
Discussion (Session 3)

published the two groups in English Electric can go ahead
with their respective translators, each with its separate field
of application.

Somebody mentioned recursive procedures, and people
playing with them. Most published examples show you
how to do this—for instance, the famous factorial example—
and it would be difficult to think of a less efficient procedure
for factorial than this. However, if you have a procedure,
written by somebody else, which uses, say, an integration
routine, it would be possible to use this procedure, even
within the integration routine, without having to delve into
the procedure. That is the real benefit of recursive procedures.

Mr. F. S. Ellis (Elliott Brothers): Dr. Dijkstra has quoted
certain ratios in connection with ALGOL programs and
handwritten programs. Can he give the corresponding ratios
in time involved in writing the handwritten programs and
the ALGOL programs? Mr. Glennie quoted a figure of
3 to 1 in cost, but what about time? Do you more than

make up for the difference in cost by the saving in time?
Dr. Dijkstra: The corresponding ratios in writing time

might be 100 or 1,000. It goes up on an exponential scale
in practice. That is why so few comparisons with run-time
systems are available.

Mr. Glennie: The difficulty of answering questions as to
the effect of ALGOL and FORTRAN on programming times
is that there is no such thing as a standardized programmer.
But I would say that you might expect to get a gain of 2 or 3
to 1 with FORTRAN with the average programmer, assuming
the problems were defined.

The Chairman: I am sorry to have to draw this discussion
to a close, but we have to meet again at 2 o'clock. I know
that you would wish me to add your thanks to mine, to our
four speakers. We are indebted to Dr. Dijkstra, Mr. Hoare,
Mr. Duncan and Mr. Glennie for making this morning's
session a great success. Thank you very much. (The con-
ference adjourned.)

Computation of the latent roots of a Hessenberg matrix by
Bairstow's method

By D. C. Handscomb
This paper gives the details of an algorithm, equivalent to Bairstow's process, for finding the real
quadratic factors of the characteristic polynomial of a Hessenberg matrix, working from the
matrix itself. This includes a method of removing known factors without introducing serious
errors into the remaining roots.

Introduction

1. Bairstow's method of finding the real quadratic
factors of a polynomial is well known (Wilkinson, 1959b),
and can obviously be applied to the problem of deter-
mining the latent roots of a matrix from its characteristic
polynomial. However, the roots of a polynomial are
often very sensitive to errors in its coefficients, and it is
therefore necessary to carry the calculation to much
higher precision than is ultimately required.

We shall here describe an alternative direct method of
finding the roots of a lower Hessenberg matrix {a;y}, in
which a,j = 0 when j > / + 1. Wilkinson (1959a) has
shown that any real matrix may be turned into this form,
by similarity transformations, without great loss of
accuracy.

We do not subject the matrix to any further trans-
formation, so avoiding the inconvenience of multiple-
precision arithmetic. On the other hand, unless the
matrix is small or very sparse, this direct method calls
for many more multiplications than are needed to solve
the expanded polynomial.

The fact that we never construct a characteristic
polynomial compels us to find a substitute for the usual
method of dividing out each factor before attempting to
find the next. The device which we use is in fact more
accurate than the usual method, and could profitably
be used on explicit polynomials also.

Bairstow's Process for Hessenberg Matrices

2. In order to clarify the subsequent removal of factors,
we shall present Bairstow's process in terms of an
algebraic congruence. If F(X) is the polynomial whose
quadratic factors are sought, and (A2 + pX + q) is an
approximation to such a factor, then we first find the
coefficients of the congruence

F(X) = {{Xa + b) + (A2 + p\ + q)(Xc + d)}
modulo (A2 + pX + q)2. (1)

In finding these coefficients, we may multiply F(A) by
any constant scale factor, since all the expressions which
we shall encounter are homogeneous in a, b, c, and d.

The second step is to replace p and q, respectively, by
(p + 8/>) and (q + 8q), where

and 8q =

ad — be
d2 — cdp + c2q

acq + bd — bep
d2 — cdp + c2q

(2)

Under appropriate conditions, these new values are then
better approximations to the coefficients of the quadratic
factor.

