High accuracy difference formulae for the numerical solution
of the heat conduction equation

By A. R. Mitchell and R. P. Pearce

A method is given for generating systematically difference replacements of the heat conduction
equation of any desired order of truncation error. The method is then used to obtain explicit
and implicit formulae of high accuracy.

1. Introduction

In recent years many finite-difference replacements have
been proposed for solving the heat conduction equation

du %

d dx?
where x, t are the distance and time co-ordinates respec-
tively. Most of these, together with conditions for their
stability, can be found in works such as Richtmyer (1957),
Forsythe and Wasow (1960), Collatz (1960), and Saul’ev
(1962).

In the main, the formulae in common use tend to be
simple formulae with stability conditions which permit
relatively large time steps. There are, however, many
problems involving equations of the heat conduction

M

% —>

type where very high accuracy is required over a small =
range of the time co-ordinate. Thus formulae of high .2 »
accuracy are required which need only be stable for small i} F £ T
values of the mesh ratio. In view of the high-speed
computing facilities now available these formulae can
also, of course, be used to give high accuracy results over ; Y x
any range of the time co-ordinate. Fig. 1
2. Method of deriving High Accuracy Formulae Ursgs T Ur-2s 4 o s g

A formula of any desired truncation error can be = 2u 4 4B + §D + ABF_*' 31—5H + 14—175] + ...
obtained at the node (r, s) in Fig. 1, depending on how ’
many additional nodes one is prepared to consider. Upijsx1 F Up_ 1,541
Once the nodes have been decided upon, the value of u 1
at each node is obtained as a Taylor expansion in terms =2u+ (1 +2p)B+ (1—2 tp+ PZ)D
of u and its derivatives at the point (r,s). All the
derivatives with respect to ¢ can be replaced by higher 1 1 I, 1.,
derivatives with respect to x, if the relations + (ﬁ() TPt tap )F
u_ Yu _ etc., from (1) are used. In 1 1 1 1 1
¥y P ¢ WP " ’ (ot mpt+ =p2 + opP + —p* H
addition, if & and k 2re the mesh lengths in the x and ¢ (20,160 = 3607 T 24P 6P T 12f )
directions respectively, k can be eliminated by intro- ( 1 1 1
ducing the ratio p through the relationship k = phZ. + + P+ 5Pt 5P
For example, the values of u at nodes in the vicinity of 1,814,400 — 20,160 720 2
(r, s) are given by -, I
. + Pt P ) Q)

1 1 1
- p2 Zp? — —pS
—uiPB-i-zPDi6PF+24PHi120PJ+--- where u, B, D,...J,...are the values of
2 4 10
Uppr,s T Uro1,s P Pl 1097¢
u,h bxz’h bx“""h S IRRE

1 1 1 ]
=2u+B+ 5D+ 355F + 55760 T 1814400 T
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at the node (r, s). Finally, a linear relation connecting
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Difference formulae for the heat equation

the values of u at the nodes considered is chosen in
order to eliminate the maximum possible number of
B,D,...J,... The coefhicients in this linear relation
depend on p only. The formula obtained has the
smallest possible truncation error for the original choice
of points. In the subsequent work, the truncation error
quoted for each formula is based on the formula written
with u, .., only on the left-hand side of the equation.

3. Explicit Formulae
Some explicit formulae in common use are optimum

formulae in the sense of the previous section. A typical
example is the four-point formula

U, s11= (1 - 2p)ur;s + p(ur—l,s + u,. L,S)’ (3)
with a truncation error -%p(p—%)D If p=1%, the
truncation error reduces to 3240F This formula is
stable if p << 4. Recently Herman and Radok (1960)
constructed a family of optimum two-level formulae,
giving v, ., in terms of u at nodes on column s. The
first member of the family is formula (3). The second
member is

Uy s+1= '}(6p2 - 51’ + 2)”:‘,: + %p(z - 317)
(ur+ i, s + ur—l,s) - ':%P(l - 6p)(ur+ 2,s + u,_ 2,.:)’ (4)
which has a principal truncation error
5P (30p> — 15p + 2)F,
and is stable for p << 4. The third member introduces the
values of u at the additional points (r + 3, s), and so on.
Radok’s formulae can be improved from the point of

view of truncation error by incorporating the node
(r,s — 1). Formula (3) is then replaced by
0+ 6pu, sy =201 — 12p%u, ¢
+12p%(u,p g+ g, ) — (L — 6p)u, sy (5)
This which has a

formula, truncation error

1 . 1
T 6p(p 6_0)F’ and is stable for p < 2—73, is given

by Saul’ev (1962). If p =

5— /15
151,200
2+ 15p + 30pHu, o0y = (4 — 3p% + 180p*)u,
+ 8p%(4 — 15p%)(ty 41,5 + U,4,)
— P2 — 30p) Uy g2, + U2, )
— (2 — 15p + 30pPu,, ;- , (6)

a formula with a truncation error

5 1

2 4 __ T n2 —
(5 — 137 + 1g3) .
2(30p2 + 15p + 2) ’

1
——, the tr i i
VIS the truncation error is

H. Similarly, in place of (4) we have

which is stable if p <

315
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Other explicit schemes were considered which made
use of more complicated arrangements of nodes, but it
was felt that the complexity of the resulting formulae
did not justify the gain in truncation error.

