both the translater and the object program
should be very efficient indeed, the problem becomes merely
preposterous.

It is the insistence on trying to sell small, cheap machines
to do large and complicated problems, and insisting at the
same time that the resulting program should be at least
100%, if not 200%, efficient, that causes this country to be
so behind in the field of compilers.

Mr. d'Agapeyeff: Of course, we do not have suitably sized
machines. We do not have suitably sized anything, but that
is not the main point. The main point is that machines are
not properly designed. Yet, we do know the kind of order-
code design that we need, as soon as we can get the salesmen
and users away from it.

For example, one aspect of a translator is not difficult to
implement, and is so obvious that we should have had it
years ago—namely addressless instructions. The moment
you put addresses on instructions, you cannot move them
about easily, and this is why American compilers are so bad.
After the first scan, a great deal is known about the source
program. The next step is to pick up the so-called generators.
The problem is to know where to put the generators, since if
they call each other the set required at any one time is difficult
to determine. This gets so bad, because you cannot slide
them about dynamically, that there is a tendency to take out
all the calls, sort them against the generators, and finally
re-sort the generated routines back into the original sequence.
But all this takes a great deal of time.

Once it is appreciated that it is organization which takes
machine time, not computation, there will be a tremendous
saving. I agree with Mr. Strachey that we have bad machines
which are badly designed. They are not designed for the
work they are meant to do, because, infer alia, the logical
designers are not in general working with the compiler writers.

During the Session, Mr. Hooper vacated the chair and
Mr. R. L. Michaelson (Vice-President of B.C.S.) took over.

The Chairman (Mr. R. L. Michaelson): It is always a
pleasure to welcome an American, although, apparently,
we do not all agree with all that is done in America. Dr.
Clippinger is especially to be welcomed for he goes back
almost to Computer Biblical times, and when one thinks of
Clippinger one thinks of Eckert and Mauchley, who must
be regarded as the Isaac and Jacob of computers. He
first worked on ENIAC as long ago as 1945. I think that he
can be regarded as the man with the greatest computer
experience in this room. He is also a member of probably
90% of the committees which Mr. d"Agapeyeff mentioned
earlier this morning. There is no need to say more about
Dr. Clippinger. His name is his own introduction.

Dr. R. D. Clippinger then presented his paper on "The Opera-
tional Usage of Commercial Compilers in the U.S. A," p. 112.

Mr. E. Humby (I.C.T.): Mr. Ellis has asked me to convey
his apologies for not being able to attend and present his
paper on "COBOL in the United Kingdom." I am a com-
pletely inadequate substitute, but the Chairman has been
kind enough to allow me to state I.C.T.'s rather special
position in relation to COBOL.

In various journals we see mention of the attitude to
COBOL in this country being "lukewarm." But that is a
statement about a specific period of time, and does not
properly convey the effect which COBOL is having in this
country. I should like to rephrase that statement to read
that "the acceptance of COBOL is slower in Great Britain
than in the United States," and that is a rather different
matter.

There are various good reasons why acceptance is slower
here, and I hope to show that they are gradually dwindling
away. First, capital investment in computing equipment by
British users is on a much more conservative scale than is
investment in the United States. There are customers who
have tried to do payroll and store accounting on machines
without magnetic tape, and who have expected to be provided
with autocodes for programming their problems. Even where
customers talk in terms of big machines, the number of tape
units is always considerably lower than is the case in America,
and it is this reason why some American manufacturers
selling in the British market were reluctant to transfer their
COBOL compilers and offer them for sale in this country—
because there would be a minimum number of customers
with equipment of the size necessary to cope with their
compilers.

Secondly, descriptions of COBOL were very much tape-
orientated, and this meant that there would be problems of
defining input and output facilities for order on card or
tape-punch machines.

Thirdly, there was a certain vagueness about the first
COBOL report, and this meant definition problems for
implementers.

Fourthly, there were the great distances which separated
British implementers from the source and from the COBOL
maintenance committee in the United States, which aggra-
vated the definition problems.

Fifthly, there was no driving force in the United Kingdom
equivalent to the Department of Defense of America. While
it is true that the pressure which the Department of Defense
applied on the American computer industry is such as to
make a refusal to manufacture COBOL almost rank as an
un-American activity, nonetheless, the position was sufficiently
developed to make it evident that acceptance of COBOL in
the United States was already widespread among customers
other than the Department of Defense.

Sixthly, there are some people to whom COBOL must
always be unacceptable, because of the cost of providing
readability.

