
Discussion

Session 3: 18 April 1962 (Morning)

The Chairman (Mr. A. Geary, Vice-President of The British
Computer Society): Ladies and gentlemen, it is my privilege
this morning to take the Chair for what I am sure will be a
very interesting session. My first pleasure is to introduce
Dr. Dijkstra to you. He is well known, and we have the
opportunity this morning of seeing him as well as of hearing
him. As we all know, he is from the Mathematical Centre in
Amsterdam, and has collaborated to some extent with
Professor van Wijngaarden. He is one of the authorities on
ALGOL. We have warned him that there has been a certain
amount of bias against ALGOL in England, in some quarters,
and this morning he will have an opportunity to tell us
precisely why ALGOL is a much better language than any
other of those we may call substitutes.

His book is the second of the A.P.I.C. Studies in Data
Processing, and is called A Primer of ALGOL 60 Programming.
Two or three copies will be available for your inspection.

I have great pleasure in asking Dr. Dijkstra to speak to us
on "Operating Experience with ALGOL 60."

(Dr. Dijkstra then presented his paper), p. 125.

Dr. R. D. Clippinger (Honeywell Controls): I notice that
the Primer does not have such special information as the way
to make use of subroutines. Is that correct? Does the
supplement include such special features?

Dr. Dijkstra: The programming primer is not meant as a
full guide to the use of our implementation. We have men-
tioned the special restriction of" our implementation, and we
have tried to be very careful to make a distinction between
ALGOL 60 and what we could do with it. If somebody is
going to use our systems, he just gets a couple of copies,
probably in Dutch, telling him exactly what facilities are
available. But the primer is continuously expanding.

Dr. Clippinger: In America we consider Europe to be the
leaders in ALGOL, and we are interested in any appendices
which could be used as reference material.

Dr. R. Taylor (National Institute for Research in Nuclear
Science): I am interested in the difficulties of teaching pro-
gramming. Were the students who picked up ALGOL in
four days people with previous experience of machine-
language programming, or complete beginners to program-
ming of any kind?

Dr. Dijkstra: We had a couple of heads of department of
other computation centres from other universities. On the
other hand, we had people who did not know anything about
computers at all, and who did not have any mathematical
training but who wanted to learn about programming.

We also use the course as a short introduction to what can
conveniently be done with a computer, and what can be
expected from it. We had a very varied group of people.
For that reason, where possible we gave an explanation of
the syntactic rules of the language. We showed the kind of
ambiguities you get if you have a language in which you
omit multiplication signs. These ambiguities of the rules
have to be solved for users in order to make them more tolerant.

Dr. Taylor: Have you thought of running different courses
for the two different classes of people ?

Dr. Dijkstra: No. We have one course only.

Mr. C. Strachey (Consultant): I should like to make two
comments about embedding ALGOL into a system. As it
stands ALGOL contains no mechanism for input-output;
there must, therefore, have been some extensions to allow
for the possibility of getting things in and out, especially as
Dr. Dijkstra has ruled out the possibility of any machine-code
procedures.

The second point concerns the business of incorporating
a library of subroutines, and having to write the ALGOL
program in this curious way inside their scopes. This is also
part of the job of incorporating ALGOL into a system.
Has Dr. Dijkstra contemplated introducing some form of
formal editing facilities for joining his tapes together, or
constructing programs out of bits of other programs, which
one often has to do with large programs ?

Dr. Dijkstra: The technique of embedding the program in
a universe which contains a priori knowledge is completely
fair. ALGOL 60 is described as a language to describe
algorithms, and is not a language as a whole. If you have a
piece of text it means something, thanks to your prior
knowledge of the way to read it. The technique of ALGOL
60 is that if something is not defined in the block itself, it is
defined in one of the surrounding blocks. If you wish, you
can go further and think about it as a whole language
embedded in a universe which tells you what "plus" means.
If you have to define the process there is a level of descrip-
tion, and if you restrict yourself to a description of algorithms,
as ALGOL 60 does, input-output does not come in. But if
you want to use a machine, you are forced to go into a little
more detail.

