
ALGOL 60 for the KDF9

integer k, p; real y, a, b;

KDF9 4, 0, 0, 2;
ZERO; DUP; DUP; =V1; =V2;

2; SET 1; + ; = > " ;
•y*; " * " ; - ; Ji >z;
V2; VI; "a"; "6"; X + F ; =V1; =V2;
"P";J2;

1; V2; VI; ROUND F; = " / ' ;

ALGOL

The formal parameters, which are each enclosed in
quotation marks in the KDF9 text, are replaced auto-
matically by sequences of instructions for getting access
to the required quantities. The system allows calls by
name and by value. In the example, VI and V2 corre-
spond to the local variable s of the Report version. In
this version the sum is accumulated double length and
then rounded.

The reason for providing so fully for machine-code
procedures is to simplify the introduction of features
which it would otherwise be inconvenient or impossible
to express within ALGOL. For example, one might

References

need a set of procedures for evaluating some frequently-
used functions, and the running speed of the ALGOL
versions, even when translated by an optimizing compiler,
might not be sufficiently close to that of the corresponding
machine-code versions. Input and output, and magnetic-
tape procedures must either themselves be in machine
code or make use of machine-code procedures. Some-
thing like the scheme we have proposed is necessary if
one wishes to get beyond the stage of "read one number,
punch one number."

As was mentioned earlier, machine-code procedures
and ALGOL procedures can be included in the library.
It follows that the user of library procedures for input
and output need know nothing about the KDF9 User
Code.

A matrix scheme proposed for use with our ALGOL
system (Denison, 1962) makes use of a number of
procedures which have already been expressed in
ALGOL. It is probable that they will be rewritten in
User Code for the sake of speed.

Acknowledgement
Acknowledgement is due to those colleagues whose

work is described in these notes. Publication is by
permission of The English Electric Company Limited.

DENISON, S. J. M. (1962). "A Proposed ALGOL 60 Matrix Scheme." Paper to be presented to the 1FIP Congress 62.
DIJKSTRA, E. W. (1961). "ALGOL 60 Translation," ALGOL Bulletin, Supplement No. 10, Mathematisch Centrum, Amsterdam.
DUNCAN, F. G., and HAWKINS, E. N. (1959). "Pseudo-Code Translation on Multi-level Storage Machines," Proceedings of

JCIP, Paris, p. 144.
DUNCAN, F. G., and HUXTABLE, D. H. R. (1960). "The DEUCE Alphacode Translator," The Computer Journal, Vol. 3, p. 98.
The English Electric Co. Ltd. (1961). KDF9 Programming Manual.
GREEN, J. S. (1961). Introduction to ALGOL 60 Programming for the KDF9, The English Electric Co. Ltd.
HAWKINS, E. N., and HUXTABLE, D. H. R. (1962). "A Multi-pass Translation Scheme for ALGOL 60," Annual Review

Automatic Programming, Vol. 3 (to be published).
NAUR, P. , ed. (1960). Report on the Algorithmic Language ALGOL 60, Regnecentralen, Copenhagen
NAUR, P., ed. (1962). "ALGOL Bulletin, No. 14," Regnecentralen, Copenhagen.
RANDELL, B., and RUSSELL, L. J. (1961 and 1962). Descriptions of work for DEUCE and KDF9 in internal memoranda of the

Atomic Power Division, The English Electric Co. Ltd.

Operating experience with FORTRAN
By A. E. Glennie

My purpose in this talk will be to describe the lessons
that I have learned from my own experience, and that
of my colleagues, in using FORTRAN during the last
three years. Some of the points I shall make are speci-
fically about the FORTRAN language itself; others are
about automatic coding in general, and computer
operating systems incorporating compilers. I hope
that what I have to say about the latter aspects, as
revealed in the use of FORTRAN, may be of interest
and value to those of you whose interests and preferences
may be in other languages—or in fields other than
scientific computation.

The History of Our Use of FORTRAN

I think that you will be interested to hear how the use
of FORTRAN in the U.K.A.E.A. developed, as our
story is quite typical of the evolution of a laboratory's
technique and practice. When, in 1958, we started our
first experiments with FORTRAN on the IBM 704, we
had had a long tradition of machine-language coding,
but had also had some experience of automatic coding.