These reasons will have less and less effect, and as they do
so the acceptance of COBOL is likely to be accelerated.

I suppose that I.C.T.'s rather special position stems from
the fact that some eighteen months ago a special report by a
working party of the B.C.S. declared that COBOL would
make no impression in Great Britain, and that manufacturers
would be advised to pursue their own languages for their
own machines. We ignored that good advice because our
crystal ball told us that things would be otherwise. The

121

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/2/119/340823 by guest on 13 M
arch 2024



Discussion (Session I)

position is now that we will shortly be working our 1301
Mk. I COBOL compiler. It is the Mk. I because we have
seen that a very special compiler must be written for machines
of very small configuration, and it was our wish that we
should provide COBOL facilities for all our users, including
the users of the minimum configuration; the Mk. I was
designed to work on programs for the machine with 400
words of immediate-access store and a backing drum of
12,000 words, with a card reader, card punch and printer,
and no magnetic tapes.

Of course, we are already clear that there must be certain
inefficiencies about a compiler for such small machines. For
example, we can have only 100 PERFORMS in one program.
That is not so serious, but there are more serious restrictions
in the variety of records in one program. We are planning
a Mk. II, to be developed later in 1962, to cater for magnetic-
tape facilities and to make use of the larger immediate-access
stores available, in order to produce a more efficient object
program.

At this point I was to have tried to convince you about the
inevitability of COBOL in Great Britain, but Mr. d'Agapeyeff
has done that for me. That has surprised me, because I was
under the impression that he was a member of the B.C.S.
group which produced the report on COBOL about which
I have just commented.

However, there is a difference in that he feels that COBOL
will be foisted upon customers by wicked salesmen, whereas
we think that it is the only practical common commercial
language, so that COBOL will be foisted on manufacturers
by the customers. It is for those reasons that we as a com-
pany are resolved to be first in the field, and not to waste
effort on a language which would be outmoded before it was
implemented.

Those manufacturers who took the advice they were given
have not produced a common language of sufficient power
seriously to threaten COBOL. We hope that our Mk. I and
other efforts, such as I.B.M. on the 1401 and the smaller
configurations of 1410, will convince people that COBOL
compilation on smail systems is a practicality.

With regard to the vagueness of reports and the distance
from the maintenance committee; work on the Association
of European Computer Manufacturers is in progress, aimed
at resolving some of the ambiguities of the COBOL reports
and establishing a more direct link with the COBOL main-
tenance group.

I can only ask those who find COBOL unacceptable,
because of its verbosity, to keep awake after lunch long
enough to hear what I have to say about the I.C.T. Rapid-
write as a form of reading COBOL into a computer.

As these obstacles slip away, we are confident that COBOL
will take a stronger and stronger grip. All Mr. d'Agapeyeff's
fears of the effect of stagnation with the acceptance of COBOL
on the design of computers leads me to the comment, which
I can only make with acknowledgement, that the extensive
production of motor-cars in no way seems to be prejudicing
the development of the aircraft as a superior form of transport.

Before I conclude, I should like to make some comments
on Mr. d'Agapeyeff's observation on the selling of incomplete
languages for use with incomplete compilers on incomplete
machines., Providing that the degrees of incompleteness are
nicely balanced, this is the correct way of going about things.
I recall visiting a motor-car factory when I saw incomplete
carburettors and incomplete chassis and incomplete engines
waiting for the time when all these things would come
together and there would be a workable car. If the potential

user had had the good sense to complete his driving lessons
at the same time as all these things were being completed,
he could have got into that completed car and driven it away.
If we were to wait for a working computer before we thought
about a programming language, and if we were to wait for
a working compiler before we taught our customers how to
use these languages, we would very soon be out of business.

Mr. R. M. Paine (C-E-I-R- (U.K.) Ltd.): I was intrigued
and stimulated by Mr. d'Agapeyeff's talk, which was some-
thing of the combination of a windmill and a whirlwind—his
fists flew in all directions with a lot of wind assisting in their
propulsion.

He was worried about standardization, but I think that he
will find that there are several languages growing up together
for specialized aspects of the commercial and scientific world.
I do not believe that COBOL or ALGOL is the complete
answer. We will require specialist languages for particular
uses. We may have different languages for, say, market-
research problems, statistics, and invoicing on the com-
mercial side, and for instance linear programming and matrix
arithmetic for scientific studies. But I am not worried that
we seem to be standardizing on COBOL. Other languages
may grow from COBOL, partly because people will get too
fed-up with the verbiage of COBOL. This verbiage will
probably be defended by Mr. Humby on the grounds that it
produces full readability for the manager to be able to
understand what is happening and enable him to control
the programmer. Mr. d'Agapeyeff wondered whether the
manager could understand autocodes. I do not think that
the manager would or should understand the full print-out
of a COBOL program.

