
Discussion (Session 1)

with the tide, and advocated separation of data and instruc-
tions, were branded as reactionaries. Today we seem to be
coming back to the idea of special-purpose features and
special stores for different categories of data and instructions.
For instance, the Atlas has four different memories for
different categories of information, and machines with lock-
out bits or memory limit registers effectively use these to
differentiate between categories of memory. Before we
advocate hardware to implement compilers, we should be
clear that we are advocating more special-purpose features.
The question is whether that is entirely a good thing. I
probably think it is. After all, the most .general machine is
a Turing machine, and nobody complains about arithmetic
and even floating-point facilities. However, I think that we
should be clear about the implication of advocating special-
purpose features.

Dr. Clippinger: If we built FACT again, we could do it
for fewer man-years. I doubt whether the factor is as high
as 100. 1 believe that there is an irreducible minimum
involved in something as complex as FACT and that we
might get the figure down to ten man-years. If we did, it is
an interesting exercise to extrapolate in order to estimate

the time which might be taken for the tenth edition of
FACT!

In the process of doing this, we are learning about com-
pilers and the better ways of handling them, and how to get
the job done for fewer man-years. But this has no effect on
the end result, which is what the programmer is using. That
point should be kept clearly in mind.

Mr. d'Agapeyeff: I do not believe that compiler readability
will lead to special-purpose machines. It is a general-purpose
tool although it can have a wide variety of uses for many
other things and certainly we have used it for purposes which
were never thought of originally. Special-purpose input/out-
put or the use of interpretative or semi-interpretative tech-
niques will require better machine design.

The Deputy-Chairman: There is no more time for questions,
but if anyone has anything more to say, he will not have
much difficulty about re-phrasing his question to make it
appropriate to another session. (Laughter.) I am sure that
you would not like the session to conclude without thanking
the three speakers who have given our conference such a
good start. (Applause.)

The Conference Adjourned.

Operating experience with ALGOL 60*
By E. W. Dijkstra

This paper describes the circumstances under which the ALGOL 60 translator of the Mathematical
Centre, Amsterdam, has been constructed. It describes its main features, virtues and short-
comings. Furthermore, it tells how the translator has shown itself to be an inspiring tool for
a varied group of users.

For the Computation Department of the Mathematical
Centre, Amsterdam, ALGOL 60 came exactly at the
right moment, i.e. some months before our new machine,
an XI produced by N.V. Electrologica, The Hague, came
into operation. And before going on I should like to
mention some of the circumstances which greatly eased
the development of our ALGOL 60 translator.

{a) As our older machine, the ARMAC, was still in
operation and taking care of the service computa-
tions as in the preceding years, we could give the
development of our translator the highest priority
as far as XI machine time was concerned.

(b) Faced with a new machine we were relatively free
from preconceived notions as to how this machine
should be used. No traditions with regard to its
use had to be broken, because such traditions had
not yet grown.

(c) As the speed of the XI was considerably higher
than that of the ARMAC, we had the joyous feeling
that the speed of the object program did not
matter too much. The resulting frivolousness
saved us a great amount of trouble and pain.

{d) The fact that the XI is a fixed-point binary com-
puter enabled us to include suitable red-tape
operations in the floating-point subroutines at
little or no expense as far as run-time speed was

-concerned.

* Report MR47 of the Computation Department of the Mathe-
matical Centre, 2de Boerhaavestraat 49, Amsterdam, Netherlands.

(e) Thanks to the fact that our previous machinery
was highly unsuitable for any form of automatic
programming, we did not have the slightest
experience in language translation. We thought
that this was a great drawback; it turned out to be
one of our greatest advantages. Again there were
no obsolete traditions to get rid of.

(/) In contrast to the great speed of the XI its store
was small: 4,096 words of ferrite-core store and
no backing store. As a result all "strategy
questions" where "space" and "time" had to be
weighted against one another were settled almost
automatically.

(g) As some of us, in particular Prof. A. van Wijn-
gaarden, had been heavily involved in the creation
of ALGOL 60, our group, as a whole, was
probably more tolerant with respect to its less
lucky features than would otherwise have been the
case. As a result we did not waste our time on
discussions as to subsets or modified versions, but
took the challenge as it stood.

On the other hand, the limited size of the store has
had two undesirable effects. Firstly, we did not dare to
try a "load-and-go translator." We therefore aimed at
a single-pass sequential translation, simultaneously
reading the source text and punching out the object
program. (It turned out that this pass had to be pre-
ceded by a rapid so-called "prescan" in which identifiers
of procedures and labels are collected.)