We feel that it was completely compatible with the spirit
of the language to do this with the universe surrounding it.
We do not actually embed it in a tape with a beginning round
it and declarations round it. The translator has the prior
knowledge as a series of identifiers of procedures which are
contained in the library, and when it translates a program
it just notes which of these library routines are used. Finally,
when the object program is read in, the library passes through
the tape reader and is read in selectively. You may have
library routines, A, B, C and D. It may be that A uses B
and B uses D, and C also uses D. The organization must
be such that if the program called explicitly for library A,
B and D are also read in, and if you call explicitly for C,
D will also be read in. If you call explicitly for A and C
you must see that B and D are called in only once, and if
you have two routines—E and F—which call one another,
mentioning one explicitly calls the other in. I hope that this
more or less answers the question how to compose a program
from different bodies and how it is organized. From its very
structure it can detect what it needs.

Mr. Strachey: What facilities are there for making one's
own library? If the library is made for you, you have no
facilities for assembling except for those made for you by
somebody, and presumably published in Dutch;—to which
I have no access.

Dr. Dijkstra: The possibilities of making one's own library
are unlimited, provided you can convince those who can tell
you how to do it that it is worth telling.

135

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/2/135/340874 by guest on 19 April 2024



Discussion (Session 3)

The following papers were then presented:
"Progress Report on the Elliott ALGOL 60 Compiler," by

C. A. R. Hoare (Elliott Brothers Limited) p. 127.
"Implementation of ALGOL 60 for KDF9" by F. G. Duncan

(English Electric Co.) p. 130.

"Operating Experience with the FORTRAN Language"
by A. E. Glennie (A.W.R.E.) p. 132.

Mr. G. M. Davis (English Electric Co.): As Chairman of
the Society's Committee on Standardization of Programming
Languages, I would like to add a few words to what has
already been said on this matter. The whole subject is quite
difficult for a number of reasons, but I would not agree that
the number of committees considering it is in itself a major
cause of difficulty. This is the way in which standardization
normally works. I can illustrate this by reference to the
work on character sets and coding which has been going on
for some years. This has involved at least three British Trade
Associations and one international one, the British Standards
Institution, the International Standards Organization and
other national standardizing bodies such as the American
Standards Association. These bodies all work well together,
each one handling aspects relevant to its own position and
problems with which it is particularly concerned, and preparing
recommendations to put to larger bodies.

Things are moving well towards putting forward an inter-
national standard for character codes, so it cannot be said
that the number of committees is the trouble. In the case
I have quoted this method works well, because there is
substantial common membership on the committees, and
there are many invitations to members of one committee to
sit in with another. That is something we have not yet
established with the growing number of committees concerned
with programming languages, and it is necessary to establish
it if our system is to work well.

Once the character code standard is produced it will be a
solid and comprehensible document, which will probably
last for some time. It is a little questionable whether this
would ever be true in the case of programming languages,
but we are not yet at all clear as to what might be meant
by standardization in this field. This is the point which, the
Society Committee is currently looking into, considering the
possibilities and trying to reach reasonable conclusions upon
which people might work. Our terms of reference are "To
consider the desirability, feasibility, and possible scope
of standardization in programming languages." Mr.
d'Agapeyeff may have been a little over-enthusiastic when
he suggested that we had reached a conclusion. We are still
working towards it. The members of the Committee—
looked at from the Chair—are highly creative, independent
people and if we reach a conclusion it will certainly have
already satisfied a range of conflicting interests.

I do not want to deal with the substance of the matter,
because that might be prejudicing the conclusions that might
be reached, but some things can be said. Firstly, about the
form which standardization might take: there might be
standardization of one language which will do everything,
or one language with variations to meet different fields of
application, or several languages to cover different fields of
application. Apart from this, many useful things might be
done, by international agreement, with an element of
standardization. We might be able to agree standards of
maintenance arrangements and the efficiency of such arrange-
ments, for keeping languages up to date, dealing with

modification and correcting errors, or for testing compilers
over the field for which they are intended. We might also
agree on the standardization of means of specifying and
describing languages. Until this is done one cannot start the
standardization of languages themselves.

It has been suggested that the standardization of languages
might have the effect of stultifying their development and the
development of computing equipment; there is no doubfthat
this is a real danger. However, some people have quoted the
fact that Dr. Clippinger's Honeywell 1800 has the same code
as the 800, as an argument against standardization, and this
is not really relevant; FACT is in no sense a standard; it is
a piece of equipment into which a lot of capital has been
poured, and it therefore has its influence on other things,
but this has nothing to do with standardization.

There are already powerful commercial interests moving
towards standardization, and vague overall objections are not
likely to be very effective. It would be better either to join in
and try to influence the course of development, or to keep
out of the way.