Dr. Clippinger gave one instance of the use of FACT in
which he said that the statement was, "If not asterisk, go to
Procedure B, otherwise go to Procedure D, until J equals 6."
Very few managers will go into such details to understand
what the programmer means. But there is no great need to
produce a full English-language description of the program,
provided sufficient analysis of what is required has been done
previously. I do not think that managers will be concerned
to that extent, with the English print-out.

I believe that most compiler writers will agree with my
views, since the verbiage is completely stripped from the
statement as soon as the compiler gets to work on it.
Eventually, we will get closer to using symbols within any
commercial language, rather than the long sentences which
we have been using.

I am also worried by Dr. Clippinger's comment on the
efficiency of compiling times and running times. With the
new, faster, and costlier machines such as Atlas and Stretch,
the inefficiencies of the plain-language autocodes will be more
costly—seconds lost will mean pounds. I cannot see people,
especially organizers of service bureaux, using a language
such as COBOL (or FORTRAN written for the 704 but
used on the 7094) which would cost them such a loss in
money or in time. I think that they will produce their own
specialized languages to make the best use of the large
machines. There will be specialist languages for the problems
that are to be run.

Mr. d'Agapeyeff criticized the manufacturers who, under
the influences of the Department of Defense, had foisted the
language of COBOL on the users; but I do not think that
the users will ever get together and plan a language. The
force must come from the manufacturers and other people
such as the consultants. It is pie in the sky to think that the
users will work together to find a language. Mr. d'Agapeyeff

122

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/2/119/340823 by guest on 13 M
arch 2024



Discussion (Session J)

has previously made great play about the users not being
consulted about COBOL. I think that he is wrong and that
they were, as far as was possible, but normally they cannot
say what they require in an autocode.

He seemed to be calling for a committee on the stan-
dardization of the committees on standardization, but I do
not think that a committee would work in the present situa-
tion. He also appeared to be calling for a merger among
British computer manufacturers, and when he did I expected
a few to feet up and fight back. There may be some mergers,
but I would like to hear which he considers would be most
useful, especially in view of the present state of compilers and
the development of languages.

I did not believe him when he said that a standardized
language would cause the machines to become standardized:
in other words, that new machines would be very much like
the old. I was startled, however, to hear Dr. Clippinger sa>
that the 1800 had the same order-code structure as adopted
in the 800, in order to make it easier to compile FACT
programs. That worried me. Previously I would have
thought that we had got away from the idea, as Mr. Humby
put it, that aeroplane development would be damaged by
the motor-car. But we may have to consider more seriously
how standardized languages will affect the design of new
machines.

There were a few wild comments in Mr. d'Agapeyeff's
speech about computer manufacturers over-emphasizing the
compatibility of a common language. But 1 believe that
compatibility does not mean that a program can move from
one computer to another without alteration; but that it
is easier to learn another language of the same type. If you
have already learnt the COBOL autocode as defined by one
manufacturer, it is easy to learn the COBOL version of
another manufacturer; thus the users can move to different
machines more easily, and the programmers (a very important
point) can move more easily between users and machines.

Mr. d'Agapeyeff had a great deal of fun attacking existing
languages which all seemed to have certain defects, but he
did not mention one with which he had a great deal to do—
SEAL. I do not know what has happened to it. Perhaps
he has drawn a veil over it as it was too perfect for this
imperfect world.

He seemed to be asking for faster and larger and cheaper
computers, using compilers with more features than any now
existing but requiring only 4,000 instructions instead of
200,000, compiling faster than ever before, and running at a
lower cost at a greater speed. That is completely impractical,
and reminds me of the time when certain people thought that
autocoding meant that all you had to do was to stand in
front of the machine and say, "Do Payroll" or "Prepare
Invoices" and the computer produced results.

I should like to ask Dr. Clippinger whether there is any
provision for segmentation in FACT. He mentioned the
size of the compiler, but the object language programs can
also be very larger—too large for holding in the machine at
one time. Are there any facilities to allow the programmer
to state which part of the program he wants in store at any
particular time?