125

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/2/125/340837 by guest on 13 M
arch 2024



Operating experience with ALGOL 60

Secondly, not being sure whether it could be done at
all with a 4K store, we restricted ourselves to the bare
minimum and omitted practically all syntax checking.

Not being too sure of the reliability of the paper-tape
equipment we did include, however, a great variety of
parity (and other) checks on the corresponding input
and output operations. Without these and other
precautions it is very doubtful whether we would have
succeeded in getting the translator into operation at a
date as early as August 1960.

Main Features of our Amsterdam ALGOL 60 System
Input of source program is via seven-hole paper tape,

produced on a slightly adapted Flexowriter. (The code
of this Flexowriter was inspired by the Flexowriter of
Regnecentralen, Copenhagen; in particular we copied a
non-escaping key with underlining as its lower-case
symbol and a vertical stroke as its upper-case symbol.)
The Mathematical Centre has now four of these; another
ten are scattered over various places in Holland and
Western Germany.*

Furthermore the Flexowriter tape-feed has been
changed to blank tape, and the translator permits pieces
of blank tape to be inserted between different "para-
graphs" of the source-language program. This facility,
when wisely used, considerably decreases the amount of
paper-tape handling required for corrections.

We have only a few restrictions on the language. The
main restrictions are a prescribed order for the declara-
tions at the beginning of a block and, more serious, no
own arrays with dynamic bounds.

Standard functions and library procedures are at the
disposal of the programmer in the form of procedures
which he may use without explicit declaration. It is as
if our system embeds each given program in a surrounding
block, at the beginning of which the library procedures
are declared. This growing library also contains the
procedures for input and output; in this way input and
output have been implemented in a flexible, expandable
way without violation of the syntactical rules of ALGOL
60, and without the introduction of new syntactical
elements.

The translation process is fast: during translation the
XI performs an average of 1,000 machine instructions
to generate one instruction of the object program. But
roughly 50% of the instructions in the object program
are subroutine calls—they activate a "macro"—therefore
translation time should be negligible. However, due to
the slow speed of the output punch, the translation
process is output-limited by a factor of three, and our
operator told me that in some unfavourable cases
translation time became nearly equal to the time taken
by the computation proper.

A further possible decrease in overall efficiency of the
translation process may be caused by the amount of
paper-tape handling required from the operator. I think
that we have been insufficiently aware of the speed of

* And there is at least one in the U.K.—at the Cambridge
University Mathematical Laboratory.—ED.

the machine, and that we have not paid enough attention
to the reduction of the amount of tape handling. The
translation of a series of short programs keeps a trained
operator continuously busy, inserting, winding and
identifying tapes.

Somewhat to our surprise the working system proved
to be a highly efficient, convenient and inspiring tool,
efficient in particular for non-trivial problems. Here I
can mention one of the things which contributed greatly
to the overall efficiency: in the run-time system the
extensive facilities of the XI for parallel programming
are much more thoroughly exploited than in nearly all
machine-code programs.

After its completion our translator was very well
received. In order to avoid possible misunderstanding
I should like to point out that there are some marked
differences between the computer fields in the Nether-
lands and in Great Britain.

First of all, "Autocodes" had hardly been used in
Holland and, secondly, there is less stress on matrix
operations. So ALGOL 60 had machine code as its
main competitor and one of the objections frequently
raised against ALGOL 60 in the United Kingdom, viz.
the absence of matrix operations, was hardly heard.

The absence of autocodes in Holland was compensated
for by rather nice machine order codes, and people were
quite used to programming in machine language. I must
say that before the creation of ALGOL 60 the need for
an autocode was sometimes felt, but we hardly felt
inclined to develop them. As I told you before, our
previous machines were very ill-suited for automatic
programming, and we thought the autocodes then
existing insufficiently attractive as languages to invest
much effort in their implementation. When ALGOL 60
came, we were very glad that the past had allowed us to
skip the stage of the autocode.

With matrix operations it is another matter. In the
U.K. you had one or more groups that were very active
in this field, and the result was a number of powerful
coding schemes for dealing with matrices. The presence
of these schemes tends to attract computations suitable
for them, and is partly responsible for your stress on the
importance of dealing with matrices. Here is a con-
siderable amount of feed-back. This must be borne in
mind when I tell you how happy we are with ALGOL 60.
If we have a feeling that it satisfies most of our needs,
then this is partly due to the qualities of this language,
but undoubtedly also to the fact that we had adjusted,
unconsciously, our needs to the possibilities of this
language.

Experience with the System

I should like to split the description of our operating
experience into two parts, viz. the educational activities
and the actual experience at the machine.