There are also genuine user interests, in avoiding capricious
and vexing variations which are unhelpful to the great mass
of people who want to program computers and want to
exchange information. There is advantage in trying to avoid
capriciousness. There are also advantages in trying to run
jobs on a variety of machines from a centre; this is already
possible to some extent with FORTRAN. International
standardization might offer advantages in exchanging informa-
tion, for example exchange of procedures written in ALGOL;
such exchange is hindered by continuous development of the
language; variations would better be introduced by periodical
revision with constancy in between.

1 should point out that what I have said represents my own
views and not those of my Committee. I am glad to have
this opportunity of raising the matter, since we have Dr.
Clippinger here, who is Chairman of the International
Standards Organization Working Group on the subject. In
the work on character codes, there was some initial suspicion
among the various bodies concerned, before they got to know
each other; Dr. Clippinger might like to take the opportunity
to say something to resolve any existing misunderstandings
on the present subject.

Dr. Dijkstra: I am sorry that I did not mention that our
group spent three days in April 1960 in Copenhagen, where
we had some very inspiring discussions.

Mr. Hoare said that multiple error indication presented
some difficulties. Our experience with ALGOL is that the
first program of the user is full of clerical errors, but this kind
of error decreases so fast that it is hardly worth while in
subsequent programs continuing to check for it, after finding
the first one, because there is a fair probability that it is the
only one.

Mr. Glennie stated that the FORTRAN translator is slow,
for instance, on account of optimization. At the Rome
meeting last month a contributor showed a very elegant way
to optimize exactly the situation required, but this can be
very time-consuming. One reason why FORTRAN transla-
tion tends to be slow is the requirement that you can translate
several things independently. This makes translation more
difficult. I should like to know whether Mr. Glennie has
any inside information about this fact.

I was somewhat shocked by the frequent mention, by Mr.
Glennie and Mr. Hoare, of the general unreliability of these
translators. I regard language as a tool. You must learn to
love it, and it must be reliable. One reason why we did not

136

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/2/135/340874 by guest on 19 April 2024



Discussion (Session 3)

have extensive optimization was that we were afraid that we
could not guarantee its accuracy any longer. I strongly object
to the allegation that the unreliability of the translator does
not matter so much because it is highly improbable that it
will hurt the common user. I should prefer to direct our
attention to the uncommon user. In my opinion he is the
man who matters.

Mr. Glennie: I seem to be the principal target of Dr.
Dijkstra. 1 was stating the facts as I know them. 1 agree
it is undesirable that a compiler should be unreliable. In this
context, however, the benefits of optimization often outweigh
the troubles we get in FORTRAN. The FORTRAN Com-
piler was written many years ago, basically before people
like Dr. Dijkstra and the Copenhagen group began to study
compilers in a theoretical manner. We cannot expect that
in the future the experience of the past will be replicated.
Within the next five years I expect that we shall have reliable
economizers. I do not think it would be advisable to take
Dr. Dijkstra's point too seriously.

Dr. Clippinger: With regard to standardization at an
international level, it is worth noting that there are approxi-
mately 1,000 American standards, and there are apt to be a
similar number of British standards, and standards of various
other nationalities. There are approximately 100 inter-
national standards of all classes. There are fewer inter-
national standards because more people have to agree, and
it takes longer to arrive at agreement. It is also more complex
to arrive at agreement, and some international standards
have taken a very long time to develop—some have taken
twenty years.

1 cannot predict how fast standardization will occur in the
programming-languages field, or even whether it will occur.
1 cannot speak for my Committee because it has been in
existence for only a very short time. It has only had one
meeting. It has been doing some work in preparation for
another meeting, but nobody could distill the essence of the
opinions of the members of the Committee yet from such a
short exposure.

1 could speak a little more from the point of view of what
is going on in the United States, but I do not think that this
is the appropriate time. That is about all 1 can say—except
that there is a meeting in Stockholm on 9 and 10 May, which
will be attended by members from many countries. The
agenda will include a discussion of such things as the survey
of programming languages, which survey is far from com-
plete; it is only just getting started. There will also be a
discussion on the interaction between work on programming
languages and coding character sets. Where this discussion
will be I cannot predict.

1 now direct myself to an entirely different point. The
question of how much checking of a compiler is appropriate
is very interesting. It is similar to the question of how much
checking is appropriate in a machine. In the early days
people attempted to construct machines without checking and
they had a lot of trouble getting the machines to run long
enough to get any useful work done, and to have a mean free
period between errors that was great enough. They started
to build in checking facilities, and some machines had a lot
of checking—and that raised a new problem: they could not
do any work at all, because they kept bumping into checks.
This forced them to improve the machines until they began
to work very well, and the mean free period between errors
got very much longer until it reached the point where the
operators asked themselves, "If we removed some of the
checking equipment, would it not be better?"'

