
An iterative method for finding stationary values
of a function of several variables

By M. ]. D. Powell

An iterative method for finding stationary values of a function of several variables is described.
In many ways it is similar to the method of steepest descents; however this new method has second
order convergence.

1. Introduction
Eighteen months ago Rosenbrock (1960) published a
paper in this journal on finding the greatest or least
value of a function of several variables. A number of
methods were listed and they all have first-order con-
vergence. Six months ago Martin and Tee (1961) pub-
lished a paper in which they mentioned gradient methods
which have second-order convergence for finding the
minimum of a quadratic positive definite function. In
this paper will be described an iterative method which is
not unlike the conjugate gradient method of Hestenes
and Stiefel (1952), and which finds stationary values of a
general function. It has second-order convergence, so
near a stationary value it converges more quickly than
Rosenbrock's variation of the steepest descents method
and, although each iteration is rather longer because
the method is applicable to a general function, the rate
of convergence is comparable to that of the more power-
ful of the gradient methods described by Martin and
Tee.

The efficiency of this new procedure is discussed, and
two numerical examples are given as a comparison with
the method of steepest descents and a variation of it.
In addition there is a section on the problems which
arise in programming the method.

2. Some Definitions and Assumptions
The number of independent variables of the function

is defined to be n, the independent variables are
xt, x2, • . ., xn and the function is called/(x). The inde-
pendent variables define an n-dimensional space and the
equations / (x) = C define contours within the space.
The stationary value we are trying to find is defined to
be at \. It is assumed that the first and second deriva-
tives of/(x) exist and are continuous in the neighbour-
hood of 5; the following notation is used for derivatives

and

Then, as a consequence of the definitions and the
assumptions,

/,(§) = 0 / = l , 2 , . . . , / f

and /w(§) =/>,(©•

Of course the assumptions have been made so that / (x)
can be approximated in the neighbourhood of the
stationary value by the first few terms of the Taylor
series expansion. We define the approximation to / (x)
to be g(x), and therefore

g(x) =/(§> + i s i(x,-
1 ; l

The iterative procedure will have second-order con-
vergence if and only if when / (x) = g(x) then the
iteration leads one from an arbitrary estimate of the
stationary value, say TJ, to \ in a single cycle. In the
next section the method is described from a geometrical
point of view and it is clear that the method does in
fact have second-order convergence.

3. The Method
Throughout this section it is assumed that/(x) = g(x)

because if the method has second-order convergence in
this simple case it will have second-order convergence
in the most general case. The method is inductive, and
we describe how the stationary value of the function
can be found in the M-dimensional space if it can be found
in any (n — l)-dimensional subspace. In such a sub-
space there will be a constraint on the variables
xx x2, • • ., xn so the function will in effect be a function
of (« — 1) independent variables. Such a description is
sufficient because there are efficient methods of finding
the stationary values of a function of a single variable.
The method hinges on a corollary of the theorem that
because / (x) is quadratic in the independent variables
any line which passes through % intersects the members
of the family of contours J[x) = C at equal angles. The
corollary is that if the normal at t to the contour
f(x) —. f(i) is parallel to the normal at t' to / (x ) = fit')
then the line joining t to t' passes through \.

To find the stationary value of / (x) in n dimensions,
given an initial estimate YJ, first find the line which
passes through TJ and which is normal to the contour
/ (x) = /(r)). Proceed along this line to the point e
where the derivative of / (x ) with respect to the
distance along the line is zero. In fact the point e
may be any point on the line which is a finite dis-
tance from Y); however, if it is chosen in the way
specified the convergence of the process is assured.
Find the stationary value of / (x ) in the (w — ^-dimen-
sional hyperplane which contains £ and which is such
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Stationary values of a function

that if t is a general point in the hyperplane then the line
joining t to e is perpendicular to the line joining e to r\.
Say this point is 8. Then since the normal to/(x) = /(8)
at 8 is parallel to the normal at r\ the required stationary
value in the n-dimensional space will be that point on
the line joining YJ to 8 where the derivative of f(x) with
respect to the distance along the line is zero.

Just how the iteration proceeds should now be clear;
however, we will illustrate the two-dimensional case,
since a diagram may assist the reader to understand the
procedure. In Fig. 1, A is the point rj, B is the point c,
D is the point 8, C is the point \, AB is the tangent to the
conic through B and is normal to the conic through A,
and BD is a tangent to the conic through D and is
perpendicular to AB. Clearly C lies on AD and B could
have been chosen anywhere on AB.