When people have the idea that preparing an autocode
program is very quick, they forget all the analysis behind it
which is so very essential. This makes me believe that we
shoujd spend more effort on how to use existing machines
effectively—find real applications for them—than on pro-
ducing new machines or new autocodes. I understand that
in the computer manufacturers, for every 1,000 hours devoted

to developing better computer equipment, just one hour is,
spent in devising methods to improve the use and applications
of present computer equipment. This is not unlike the
situation in the aircraft industry in which jet airliners which
are larger and which will fly faster and further than ever
before are developed, while enormous losses are made with
present machines.

Following on my remark about the necessary analysis
behind any program, which takes longer than the pro-
gramming itself, I should like to ask Dr. Clippinger whether
the period of three man-months which he mentioned as being
taken to produce the payroll program include the analysis?
I think his answer will give us a better appreciation of
improvements that may be produced by autocoding.

Dr. Clippinger: With regard to segmentation: a procedure
is said to be a major procedure if it is a procedure at the
top level in FACT language. There can be procedures which
are sub to other procedures. A major procedure is auto-
matically a segment. There is language in FACT to release
a segment. When you refer to a program which is not in
memory, the program is automatically loaded. After you
release it, it still stays there, and if you return to it, it is still
there, unless you refer to a program which causes the loading
of a new procedure which would then overlay it, in which
case it would have to be a rewrite. When you go to load the
new procedure, it turns out that there is enough memory for
it, but it is not all in one consecutive piece, in which case the
segmenter loader of this program sees if the new procedure
is to be brought in. This is done automatically and the
programmer does not have to concern himself with it. In
summary, there is a considerable amount in FACT to handle
segmentation and to make it easy, since it is absolutely
imperative to handle big programs on modest-size machines.

I was asked if the three man-months for the payroll applica-
tion covered the system's analysis. It did not. The program
had already been written in ARGUS (Honeywell's Assembly
Language) and was not only completely thought out but
coded. The only claim is that to do the converse process,
where you work out the systems and do the program in
FACT, and then decide that you want to program it in
assembly language, is a bigger job. To get it in the assembly
language cannot be done in the same three man-months.

Mr. d'Agapeyeff: I make no complaint about the remarks
made to me; I expected a certain following up of my talk.
They are a sign of the ownership of the corns on which 1 was
treading.

We* did not say that COBOL 60 would not have any
impression, at least I hope we did not. We said that we
could not recommend that the language, in its then state,
was such that manufacturers should give up their own
projects in favour of it. Of course it is right now to say
that there is no alternative to the acceptance of COBOL.
But, at that time, we thought manufacturers would press
ahead with the work they were doing, otherwise there was
not much point in starting. In the event they did not, and
if COBOL appears to have been foisted on us it is effectively
the only thing possible here. Dr. Clippinger has an alterna-
tive, but we do not have much else.

Mr. Paine spoke of using a specialist language, and I agree
that users have to work towards that when they have special
requirements. The manufacturers will only provide a general
tool, and if users find that it is not wholly suitable they will

* This refers tc Editors of "A Critical Discussion of COBOL,"
d'Agapeyeff, et al., Annual Review in Automatic Programming,
Volume 2, Pergamon Press.

123

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/2/119/340823 by guest on 13 M
arch 2024



Discussion (Session 1)

have to produce their own. He (Mr. Paine) belongs to a
company which has done this, but there are few others.
Users have no right to complain that they do not like what
the manufacturers are offering, if they are not prepared to do
anything themselves.

I was not recommending mergers among manufacturers in
this country, but I think they will come. If, one way or
another, we do not get more done in programming generally,
we shall be entirely reliant on the Americans for all services,
not just machines.

Standardization of a kind is already occurring. Last
night we were asked why we should standardize on COBOL
or anything else. But there is this tremendous investment in
the language which, it is said, we have to use in the best way
we can. Again in regard to order codes: compilers are written
in a certain language, and all machine programs (e.g. service
routines) are written in that language. If there was a standard
order code we could never get away from it. I am not sur-
prised that, having written 200,000 instructions, Dr. Clippinger
did not want to re-write this program.

The remark about my own language was perhaps a little
unfair because I am unable to answer for myself in view of
the position we hold as consultants in relation to our manu-
facturing clients.

Mr. C. Strachey: The lecture from Dr. Clippinger and Mr.
Humby's contribution seem to illustrate something very
clearly which must considerably confuse anybody who does
not know a great deal about the construction of compilers.
Dr. Clippinger has described a compiler for FACT which,
he says, uses 200,000 instructions and which is obviously
enormously large and costly. Furthermore, it operates, in a
complicated programming system or COP, whereas our
machines are "no cop"! We do not have such operating
systems working.