We were not, I think, prejudiced against automatic
coding, yet we were somewhat disappointed with our
first experience with FORTRAN. This was the

132

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/2/132/340868 by guest on 13 M
arch 2024



Operating experience with FORTRAN

FORTRAN I language, not FORTRAN II, which we
now use. In retrospect, it is easy to explain our dis-
appointments: there are some obvious reasons, such as
the unreliability of the FORTRAN I compiler and the
conservatism of our mathematicians, who had grown
accustomed to machine-language coding. Yet I now
believe that there were two principal reasons for our
early lack of faith in FORTRAN.

Firstly, the coding produced by the FORTRAN com-
piler seemed to be of much poorer quality than that
produced by our better programmers. In those days
we had not fully realized how expensive machine-
language programming can be because of the expense
of debugging. As computers become faster, and cheaper
per unit of computation, the quality of the coding of
programs (in the sense of compactness and elegance)
becomes less important than the ease with which they
may be written and corrected. We are now prepared
to sacrifice the frills and elegancies in coding; we are
also willing to trade a certain amount of program speed
for the ease of program preparation, communicability
of programs, etc., brought by automatic coding.

The second principal reason against the use of
FORTRAN I was that it lacked the ability to create
and use subroutines, except by a process so difficult as
to be ignored by the average user. This meant that the
user of FORTRAN I had to write his whole program
as a "main program" and to compile it all together.
This was a process very expensive of computer time,
since the program could not be made to work in parts,
which could then be assembled, but had to be re-compiled
to correct every mistake. Since FORTRAN compilers
are relatively slow (because they attempt to economize
the object program), the use of FORTRAN I was
expensive except for very small jobs which would not
require much debugging. It used to be argued that
automatic coding would be of use only to the casual
user with a small problem. It is not sufficiently appre-
ciated that the greatest benefits of automatic coding are
to be expected for the most difficult, complex and lengthy
programs, where the use of automatic programming
may assist the programmer sufficiently to enable him to
penetrate the complexities of the problem.

This, then, was the main shortcoming of FORTRAN I,
which was remedied in FORTRAN II. It was imprac-
ticable to segment a very large program into parts.

Because of the characteristics of FORTRAN I out-
lined above, we were rather slow to appreciate the
properties of FORTRAN II, particularly its use in the
very largest of problems. We had continued to use
FORTRAN for small jobs, but still used machine
language for the largest jobs. Perhaps the most signi-
ficant factor in popularizing the FORTRAN II language
with us was the introduction (in the autumn of 1960) of
the "FORTRAN Monitor System." This is a system
for automatic operation of the IBM 709 or 7090 com-
puter, which allows a FORTRAN subroutine to be
compiled and then incorporated with previously
compiled parts of a program, and then the whole pro-

gram to be run. In spite of the name, the FORTRAN
Monitor System is not bound to the FORTRAN
language; it is merely a system for combining sub-
programs, whether written in machine language or
FORTRAN. But it was the "Load and Go" ability of
the FORTRAN Monitor System which brought FOR-
TRAN to life. Previously a FORTRAN program had
to be compiled in one machine run and then it could be
obeyed in another run. With the FORTRAN Monitor
System, one run sufficed for translating and obeying the
program.

It is now our considered policy to write all future
programs in an automatic code language, and we have
chosen FORTRAN II, not perhaps for its intrinsic
virtues, but because it was available to us on the IBM
7090. We find FORTRAN II to be a very satisfactory
language, subject to some trivial criticisms which follow.

FORTRAN Syntax
I should now like to consider FORTRAN from four

points of view and discuss its syntax, its semantics, the
behaviour of the compiler, and the economics of using
it.

In talking about the syntax of FORTRAN I am
tempted to make an analogy. FORTRAN in its syntax
is like the English Common Law, where precept guides
and the law is not codified. To be quite blunt, the
syntax of FORTRAN is almost impossible to represent
by an exact description as is ALGOL. I do not mean
to imply that it is impossible to know whether what
you write in FORTRAN has proper syntax: it is usually
quite easy, but you must refer to a set of rules which
do not possess the regularity of the ALGOL rules—and,
in critical cases, the only test of the syntax is to try an
example on the compiler. In the last resort, FORTRAN
is defined by its compilers and will show small differences
from one machine to another. Yet one should not
exaggerate this point. For inexperienced programmers,
the difficulty rarely arises, as they do not attempt to
write programs of sufficient elaboration and subtlety to
come against any difficulty in syntax, except in the
writing of input or output statements. These are the
parts of the FORTRAN language that are most recursive
in their syntax, and could admit a concise syntax
description as in ALGOL. They give the average user
a lot of trouble, particularly in the construction of input
or output formats, which are the specifications of the
relations between quantities within the computer and,
for example, the appearance of these quantities on the
printed output.