Because some checking circuits fail occasionally, there
has been a feed-back principle governing computers, and you
arrive at a good balance between main and checking circuitry
and the circuitry for getting the job done only as a result of
determining how reliable the components are. A similar
consideration applies in the case of the design of compilers.
Certain kinds of checks are put in because one has
certain habits and does things one did before, but when
the compiler is used it is discovered that some of the built-
in checks are completely inappropriate and should be
removed. They provide information that does not have a
value corresponding to the efforts it took to get the checks
incorporated.

On the other hand, there is probably some irreducible
minimum to the amount of checking to be done, and we shall
not know for sure until we have more experience of what
this amount is. But I think that it is somewhat less than in
the second generation of FORTRAN compilers, and it may
be a little more than Dr. Dijkstra has now. It is an interesting
question.

Dr. Dijkstra: I thought that one of the main differences
between the hardware and the software was that the hard-
ware might be O.K. today and wrong tomorrow, whereas
the software had the unique property of being independent
of time. For that reason the analogy mentioned seems
somewhat superficial.

Mr. Glennie: It did not seem to me that this comment was
superficial. The programmer—the compiler of a program—
by definition makes mistakes all the time, and therefore there
should be checks.

Dr. Clippinger: Those two comments on my remarks seem
to be diametrically opposed. Dr. Dijkstra said that the
comments were inappropriate, because of the logic that if
it is correct it is correct and there are no further errors to
worry about, but Mr. Glennie said it was not those errors
that we were talking about. He said that it was the errors
of the human that were pertinent. Those errors will continue,
so I think that my remark that we do not yet know how much
checking is appropriate is still pertinent, in order to take care
of the errors created by humans. 1 am sure that a certain
amount will be appropriate in the future, and it is important
to determine what is a reasonable amount.

Dr. Wilkes (University Mathematical Laboratory, Cam-
bridge): The standardizing of programming languages is
beginning to engage the attention of many people. It is,
therefore, worth while to consider what type of progress we
want to make in this field. 1 suggest that the most useful sort
of standardization is that which concerns itself with saying
exactly what is meant by a given article. It is, for example,
useful to know exactly what is meant by a 2BA screw thread.
Similarly, it will in the future be useful to know exactly what
is meant by a given programming language, such as a par-
ticular edition of ALGOL, or a particular mark of FORTRAN.
But to suggest that standardization should mean the selection
of one particular language to be used on all occasions, in
preference to all others, appears to me to betray a very super-
ficial knowledge of the subject. It may be that no one in the
programming field believes that this is what standardization
should mean in relation to programming languages. If so,
it would help to have a clear statement to that effect.

Mr. M. Woodger (National Physical Laboratory): Even if
it is desirable to describe precisely a variety of programming
languages, rather than a single universal language, will it not
still be necessary to choose a single language in which to
express these descriptions?

137

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/2/135/340874 by guest on 19 April 2024



Discussion (Session 3)

Mr. J. S. Hillmore (Elliott Bros. (London) Ltd.): In his talk
Mr. Duncan explained that considerable effort had gone into
enabling the KDF9 ALGOL compiler to accept procedure
bodies written in User Code. On the other hand, Dr. Dijkstra
has said that he does not think that ALGOL programs
should contain anything but pure ALGOL, and has implied,
to my mind, that even if the X.I had a larger store he would
not incorporate into his compiler the facility of dealing with
machine-code blocks. Will the panel discuss this matter a
little further and state whether they think that one should
be able to put machine code into ALGOL, or whether
ALGOL is ALGOL and nothing but ALGOL?

Mr. Duncan: The thing about implementing ALGOL by
making it part of an automatic-coding system is that it should
be possible to communicate with it. A means for this com-
munication has been provided in the report, and we have used
this means in the way that I have sketched.

Dr. Dijkstra: You have rightly interpreted my saying that
even if we had a larger store we should have to deny the
possibility of inserting machine code. The library procedures
about which I have been talking are in machine code, but it
is one of the unavoidable drawbacks that constructing them
and putting them in the library is a somewhat elaborate
procedure. It is so elaborate that it is a good brake to prevent
machine code coming in again. The library contains an
unlimited number of procedures. It is growing very fast.
Many of its procedure functions can be written in ALGOL
as well. They are put in the library first to take the burden
from the programmer who wants to use them and, secondly,
because they are considerably more efficient than anything
the translator can make out of them.

