
Implementation of ALGOL 60 for the English Electric KDF9
Bv F. G. Duncan

Our decision to implement ALGOL 60 for the KDF9
was taken about 18 months ago. We saw in
ALGOL 60 the possibility of its use as an automatic
programming language for a wide range of users,
particularly those who had become accustomed to
working with earlier languages. On the one hand,
ALGOL 60 was quite obviously much more powerful
than any of the others, and on the other hand we wanted
to make a contribution towards the effort to establish
a language that could be universally understood and
implemented. From the first our ambition was to
implement the ALGOL 60 Report (Naur, ed., 1960)
as fully as we possibly could. Experience in writing
and using an "optimizing" compiler for DEUCE
(Duncan and Hawkins, 1959; Duncan and Huxtable,
1960) led to the desire to combine full ALGOL trans-
lation with the generation of "efficient" (or relatively
fast-operating) object programs. We realized, of course,
that this would entail considerable original work, and
planned to put about five man-years into the project.

This was at Kidsgrove, in the Data Processing and
Control Systems Division. There was also an interest
in ALGOL in the Atomic Power Division at Whetstone,
where, in fact, there were people who had produced
real, working, compilers. They were prepared to put
in one man-year or so on an independent ALGOL
compiler, to be made available before the more elaborate
Kidsgrove version. This would both help us to get
ALGOL established among users, and provide checks
on the development of the elaborate scheme. At first
we saw it as a very restricted ALGOL compiler; but
following some informal contacts with Professor van
Wijngaarden and Dr. Dijkstra of Amsterdam, whose
compiler (Dijkstra, 1961)* had by this time been com-
pleted, the Whetstone people were entertained magnifi-
cently at Amsterdam for a week, and returned able to
remove most of the restrictions they had previously
imposed.

This occasion is a suitable one for us to express
publicly our thanks to the Mathematisch Centrum,
Amsterdam, for their great generosity in making sure
that their work was fully understood by us; and also to
Dr. Naur's group at Copenhagen, with whom I spent a
very useful week rather more than a year ago. Our
relations with both these groups have always been very
friendly.

Towards the end of last year, therefore, we found
ourselves with the possibility of having two compilers,
both able to deal with almost the whole generality of
the ALGOL Report. Naturally the question arose as
to whether one or other of these projects should be

* See also the paper on p. 125 of this issue.—Ed.

dropped. We decided to continue with both. Our
earlier experience and our discussions with a variety of
prospective users indicated that there would be a place
for each of two compilers with complementary
characteristics.

Compiler Characteristics
These characteristics, briefly, are as follows:
Whetstone. The aim is fast compiling. The operation

is what is sometimes called "one-pass-load-and-go."
There is no particular attempt to obtain efficiency in
the object program. As in the case of the Elliott com-
piler described by Mr. Hoare,* compilation time is
much the same as paper-tape reading time. It is thought
that there will be about 3,000 words of instructions in
the compiler, and we hope that it will be available
during the autumn of 1962.

Kidsgrove. Compiling takes longer, but the time
should not be more than three minutes. There are
several passes through the program, aimed at recognizing
and giving special treatment to certain situations which
are amenable to "optimization." Examples of the
situations are simple "for" statements making simple
use of the controlled variable, and exceptionally well-
behaved procedure declarations and their corresponding
calls. Situations which cannot clearly be recognized
as qualifying for optimization are given the full general
treatment—a "fail safe" method. An account of the
detection processes is given by Hawkins and Huxtable
(1962).

Now for the properties which the two compilers have
in common. First, both accept identical versions of
ALGOL 60. The restrictions are:

1. No integer labels.
2. A complete specification part must be provided

with each procedure declaration.
3. The declarator own is given the sense of Reformu-

lation 23 of ALGOL Bulletin 14, except that we do not
allow own arrays with "dynamic" bounds.

4. Where a formal parameter is specified as a pro-
cedure, all the corresponding actual procedures must
have identical specifications. Second, both will be able
to accept the same paper-tape versions of the ALGOL
texts. Third, both will be able to deal with the same
procedures whose bodies are in KDF9 User Code.
This is an assembly code for the machine whose instruc-
tions are in one-to-one correspondence with those of
the computer itself. This point will be expanded later.

Thus there should be complete two-way compatibility.
Here one might mention an experimental compiler for

* See p. 127.