On the other hand, Mr. Humby said that he had imple-
mented COBOL for machines with no tapes. The two state-
ments do not go together. The ordinary person who does not
know what is going on cannot understand why it should be
necessary to use 200,000 instructions in America to do some-
thing, while in England apparently the same thing can be
done in a much smaller number of instructions on a machine
which in America would not even be regarded as an off-line
printer. Clearly, there is something wrong. The truth is
that in the form of COBOL which has to be implemented in
the very small machines, very strict restrictions have to be
made on the generality of the language, and those restrictions
are generally overlooked or ignored by people who describe
the COBOL translators for the small machines.

If you want to put a general programming language on a
small machine, it is very important to realize the extent to
which you have to throw the burden of the machine's
deficiencies on the man who uses the language. It would
be very much better to describe the sort of COBOL-like
translators, for small machines, with a little more accuracy
about the extent to which they will do what the COBOL
language would be expected to do on machines in America.

Mr. Humby: I admitted that with the Mk. I compiler there
were some restrictions on the use of COBOL as a language.
On the Mk. II compiler where we could implement COBOL
with magnetic-tape facilities but without the use of tape as
such, it would be quite feasible to implement COBOL 61 in
its entirety in something like 45,000 instructions. This would
result in three or four passes on the 1301 with a 12,000-word
drum and something like 1,200 words of immediate-access
store, and it would still be a small machine in comparison

with the others. If there is anything missing from this
COBOL—and I do not know what it would be—I cannot
see that it would be worth the effort of a colossal number of
instructions. In any case we have many customers who
would be prepared to make the compromise and accept the
restrictions, if they are clearly outlined.

Dr. Clippinger: The efficiency of the object code was a
major effort in the whole design of the FACT compiler after
the language was specified, although not so much in the
specification of the language. The code produced is much
more efficient than it could have been, and we are making
constant changes in it to make it even more efficient. Our
goal is to approach as closely as possible the best which can
be done so there will be no worry about the generalities which
are handled by a compiler. We do not expect to achieve that,
but we expect to get close enough to it so that it will become
a useful tool and will be used.

For example, sorts in the FACT compiler will sort just as
fast as the sorts in the ARGUS library. File maintenance,
which is another major aspect of data processing, is made as
fast as possible. It is buffered in such a way that the tapes
are kept moving, and there are cases in which the FACT
program will exceed in efficiency the program which a good
programmer would put together doing it on his own, because
of the great sophistication built into the input/output program,
and the packing of the files and the elimination of waste space
in the fields. There is no insistence on maximum-size records,
for example, so the files are considerably smaller than the
files which a programmer might have dreamed up for himself.
He would not be willing to go to the trouble, which we went
to, to squash the pile down tight. There is some inefficiency
there; we are trying to remove it as much as possible, and
we are making progress. I think that the end result will be
judged to be good, on balance. There will be a tendency to
use somewhat more memory, but I do not think that any of
our competitors will do better than this. I think that it will
be a good trade-off. There is so much convenience, and so
much saving in money in reducing programming costs, that
you can afford to spend a little more for memory. Further-
more, our memory costs are coming down rapidly so that the
objections to the extra cost of having more memory are
becoming less, fairly fast.

Mr. P. Wegner(/.o//rfo/7 School of Economics): Dr. Clippinger
has said that memory costs are coming down rapidly. 1 think
that compiler writing costs are likely to come down just as
rapidly. What is the ratio of the time taken to write a com-
piler inefficiently to that which would be required to write it
efficiently? I suspect that this factor can be as much as 100,
especially when we take into account the Parkinsonian
inefficiencies of working in large groups. Would Dr.
Clippinger agree with the point of view that the difficulties
in writing compilers are transitional, and that the cost of
compiler writing might well become negligible when appro-
priate languages for writing compilers are developed?

Mr. d'Agapeyeff stressed the desirability of having
compiler-writing features in future hardware. Although I
basically agree with him, I should like to point out that this
is a reversal of a long-standing trend, in that it implies special-
purpose hardware features; thereby negating a tacit assump-
tion which has been underlying the development of com-
puters—i.e. that they should be general-purpose in their
hardware. Ten years ago, when computers were first being
built, the emphasis was on general-purposeness. The guiding
principle was the common store for instructions and data—
as outlined by Von Neumann. Persons who did not swim

124

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/2/119/340823 by guest on 13 M
arch 2024



Discussion (Session 1)

with the tide, and advocated separation of data and instruc-
tions, were branded as reactionaries. Today we seem to be
coming back to the idea of special-purpose features and
special stores for different categories of data and instructions.
For instance, the Atlas has four different memories for
different categories of information, and machines with lock-
out bits or memory limit registers effectively use these to
differentiate between categories of memory. Before we
advocate hardware to implement compilers, we should be
clear that we are advocating more special-purpose features.
The question is whether that is entirely a good thing. I
probably think it is. After all, the most .general machine is
a Turing machine, and nobody complains about arithmetic
and even floating-point facilities. However, I think that we
should be clear about the implication of advocating special-
purpose features.