Mr. Hoare: I should like to make clear our approach to
the question of machine coding in ALGOL programs. We
agree with Dr. Dijkstra mainly, but there is one point which
is peculiarly relevant to our operating system. If a casual
user is allowed to use a machine code in his programs he will,
as likely as not, overwrite the translator, and this will cause
far more trouble than any optimization he thinks he may
have achieved by putting in machine-code instructions.

Mr. Duncan: We have a requirement for various kinds of
input and output procedures. Our solution is a simple one,
which makes it possible for us to read into an ALGOL
program information prepared in rather peculiar forms, for
reasons best known to the people who produce these data.
The whole question is a little misunderstood. I do not think
that we are encouraging people to use machine code unneces-
sarily; what I am saying is that all the functions and pro-
cedures in the library are either procedures with ALGOL
bodies or procedures with machine-code bodies, constructed
in accordance with the directions of the report. The report
seems to be quitt adequate here, and the problem of com-
municating between the outside world and the ALGOL
program is important. We want to be able to read various
forms of data and have a fine control over the appearance of
our results on the printed sheet. That is a perfectly legitimate
requirement requested by our customers.

Mr. P. Wegner (London School of Economics): I should
like to ask three questions of Dr. Dijkstra. The first con-
cerns the relationship between ALGOL and FORTRAN.
Dr. Dijkstra said in his paper that ALGOL was a more
advanced language than FORTRAN. I strongly disagree
with this statement.

Although ALGOL is, in certain respects, more elegant,
FORTRAN is a more complete language since it includes
input/output and system facilities. Moreover, FORTRAN

has certain advantages over ALGOL even in the area of
algorithmic procedures where ALGOL is strongest. As
Mr. Glennie pointed out, FORTRAN permits the use of
independently manipulatable subroutines. This is not
possible in the case of ALGOL, since ALGOL procedures
must be physically embedded in a context. The importance
of facilities for contextually independent subroutines within
a programming system cannot be underestimated. Such a
facility permits a complex problem to be stated in terms of
the solution of a number of independent subproblems—a
procedure which is closely analogous to that of everyday
problem solving. ALGOL does not permit the statement of
a problem in terms of independent subproblems, since sub-
problems in ALGOL must be embedded in a context. This
is a grave drawback of ALGOL, which becomes evident
particularly when ALGOL is used for the statement and
solution of large problems.

The second question is concerned with the relative impor-
tance of main memory and auxiliary storage. Dr. Dijkstra
has said that he is adding additional units of 4K (4,000 words)
to his basic 4K machine. If he had a choice between an
additional 4K. and two tape units, which would he prefer?
Would the addition of a backing store make a great deal of
difference to the implementation of his ALGOL compiler?

Finally, does Dr. Dijkstra advocate recursive procedures
because he feels that it helps the user to love his tools ? I feel
that a reason of this kind is valid and important, and would
agree with him that aesthetic considerations are among the
most important in the formulation and implementation of a
language.

Dr. Dijkstra: The main virtue of recursive procedures is
that they make the tool more lovable for computers. A few
weeks ago somebody used the phrase "ALGOL playboys"
in a nasty fashion, and I was very angry. A Dutch philo-
sopher wrote a big book called Homo Lucidas—the plain
man—showing clearly that everything which, ages later, was
regarded as of some significance, had started off as being
100% plain.

Fate has decided the question of the 4K. memory for us.
It was fairly easy to get another 4K. added, whereas for the
same machine a magnetic-tape backing store was a different
matter. We could extend to a 12K memory, if tapes become
available. It is a question of the lifetime of our installation.
It is less powerful without a big store. One of the great
advantages of extension is that it is very simple. You just
change some contents of the storage allocation scheme and
everything goes on fine again.

Similarly, if you start having a drum, or tapes, there is a
new piece of software, which must also work properly. As
for the backing store, I hope to move for the rest of my life
in circles where it is not obligatory to use magnetic tape.
I hope that drums will become available, which will serve for
most applications.

I still do not understand the point about segmentation.
The procedure in ALGOL 60 is as flexible as 1 can imagine.
In my opinion retranslation of the whole lot should not pose
a problem.