Our programming course on ALGOL 60 is given on
four consecutive days. Each day consists of lectures in
the morning and the afternoon, and exercises and
demonstrations in the evening.

126

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/2/125/340837 by guest on 13 M
arch 2024



Operating experience with ALGOL 60

In these courses we cover the whole of ALGOL 60,
including a thorough discussion of "Jensen's Device"
and of recursiveness (or, more generally, nested activa-
tions of the same procedure). I mention this, because it
is sometimes pointed out that these "advanced features
of ALGOL 60" will frighten and repel potential users.
Our experience quite definitely points in the opposite
direction: the audience was thrilled by them every time
the course was given. In practical computations these
features are not too frequently used, but the bare fact
that the programmers could use them if they wanted to
made the language very appealing.

We have given the course four times, with a total
number of about 240 participants, and one may ask how
many machine users have been created in this way. For
our own installation it is about thirty people, fifteen of
whom are to be considered as regular machine users; the
other fifteen turn up at less frequent intervals. I consider
this a very good result, because these thirty people had
to be recruited from those attendants that did not have
their own machine at their disposal. At least one
half of the participants were from other computing
centres.

Actual use of our ALGOL 60 system i*> steadily
increasing. I cannot give figures for other XI installa-
tions, which have received copies of our translator.
At the installation at the Mathematical Centre we started
with 20% machine time spent on ALGOL programs;
in the meantime this has been increased to 50%.

Omission of syntactical checking in translation has
proved to have been a grave error. Every user finds that
his first program contains a number of silly, clerical errors.
This number of errors per program decreases very fast
as the programmer gets more experience, and it is there-
fore my impression that it is hardly worth the trouble to
let the translator look for the next error after the first
one has been found. The omission of syntactical checking
is the more regretful as it could have been incorporated
at so little expense.

Furthermore, we find that the program for a particular
problem is often processed in a couple of successive
versions. Roughly: the first version is just plainly
wrong, because it contains some logical errors, neglect
of some exceptional cases, etc. The second version

works, but the programmer is not satisfied with its per-
formance. In the third version the programmer, who
in the meantime understands his problem better,
improves his strategy, and in a fourth version he improves
on the programming. This is more or less the back-
ground of the fact that our "irregular users" suddenly
turn up four times within a period of, say, two weeks;
then we don't see them for quite a long time, but usually
they return sooner or later . . . with their next problem.
This experience is very encouraging.

The run-time system has no additional diagnostic
facilities. We could include them, but from the fact
that we have not done so one can deduce that the need
for them is regarded as insufficiently urgent. In the case
of longer programs it is quite usual to insert some -con-
ditional output statements in the earlier versions of the
program. If they are enclosed between two pieces of
blank tape on the input tape it is a trivial operation to
remove them in the final version.

Furthermore, there is no possibility of a "post-
mortem dump." There is no point in just printing out
the contents of the store: as storage allocation is fully
dynamic these data would be too hard to interpret. If
a post-mortem dump were to be of any value it would
have to produce the values of variables in store together
with their identifiers in source language. This, however,
would imply the availability of the complete "identifier
table," but this is nowhere available in its entirety, not
even during translation (this is only account of storage
limitations).

The translator gives no print-out of the object program,
again because there is no point in it. The structure of
the object program has so little in common with that of
handwritten programs that with a thorough knowledge
of just ALGOL 60 on the one hand and just the XI on
the other, the print-out of the object program still won't
be very helpful. As a consequence, all modifications
and corrections must be niade in the source-language
program: we have made it virtually impossible to correct
or to modify the object program, and we have done so
on purpose. Some people like to have this possibility in
order to avoid retranslation, but we regard this as an
obsolete technique, which is not to be encouraged.
Quite the contrary.

Report on the Elliott ALGOL translator
By C. A. R. Hoare
The Elliott ALGOL programming and operating system
has been designed to suit the needs of an Elliott 503
computer installation which allocates at least part of its
time to running programs on a service basis. The main
problem in operating a computing service is to maintain
a high average number of programs processed in a given
period, and in particular to reduce to a minimum the
time spent in changing over from one program to the
next.

A number of published methods of tackling this
problem have involved the use of buffers, interrupt lines,
wired-in programs, time-sharing, and other sophisticated
hardware and software devices. The aim of the Elliott
system is to provide an acceptable operating method
for an installation which is interested in the high speeds
of second-generation computers, but does not wish to
be involved in the heavy capital outlay and maintenance
costs of high-volume backing stores and other peripheral

127

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/2/125/340837 by guest on 13 M
arch 2024