4. Implicit Formulae

Most implicit formulae are two-level formulae con-
necting values of u at nodes on levels s and s 4 1. The
six-point implicit scheme in common use is the Crank-
Nicolson scheme

2p+ Dup sy — pUpy 500+ U, 540
= 2(1 - p)ur,s + P("r+ 1,5 + u,_ 1,:)' (70)

This scheme is stable for all values of p, but is not an
optimum scheme in the sense of Section 2. The six-
point implicit scheme with minimum truncation error is
in fact

(5 + 6p)ur,s-‘—~l + ('% - 3p)(ur+l,s+l + ur—l.s%l)
= (5 - 6p)ur,x + (% + 3p)(ur+ 1,s + ur»—],:)' (7b)

This scheme is stable for all p and has a truncation error

I p(0p> — 1) R .

—H 5+6p F. If p= 3VS the truncation error
duces to — 22— K. If three additional nod

reduces to — 533555 H. ree additional nodes on

level s — 1 are considered, the highly accurate nine-
point formula

aup sqq + Oy 01+ Urotsi1)
= CU, + d(ur+ l,s'+ U, l.s)
+ eur,x—l +f(ur+l,s—l + u,_ 1,s— l) (8)

is obtained using the method of Section 2, where

1. 23 313
— 4 33— __p2__ = < - __
e=T4'+ 50 F 57 — 5 F 12.600
b = o 1 o1
JS=F2p +2” 30”" ~ ga0? * 35200
313
—_ 4 2 _ T
¢=—16p"+p'— %
ity 13
=8~ 30" + 600
i
This formula is stable for p < s—=—, and has a truncation
N
error
1 3 1 59
2l 6 __ . pd 2 __
(15” 3007"  72007" ~ 127,008,000
apé L spi— L B 313
pi P — P~ P T 12600

In fact, if p = 0-13384, the leading term in the truncation
2

error contains h'2 l’:

ox
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Difference formulae for the heat equation

5. Sub-optimum Formulae

The method described in Section 2 can be modified
to derive formulae with larger truncation errors, but
with less stringent stability conditions than the optimum
formulae obtained in Sections 3 and 4.

For example, consider the node (r, s) together with
the four surrounding nodes (r + 1,s5), (r— 1,5s),
(r,s 4+ 1), (r, s — 1). Using the appropriate expansions
in (2), the linear relation

(1 + 2p)ur,s+l = (l + ZP)bur,.r
+ p(z - b) (ur+ 1,s + u,_ l,s)
+ (1 - 21’ - b)ur,s—l (9)

where b is an arbitrary parameter, is obtained. This
relation eliminates B and has a truncation error

pl(1 + 6p)b — 2(1 — 12p?)] 2(1 — 12p?)
12(1 4 2p) 1+6p °
formula (5), which has the minimum possible truncation
error for the above five points, is obtained. If, however,
b = 0, equation (9) becomes
(l + 2P)ur_.s+1 = 2p(ur+l,s + U, l,.r) + (1 - 2p)ur.s—l
(10)
This is the Dufort and Frankel scheme which has a
p(12p2 — 1)

6(1 + 2p)
This is a distinct improvement over the stability range

D. If b=

truncation error D and is stable for all p.

1
of p < 33 for the optimum formula (5).
It is worth pointing out, however, the considerable
loss in accuracy resulting from the use of a sub-optimum

formula like (10) with a less stringent stability require-

ment. For example, if # = 0-1, the truncation error is

I 10-82 for the optimum formula (5) with p — »

a8 < 356 for the optimum formula (5) with p = 4,
47 d%u .

and — X 10-3.— for the sub-optimum formula (10)

150 x4
with p = 2. There is no doubt that if a premium is
placed on accuracy, it is much prefetable to use formula
(5), even although eight times the number of steps is
required to reach a given time.