Mr. B. Randell (Atomic Power Division, English Electric):
As a member of the group working on the KDF9 ALGOL
Translator at Whetstone, I think I could throw some light
on our reasons for allowing the inclusion of machine code
in ALGOL programs. There are two very important advan-
tages. It will save duplication of effort, and also allow us to
put off the thorny problem of standardizing input and output.
Once a system for including machine code in ALGOL is

138

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/2/135/340874 by guest on 19 April 2024



Discussion (Session 3)

published the two groups in English Electric can go ahead
with their respective translators, each with its separate field
of application.

Somebody mentioned recursive procedures, and people
playing with them. Most published examples show you
how to do this—for instance, the famous factorial example—
and it would be difficult to think of a less efficient procedure
for factorial than this. However, if you have a procedure,
written by somebody else, which uses, say, an integration
routine, it would be possible to use this procedure, even
within the integration routine, without having to delve into
the procedure. That is the real benefit of recursive procedures.

Mr. F. S. Ellis (Elliott Brothers): Dr. Dijkstra has quoted
certain ratios in connection with ALGOL programs and
handwritten programs. Can he give the corresponding ratios
in time involved in writing the handwritten programs and
the ALGOL programs? Mr. Glennie quoted a figure of
3 to 1 in cost, but what about time? Do you more than

make up for the difference in cost by the saving in time?
Dr. Dijkstra: The corresponding ratios in writing time

might be 100 or 1,000. It goes up on an exponential scale
in practice. That is why so few comparisons with run-time
systems are available.

Mr. Glennie: The difficulty of answering questions as to
the effect of ALGOL and FORTRAN on programming times
is that there is no such thing as a standardized programmer.
But I would say that you might expect to get a gain of 2 or 3
to 1 with FORTRAN with the average programmer, assuming
the problems were defined.

The Chairman: I am sorry to have to draw this discussion
to a close, but we have to meet again at 2 o'clock. I know
that you would wish me to add your thanks to mine, to our
four speakers. We are indebted to Dr. Dijkstra, Mr. Hoare,
Mr. Duncan and Mr. Glennie for making this morning's
session a great success. Thank you very much. (The con-
ference adjourned.)

Computation of the latent roots of a Hessenberg matrix by
Bairstow's method

By D. C. Handscomb
This paper gives the details of an algorithm, equivalent to Bairstow's process, for finding the real
quadratic factors of the characteristic polynomial of a Hessenberg matrix, working from the
matrix itself. This includes a method of removing known factors without introducing serious
errors into the remaining roots.

Introduction

1. Bairstow's method of finding the real quadratic
factors of a polynomial is well known (Wilkinson, 1959b),
and can obviously be applied to the problem of deter-
mining the latent roots of a matrix from its characteristic
polynomial. However, the roots of a polynomial are
often very sensitive to errors in its coefficients, and it is
therefore necessary to carry the calculation to much
higher precision than is ultimately required.

We shall here describe an alternative direct method of
finding the roots of a lower Hessenberg matrix {a;y}, in
which a,j = 0 when j > / + 1. Wilkinson (1959a) has
shown that any real matrix may be turned into this form,
by similarity transformations, without great loss of
accuracy.

We do not subject the matrix to any further trans-
formation, so avoiding the inconvenience of multiple-
precision arithmetic. On the other hand, unless the
matrix is small or very sparse, this direct method calls
for many more multiplications than are needed to solve
the expanded polynomial.

The fact that we never construct a characteristic
polynomial compels us to find a substitute for the usual
method of dividing out each factor before attempting to
find the next. The device which we use is in fact more
accurate than the usual method, and could profitably
be used on explicit polynomials also.

Bairstow's Process for Hessenberg Matrices

2. In order to clarify the subsequent removal of factors,
we shall present Bairstow's process in terms of an
algebraic congruence. If F(X) is the polynomial whose
quadratic factors are sought, and (A2 + pX + q) is an
approximation to such a factor, then we first find the
coefficients of the congruence

F(X) = {{Xa + b) + (A2 + p\ + q)(Xc + d)}
modulo (A2 + pX + q)2. (1)

In finding these coefficients, we may multiply F(A) by
any constant scale factor, since all the expressions which
we shall encounter are homogeneous in a, b, c, and d.

The second step is to replace p and q, respectively, by
(p + 8/>) and (q + 8q), where

and 8q =

ad — be
d2 — cdp + c2q

acq + bd — bep
d2 — cdp + c2q

(2)

Under appropriate conditions, these new values are then
better approximations to the coefficients of the quadratic
factor.

It may easily be shown that this is Bairstow's process.
If we differentiate the congruence (1) with respect to p

139

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/2/135/340874 by guest on 19 April 2024