130

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/2/130/340855 by guest on 13 M
arch 2024

ALGOL 60 for the KDF9

DEUCE (a wonderful old machine, which still provides
solace and recreation for those of us who like to be
reminded occasionally of what real programming really
was). This compiler has just been provided with
routines for dealing with KDF9 paper tapes, so that
we have a one-way compatibility between two entirely
different machines—programs for DEUCE ALGOL
will be able to run without change on KDF9.

As for size of machine, both compilers require a core
store of 8,192 words. Whetstone would like three
magnetic-tape units and Kidsgrove four, although both
systems, we think, can be operated with two, with some
inconvenience and fewer "facilities."

There are some important features of the Kidsgrove
scheme which we do not anticipate will be available with
the Whetstone compiler. They are embodied in an
operating system which is still under development.
This provides for several modes of operation—compile-
and-run, compile several programs, compile mixed
sequence of ALGOL and User Code programs, and so
on. It will deal with amendments to programs, and the
printing out of "useful information." The input stage
to the compiler permits the ALGOL text to be presented
in almost any hardware representation within reason.
The user is only required to "declare" his code—that is,
provide a list of the actual tape characters, or combina-
tions of characters, corresponding to the basic symbols
of the Report. A testing system is envisaged, the prin-
ciple being that one should communicate with the
machine only in ALGOL. Calls of special test pro-
cedures could be included in a "test" compilation and
ignored in a "run" compilation.

We hope that the Kidsgrove scheme, or at least the
compiler, will be working by the end of 1962. It
seems there will be around 20,000 words of instructions.

Both compilers are being written in User Code.
We intend to provide a library of ALGOL procedures

to go with either compiler. Naturally enough, the
Kidsgrove scheme will provide the more elaborate
facilities for handling this library. Library procedures
will have their bodies either in ALGOL or in User Code.
The content of the library will depend, of course, on
contributions from users, and on what can be taken
from periodicals or other publications; we would try
to provide a reasonable start with standard functions
and input and output routines.

Use and Teaching
As to the use of the two compilers, I can see the

Whetstone compiler being popular in places where jobs
are "one-off"—where the requirement is to get on and
off the machine quickly and at very short notice—where,
for example, methods are under investigation. The
Kidsgrove scheme is more suitable for places where
operating schedules can be planned and where pro-
grams are run for "production" purposes, where
efficient use of computer time is regarded as important.
Extreme cases of both situations can be found among
our customers.

Some effort has been put into teaching ALGOL at
both Kidsgrove and Whetstone. The teaching manual
(Green, 1961) which was produced at Kidsgrove has
been well received outside English Electric, and most of
it could be useful to those who would like a gentle con-
ducted tour of the essential features of the language.
Perhaps it is too gentle and too cautious. I have found
difficulty in making an ALGOL course, including
recursive procedures, Jensen's device, and side effects,
last as long as four days. I believe that experience at
other establishments has been similar. We have a few
self-taught ALGOL programmers, one of whom has
produced a program for structural analysis running to
a fair-sized book. It makes use of recursive procedures,
naturally.

Non-ALGOL Procedures
Earlier in this talk procedures with bodies in User

Code were mentioned. I think our work on this topic
is worth describing; it could be adapted for use with
other machines.

Section 5.4.6 of the ALGOL Report provides that
procedure bodies may be expressed in non-ALGOL code.
In our case we have taken KDF9 User Code, with some
extensions to provide communication with the sur-
rounding ALGOL context. Such communication is
solely through the parameter list. Since the scheme is
to be implemented for two entirely different compilers,
code procedures must not make use of any internal
properties of a compiler or of the object program.

We make the required extension to the syntax of
section 5.4.6 as follows:

(description) :: = <no. of nesting cells used), <no. of
Q-stores used), <no. of W-stores used), <no. of
V-stores used)

(instruction) :: = <KDF9 User Code instruction) |
"(formal parameter)" | = "(formal parameter)" |
J"(formal parameter)"

(instruction sequence) :: = (instruction) | (instruction
sequence); (instruction)

(code) :: = KDF9 (description); ALGOL

Semantically, specifiers are restricted to exclude
switches and procedures. The three forms for instruc-
tion beyond those in ordinary user code are respectively
for "fetch," "store," and "jump"—the formal parameter
for the last must be a label. Although the example
below—a User-code version of the Innerproduct proce-
dure given on p. 34 of the ALGOL report—can be com-
pletely understood only by those familiar with KDF9,
it should convey the essentials of the scheme to anyone
who understands ALGOL.