It may easily be shown that this is Bairstow's process.
If we differentiate the congruence (1) with respect to p
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and q, and evaluate it at the roots of (A2 + pX + q),
we find that

'da/dp = cp — d, ?>b/~i>p = cq,
Da/Zq = - c, Wdq = - d. (3)

The condition that a and b should vanish when p and q
become (p + Sp) and (q + 8q) is then, to the first order,

a + (cp — d)8p — c8g = b + cq8p — d8q = 0. (4)

These equations are satisfied by (2).

3. In the case where F(X) = det (A — XI), A being a
lower Hessenberg matrix of order n, the values of a, b, c,
and d, may be found directly from the matrix by the
following process. Starting with w, = j>, = z, = 0,
and x, = 1, we generate sets of numbers a,, bh ch d:

(for / = 1 , 2 , . . . , «), and wh xh yh z,- (for / = 2, . . ., n),
by means of the equations

°i = Pwi — X,+ S

b-, = qw-, + 2 a,jXj
j-i

i

Ci = Pyi - Z; + S
(5)

and

(6)
z,- =

Then a = an, b = bn, c— cn, d = rfn. (7)
It can be shown, by induction on the value of n, that

the quantities (7) satisfy the congruence (1), apart from
a constant factor.

If any superdiagonal element a-,_x-, of the matrix
vanishes, it must be approximated by a small number to
permit the divisions (6) to be performed. It is in such a
case that scaling may be required, in order to keep all
numbers within range. We scale them down by reducing
in the same ratio all the quantities ah bh ch dh wh xh

yh zh so far generated.
It will be seen that we need to keep only the current

values of ah bh ch and dh but that we need the whole
sequence of values of w;, xt, y,, and z,. The number of
working locations required, apart from those occupied
by the matrix, is therefore of the order of 4«, and the
number of multiplications required to generate these
numbers is of the order of In1, provided that we do not
scale them down too often.

The process represented by equations (5) and (6) is
similar to the forward-substitution process which Hyman
uses (Wilkinson, 1960), together with Muller's inter-
polation method, to find the complex roots of the matrix,
one at a time. Either process can locate well-conditioned
roots to almost the full precision of the computation.

p'
f
a'
c'
a"
c"

= P -
= PP'
= bp'
= ce -
— a'e
= d'p'

- P
— q'
- aq'
- a'

— c'q'

q'
e
b'
d'
b"
d"

— Q ~
= fq'~
= ¥-
= de-
= b'e

• q

- qp'2

- aqp'
- b' — a'p

= d'f- c'qp'

Removal of Quadratic Factors

4. If Bairstow's method is to give us automatically a
complete set of quadratic factors, we must have a means
of removing factors of F(X) as we find them. If .F(A)
is given explicitly as a polynomial, they may be removed
explicitly by long division; however, Wilkinson (1959b)
has shown that this process introduces errors into any
roots which are smaller than the roots of the dividing
factors, so that it is essential that the roots should be
found in increasing order of magnitude. In the following
method, on the other hand, the order in which the
factors are found is irrelevant.

We suppose that a, b, c, and d, have been derived
by (5), (6), and (7), and that (A2 + PX + Q) is a known
factor of/"(A). It may then be shown that

(A2 + PX + Q){(Xa" + b") + (A2 + pX + q)(Xc" + d")}

= e2{{Xa 4- b) + (A2 + pX + q)(Xc + d)}

modulo (A2 + pX + q)1, (8)

where

(9)

Therefore we may effectively divide out the factor
(A2 + PX + Q), by replacing a, b, c, and d, by a", b", c",
and d", repeating the process for every known factor.
(Again we are free to introduce a scale factor, should the
numbers become too large or small.)

If (A2 + PX + Q) is not an exact factor of F(X), the
result of this replacement is simply that we find our-
selves using Bairstow's process to locate the roots of the
rational function F(X)/(X2 + PX + Q). This process
will lead correctly to another factor of F(X), provided
that neither root of (A2 + pX + q) comes too close to
a root of (A2 + PX + Q). We may notice that the
condition for two such roots actually to coincide is that
the quantity e, which appears in equations (9), should
vanish.

Example
5. To illustrate the virtues of this method of factor-
removal, when the factor is subject to error, we apply
it to the quartic polynomial
F(A)= A 4 - 111A2+ 110A = ( A 2 - A)(A2 + A - 110).