6. Theoretical Solutions of Difference Equations

In comparing the accuracies of the various difference
formulae, both explicit and implicit, theoretical rather
than numerical solutions of the difference equations are
considered. This eliminates consideration of numerical
errors, which although of great importance, vary con-
siderably, depending on the method used to solve the
particular difference equation.

For purposes of comparison, the problem considered
is the solution of (1) together with the boundary
conditions

u=sinx(O0< xg matt=20,
u=0atx=0,nforzt> 0.
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The theoretical solution is

u=e 'sin x,

1y

and this is used to test the accuracy of the various
difference schemes. In all the calculations using differ-
ence equations, & = #/20, and a comparison with (11)
is made when x = #/2 (r = 10).

The most accurate formula in common use at present
is the six-point implicit scheme (7b). The solution of
(7b) for the present problem is

u, , = Afsin rh,

(12)

where

Calculations are carried out for p = the value of p

1

24/5

which makes the truncation error as small as possible.
The nine-point implicit scheme (8) proposed in the

present paper has the solution
M=, M-ttt T
U, = [m!ﬁ(k) i e v A,Az] sinrh, (13)

B + v/(B* + 44C)
24 ’

A=2bcosh+a
B=2dcosh+ c
C=2fcosh+e.

The function (k) depends on the values of u used at
nodeson ¢ = k. In the present paper, where a difference
equation of higher order than the differential equation
is used, the additional boundary values required in
order to solve the difference equation are taken from (11),
the theoretical solution of the differential equation, and
so in this case (k) = e~*. In a more general appli-
cation, of course, the theoretical solution of the differ-
ential equation is not likely to be known, and the values
of u at nodes on ¢ = & must be obtained by an inde-
pendent procedure.

It should be pointed out that in (13), A, is the approxi-
mation to the fundamental root which is present in any
difference replacement of the problem, whereas A, is the
extra root introduced because the nine-point formula is
an order higher in ¢ than the original differential equation.
It is interesting to calculate A, for various values of p

1 1
and h. Forallh, A, =1atp=0, 35 VL

A; >1 for all h, which is of course to be expected,

where Ap Ay =

and

Ifp>

since (8) is stable only if p < 2%/—5

In order to evaluate (13) for A = #/20 at r = 10 it is
convenient to put (k) = A, 4 8, and so

A —
Ujo,s = A3 + A—: — A;S.
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Difference formulae for the heat equation

I der to compare results directly with the six-point . 1
norde P y W *p 11 A solution is obtained for p = 770"
implicit formula, solutions are carried out for p = s v

(The nine-point formula is only marginally stable for 7. Numerical Results

1 ) o ) The numerical values obtained by solving the difference
p= 575)- As this value of p does not coincide with equations discussed in the present paper are shown in

Table 1, together with a summary of the stability require-
ments and truncation errors of the formulae. As stated
previously, the calculations are carried out for &/ = #/20,
and proceed as far as r = n?/4/5. This is equivalent to

the value of p for which the truncation error of the
nine-point formula is a minimum, it seems likely that
greater accuracy can be obtained with the nine-point
formula than is demonstrated in the present example.

The expl_icit scheme w}}igh is most likely to compare 800 time steps when p = L, and to 1,600 time steps
with the nine-point implicit scheme from the point of | V20
view of accuracy is formula (6). This has solution (13), .
where this time A, A, are the roots of the equation when p = 24/20° The results are accurate to twelve
places of decimals, and are presented in the form of the
(2 + 15p + 30pH)A? — [(4 — 3p* + 180p%) solution of the differential equation, together with the

16044 — 1502 I — p2A1 — 60p? 1A discrepancies between the theoretical solutions of the
+ 16p% p?) cos PX( p?) cos 2h] difference equations and the solution of the differential
+ 2 — 15p 4+ 30p?) = 0. equation. In the case of the four-point explicit scheme

and the Crank-Nicolson formula, it was sufficient to

A solution is obtained forp = 1—, by a method similar work correct to six places of decimals, and so the zeros
44/5 in decimal places seven to twelve have no significance,

to that used to solve the nine-point implicit formula. In the case of the nine-point implicit formula, fifteen
Once again A, is the approximation to the fundamental places of decimals were retained, and the discrepancy
root and A, is the extra root introduced because the between the theoretical solution and the theoretical
difference formula is an order higher in ¢ than the solution of the differential equation was only one in the
original differential equation. fourteenth place after one time step. In each calculation,
A less complicated explicit formula is given by (5). the maximum discrepancy occurred in the region of the

This also has a solution of the form (13), where this ) . 1 o
time A,, A, are the roots of the equation 160th tllme step if p= 755, and the 320th step if
(1 4 6p)A2 — [2 — 24p*(1 — cos WA + (1 — 6p) = 0. P = 3720
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