Perhaps the chief reason for the frequency of errors
in FORTRAN input or output statements lies in their
generality and power, which tempt the programmer to
write statements which are unnecessarily complicated,
I have heard many programmers wish for a simpler
way of getting printed results, without the necessity of
specifying the number of digits before and after the
decimal point, the space between columns, and so on,

133

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/2/132/340868 by guest on 13 M
arch 2024



Operating experience with FORTRAN

which must always be specified in FORTRAN. What
they want is the " ?" printing that is provided in Mercury
Autocode.

The semantics of FORTRAN
I now wish to say a few words about the semantics

of FORTRAN—about the kinds of meanings that
FORTRAN statements have, which colour the methods
that can be used when a program is written in FORTRAN
and not in machine language. My experience has been
that it is very easy to underestimate the power of a
language, like FORTRAN, which is ostensibly suited
only for scientific numerical calculation. With some
trivial subroutines, written in machine language, it is
possible to write data-processing programs, e.g. com-
pilers (even FORTRAN compilers) in FORTRAN,
though perhaps not as economically (in terms of pro-
gram efficiency) as in machine language. This possibility
of extension of FORTRAN II is due to the ability to
use (by FORTRAN statements) machine-language sub-
routines, by which the processing power of the language
may be extended at will. This has been one way in
which we have used FORTRAN, i.e. as a way of writing
only part of a program, completing the rest in machine
language, where there is some advantage in using
machine language.

Returning to the FORTRAN language itself, there
are a few obvious shortcomings which make it awkward
to express the programmer's intention on occasion.
The most notorious of these is the restriction on the
so-called "Do statements" by which the repetitions of
loops may be controlled. There is a restriction here
that the variable which is changed at each repetition of
the loop must always be increased, otherwise the loop
is never-ending. This is an annoying restriction but no
more than that, since it is simple to define functions of
the counting variable that move in the manner desired.

Another annoyance of the same sort concerns state-
ments for conditional branching. These test whether a
numerical expression is positive, negative, or zero—a
three-way test. Usually the programmer wishes to
make a two-way test, yet he has always to specify three
outcomes.

For simple programming, the semantics of FORTRAN
are very straightforward and have caused little difficulty.
After all, FORTRAN is quite a limited language and
therefore simple.

FORTRAN Compilers
FORTRAN compilers are known to be complex and

slow. This is because they do what few other compilers
attempt, the economization of the use of index registers.
FORTRAN allows arrays of numbers of up to three

dimensions, and the FORTRAN compilers make
strenuous attempts to minimize the number of instruc-
tions required to provide access to data in such arrays,
whenever the data is being scanned in a regular manner.
Instead of calculating (by multiplication and addition)
the address of an element of a multidimensional
array, the program produced by the FORTRAN
compiler will build such addresses by additions only,
if the addresses are controlled by counted loops. In
many problems this leads to a very considerable
improvement in the efficiency of the resultant program
as compared with a program produced by a compiler
which does not perform this type of economization.

The effect of this is to allow the user to make free use
of arrays of numbers without any qualms that he will
cripple his program by so doing.

There is no doubt that this economization has made
the FORTRAN compilers extremely complicated and
difficult to perfect; and in fact, FORTRAN compilers
are always being corrected as obscure faults are dis-
covered: not that this causes much trouble to the average
user as his probability of being affected by one of these
obscure faults is very low.

The Economics of FORTRAN

I should like to close by making a few tentative
remarks about the economics of FORTRAN, since the
principal reason for using any such language is often
economic. I shall not attempt any conclusions but
give some facts, from which you may draw your own
conclusions.

Firstly there is the cost of translation. On the IBM
7090, this appears to be between Id. and 2d. per instruc-
tion of the translated program. This is to be compared
with the similar cost of about \d. per instruction for the
compilation of a single instruction from symbolic
machine language. This cost is not great when com-
pared with the other programming costs unless many
repetitions of translation are required. As always, the
principal feature of programming costs is the pro-
grammer himself and nothing, and certainly not
FORTRAN, will prevent bad programmers wasting a
lot of machine time. My conclusion is that if a pro-
grammer cannot save time and effort by using FORTRAN
(or any other autocode) then he is probably not worth
employing. I assume, of course, that the problems
concerned are of the appropriate type for the autocode.

The principal lesson of FORTRAN here is that an
autocode such as FORTRAN must be capable of com-
piling subroutines to machine-language code, to be
combined later by a process of loading much cheaper
than any translation.

134

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/2/132/340868 by guest on 13 M
arch 2024