(10)

Suppose first that we have been given (A2 + A — 100)
as an approximation to the second factor, and that we
are now using Bairstow's process to find the other factor,
starting from (A2 + 2A + 1). The first step (1) gives
us a = 328, b = 108, c = - 4, and d = - 109.
The algorithm (9) for factor-removal then gives
a" = — 330200000, b" = - 111200000, c" = - 406920,
d" = 109373120, from which we deduce the improved
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quadratic (A2 — 1 0004A — 0 005). The next iteration
gives us (A2 — 0-9999986A + 0 000018), and conver-
gence is quadratic. If we had simply divided out the
second factor, we should have been left with the
quadratic (A2 — A — 10), with no hope of improvement.

Conversely, if we had been given (A2 + 2A + 1) for
the first factor, using Bairstow's method to improve on
(A2 + A — 100) as an approximation to the second,
the method of this paper would have given us
(A2 + 0-938A - l l l-18)and(A2 + 0-9998A- 110003)
as successive approximations, while simple long division
would have left us with (A2 — 2A — 108).

The point to notice here is that, with our method,
Bairstow's process will eventually converge to the correct
factor, whereas, with the conventional method, conver-
gence is limited by the accuracy of previously obtained
factors.

Mercury Program

6. This process has been programmed for the Mercury
computer, the complete program including also a routine
which reduces a general square matrix to Hessenberg
form by elementary similarity transformations, and a
routine which obtains the latent vectors by applying to
the Hessenberg matrix an elimination process similar to
Wilkinson's method for codiagonal matrices (Wilkinson,
1958). Single-precision arithmetic (29-bit floating binary)
is employed throughout.

To start the Bairstow process, the program always
takes a quadratic whose roots are near to the average
of those roots of F{X) which it has yet to find. This
average is easily deduced from the diagonal elements
of the matrix.

Precautions, similar to those described by Wilkinson
(1959b), are taken to speed up the approach to con-
vergence. If we define the length of an iterative step to
be {(8p/p)2 + (&q/q)2}\ special action is taken when-
ever the length of one step is more than 3 times the
length of the preceding step. The program distinguishes
two cases here, according to whether or not one root of
the quadratic, nevertheless, continues to converge. In
case one root continues to converge, it is assumed that
the other root of the quadratic corresponds in fact to a
pair of complex roots of /"(A), and the next trial factor
is found by dividing the right-hand side of the con-
gruence (1) by (A — A,), where A, is the convergent
root. This has the effect of diverting the search to the
suspected complex roots. In the second case we can
only proceed empirically, and the program in fact simply

Table 1

1
2,3

4
5
6
7,8

9
10, 11

12
13
14
15
16
17,18

19
20
21
22

ACTUAL ROOT

0-6120842
f 0-2859394
|+/0-06599475

0-1859416
0-1652502
0-1439745

J 0-1222192
\ + iO-01961939

0-07952003
f 0-04149856
[+/0-06709468

007313159
0-06936648
0-06520933

— 002779673
0-0000015735

f 0-0000007035
\+ /O-OO00O1319
- 0-000000739

0-000000984
0-0000003004

- 0-00000007984

COMPUTED ROOT

0-6120842
f 0-2859394
|+i0-06599477

0-1859416
0-1652502
0-1440724

f 01222191
{ + /0-01961939

0-07952002
J 0-04149855
\+/0- 06709469

007313159
0-06936650
0-06520932

- 0-02779672
0-0000015728

f 0-0000007033
|+ /O-OOOOO1317
- 0000161

0-000000988
0-0000003007

- 0-00000007966

reduces Sp and 8q so that the length of the new step
becomes exactly 3 times that of the previous step.

This program has been in use for some months, and
has usually proved successful. On average it is slightly
faster than a similar program which locates the roots by
Muller's method, to the same accuracy. Failure to
converge has generally been attributable to the presence
of a cluster of nearly-equal roots. This condition is,
however, neither necessary nor sufficient to cause failure.
For instance, the program found all the roots of a
certain Hessenberg matrix, of order 22, in 12| minutes.
The actual and computed roots are shown in Table 1,
and we observe that this matrix has a cluster of 7 roots,
all very near the origin. It appears that only one root
(the 19th) has been catastrophically miscalculated as a
result of this. The error in the sixth root arises from
it having been determined from the same quadratic
factor as the 19th.
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