Dr. Clippinger: If we built FACT again, we could do it
for fewer man-years. I doubt whether the factor is as high
as 100. 1 believe that there is an irreducible minimum
involved in something as complex as FACT and that we
might get the figure down to ten man-years. If we did, it is
an interesting exercise to extrapolate in order to estimate

the time which might be taken for the tenth edition of
FACT!

In the process of doing this, we are learning about com-
pilers and the better ways of handling them, and how to get
the job done for fewer man-years. But this has no effect on
the end result, which is what the programmer is using. That
point should be kept clearly in mind.

Mr. d'Agapeyeff: I do not believe that compiler readability
will lead to special-purpose machines. It is a general-purpose
tool although it can have a wide variety of uses for many
other things and certainly we have used it for purposes which
were never thought of originally. Special-purpose input/out-
put or the use of interpretative or semi-interpretative tech-
niques will require better machine design.

The Deputy-Chairman: There is no more time for questions,
but if anyone has anything more to say, he will not have
much difficulty about re-phrasing his question to make it
appropriate to another session. (Laughter.) I am sure that
you would not like the session to conclude without thanking
the three speakers who have given our conference such a
good start. (Applause.)

The Conference Adjourned.

Operating experience with ALGOL 60*
By E. W. Dijkstra

This paper describes the circumstances under which the ALGOL 60 translator of the Mathematical
Centre, Amsterdam, has been constructed. It describes its main features, virtues and short-
comings. Furthermore, it tells how the translator has shown itself to be an inspiring tool for
a varied group of users.

For the Computation Department of the Mathematical
Centre, Amsterdam, ALGOL 60 came exactly at the
right moment, i.e. some months before our new machine,
an XI produced by N.V. Electrologica, The Hague, came
into operation. And before going on I should like to
mention some of the circumstances which greatly eased
the development of our ALGOL 60 translator.

{a) As our older machine, the ARMAC, was still in
operation and taking care of the service computa-
tions as in the preceding years, we could give the
development of our translator the highest priority
as far as XI machine time was concerned.

(b) Faced with a new machine we were relatively free
from preconceived notions as to how this machine
should be used. No traditions with regard to its
use had to be broken, because such traditions had
not yet grown.

(c) As the speed of the XI was considerably higher
than that of the ARMAC, we had the joyous feeling
that the speed of the object program did not
matter too much. The resulting frivolousness
saved us a great amount of trouble and pain.

{d) The fact that the XI is a fixed-point binary com-
puter enabled us to include suitable red-tape
operations in the floating-point subroutines at
little or no expense as far as run-time speed was

-concerned.

* Report MR47 of the Computation Department of the Mathe-
matical Centre, 2de Boerhaavestraat 49, Amsterdam, Netherlands.

(e) Thanks to the fact that our previous machinery
was highly unsuitable for any form of automatic
programming, we did not have the slightest
experience in language translation. We thought
that this was a great drawback; it turned out to be
one of our greatest advantages. Again there were
no obsolete traditions to get rid of.

(/) In contrast to the great speed of the XI its store
was small: 4,096 words of ferrite-core store and
no backing store. As a result all "strategy
questions" where "space" and "time" had to be
weighted against one another were settled almost
automatically.

(g) As some of us, in particular Prof. A. van Wijn-
gaarden, had been heavily involved in the creation
of ALGOL 60, our group, as a whole, was
probably more tolerant with respect to its less
lucky features than would otherwise have been the
case. As a result we did not waste our time on
discussions as to subsets or modified versions, but
took the challenge as it stood.

On the other hand, the limited size of the store has
had two undesirable effects. Firstly, we did not dare to
try a "load-and-go translator." We therefore aimed at
a single-pass sequential translation, simultaneously
reading the source text and punching out the object
program. (It turned out that this pass had to be pre-
ceded by a rapid so-called "prescan" in which identifiers
of procedures and labels are collected.)

125

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/2/119/340823 by guest on 13 M
arch 2024