Example
procedure Innerproduct (a, b) Order: (k, p) Result: (y);

value k;

131

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/2/130/340855 by guest on 13 M
arch 2024

ALGOL 60 for the KDF9

integer k, p; real y, a, b;

KDF9 4, 0, 0, 2;
ZERO; DUP; DUP; =V1; =V2;

2; SET 1; + ; = > " ;
•y*; " * " ; - ; Ji >z;
V2; VI; "a"; "6"; X + F ; =V1; =V2;
"P";J2;

1; V2; VI; ROUND F; = " / ' ;

ALGOL

The formal parameters, which are each enclosed in
quotation marks in the KDF9 text, are replaced auto-
matically by sequences of instructions for getting access
to the required quantities. The system allows calls by
name and by value. In the example, VI and V2 corre-
spond to the local variable s of the Report version. In
this version the sum is accumulated double length and
then rounded.

The reason for providing so fully for machine-code
procedures is to simplify the introduction of features
which it would otherwise be inconvenient or impossible
to express within ALGOL. For example, one might

References

need a set of procedures for evaluating some frequently-
used functions, and the running speed of the ALGOL
versions, even when translated by an optimizing compiler,
might not be sufficiently close to that of the corresponding
machine-code versions. Input and output, and magnetic-
tape procedures must either themselves be in machine
code or make use of machine-code procedures. Some-
thing like the scheme we have proposed is necessary if
one wishes to get beyond the stage of "read one number,
punch one number."

As was mentioned earlier, machine-code procedures
and ALGOL procedures can be included in the library.
It follows that the user of library procedures for input
and output need know nothing about the KDF9 User
Code.

A matrix scheme proposed for use with our ALGOL
system (Denison, 1962) makes use of a number of
procedures which have already been expressed in
ALGOL. It is probable that they will be rewritten in
User Code for the sake of speed.

Acknowledgement
Acknowledgement is due to those colleagues whose

work is described in these notes. Publication is by
permission of The English Electric Company Limited.

DENISON, S. J. M. (1962). "A Proposed ALGOL 60 Matrix Scheme." Paper to be presented to the 1FIP Congress 62.
DIJKSTRA, E. W. (1961). "ALGOL 60 Translation," ALGOL Bulletin, Supplement No. 10, Mathematisch Centrum, Amsterdam.
DUNCAN, F. G., and HAWKINS, E. N. (1959). "Pseudo-Code Translation on Multi-level Storage Machines," Proceedings of

JCIP, Paris, p. 144.
DUNCAN, F. G., and HUXTABLE, D. H. R. (1960). "The DEUCE Alphacode Translator," The Computer Journal, Vol. 3, p. 98.
The English Electric Co. Ltd. (1961). KDF9 Programming Manual.
GREEN, J. S. (1961). Introduction to ALGOL 60 Programming for the KDF9, The English Electric Co. Ltd.
HAWKINS, E. N., and HUXTABLE, D. H. R. (1962). "A Multi-pass Translation Scheme for ALGOL 60," Annual Review

Automatic Programming, Vol. 3 (to be published).
NAUR, P. , ed. (1960). Report on the Algorithmic Language ALGOL 60, Regnecentralen, Copenhagen
NAUR, P., ed. (1962). "ALGOL Bulletin, No. 14," Regnecentralen, Copenhagen.
RANDELL, B., and RUSSELL, L. J. (1961 and 1962). Descriptions of work for DEUCE and KDF9 in internal memoranda of the

Atomic Power Division, The English Electric Co. Ltd.

Operating experience with FORTRAN
By A. E. Glennie

My purpose in this talk will be to describe the lessons
that I have learned from my own experience, and that
of my colleagues, in using FORTRAN during the last
three years. Some of the points I shall make are speci-
fically about the FORTRAN language itself; others are
about automatic coding in general, and computer
operating systems incorporating compilers. I hope
that what I have to say about the latter aspects, as
revealed in the use of FORTRAN, may be of interest
and value to those of you whose interests and preferences
may be in other languages—or in fields other than
scientific computation.

The History of Our Use of FORTRAN

I think that you will be interested to hear how the use
of FORTRAN in the U.K.A.E.A. developed, as our
story is quite typical of the evolution of a laboratory's
technique and practice. When, in 1958, we started our
first experiments with FORTRAN on the IBM 704, we
had had a long tradition of machine-language coding,
but had also had some experience of automatic coding.

We were not, I think, prejudiced against automatic
coding, yet we were somewhat disappointed with our
first experience with FORTRAN. This was the

132

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/2/130/340855 by guest on 13 M
arch 2024