If, as is usual, f{x) is not equal to g(x), the same
recipe is used for each cycle, and, in general, 2- will not
be found by a single iteration. The method will converge
if there is no ambiguity in identifying the correct point
on a line where the derivative of the function with respect
to the distance along the line is zero. This will only
prove troublesome if, within the region where the point
is being sought, third and higher order terms in the
Taylor series expansion of /(or) about "% swamp g(x).
In these cases it is probable that the value of yj is not
sufficiently close to the required stationary value of f(x)
to define it uniquely, and it is advisable to cause the
program to report.

In the special case when a maximum or minimum is
being sought, however, there is less likelihood of
ambiguity because it will be known whether the required
zero value of the derivative corresponds to a maximum
or a minimum. Indeed, if the largest or smallest function
value which is found within some finite region of the
w-dimensional space is always chosen, the process will
converge.

4. The Efficiency of the Method
The efficiency of the method described will depend

upon the function f{x), and it is encouraging to discuss
the efficiency when f(x) = g(x). In order to determine
g(x), i(n + l)(n + 2) pieces of information are required
as this is the number of coefficients in the general form

g(x) = C+
, = 1 /•=! ;

In principle g(x) could be found by calculating
i(n + l)(n + 2) distinct function values of /(JC) and
then solving the resultant linear simultaneous equations
to determine the constant coefficients. This is likely to
be a bad method because, if the points where the function
values are evaluated all happen to be near %, the equa-
tions will probably be ill-conditioned and, if they are
not near the stationary value, the process may fail to
converge when/(jc) =/= g(x).

In theory it is only necessary to evaluate derivatives
when applying the method of section (3) and, as it is
not necessary to know the value of C to determine %,

Fig. 1.—A cycle of the iteration in two dimensions

at least \n(n + 3) derivatives must be calculated. In
the process described the steepest descent at a point
has to be evaluated firstly in n dimensions, then in (n — 1)
dimensions, . . ., and finally in one dimension. This
requires at least \n(n + 1) derivatives. Also, on (2n — 1)
occasions, knowing the derivative at a point on a line
and knowing that if we assume f(x) = g(x) we are
assuming that the derivative varies linearly with the
distance along the line, we have to calculate the point
where the derivative is zero. Therefore on each occasion
one more derivative on the line is sufficient to ensure
second-order convergence. We have recognized that
the first (« — 1) times in a cycle that this is done it is
not essential, while it is essential to find the stationary
value the last n times. Therefore we have to evaluate
\n(n -f 3) essential derivatives and (« — 1) unessential
ones. The number of essential derivatives corresponds
with the minimum number so, in a sense, we can consider
the iterative method to be thoroughly efficient.

In cases when f(x) ^ g(x) this method can be com-
pared with the method of steepest descents. It is obvious
that the method described in this paper will converge
much faster near \, so this method will probably be
superior if high accuracy is required. However, away
from the stationary value, it is more difficult to judge
between the two, and the comparison must be based on
the choice of directions along which a stationary value
is sought. Because the first n directions of a cycle in this
method are chosen to be mutually orthogonal, this
method will not ignore long shallow contours in the
way the steepest-descents method is inclined to do.
However, if there are no long shallow contours, the steps
along the last few of the n orthogonal directions will
almost certainly be less profitable than steps down the
steepest descent. This disadvantage is unimportant if
derivatives are calculated from function values, because
r derivatives have to be evaluated to find the steepest
descent from a point in an r-dimensional space, and
while in the steepest-descents method r is always equal
to n or (n — 1), in our method r takes integral values
from n down to unity. Therefore, if derivatives are cal-
culated from function values, the less profitable searches
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Stationary values of a function

will only take a fraction of the time of full steepest-
descent searches. Unfortunately there will be no corre-
sponding saving of time if derivatives are evaluated from
analytic formulae and, in these cases, there may be
situations in which the steepest-descents method finds
the approximate position of the stationary value more
quickly. However, the numerical examples given in
section 6 suggest that the method of this paper is so
much more powerful than that of steepest descents that
it is always more suitable for a general program.

5. Some Practical Points of the Method
In this section the numerical problems which would be

encountered in programming the method are pointed
out. They are not peculiar to this method and they
exist in all procedures to find stationary values in which
derivatives have to be evaluated. As is usual the solu-
tions of the problems are more satisfactory if derivatives
of the function can be calculated from analytic formulae.

The first hurdle is to evaluate the steepest descent of
f(x) at T), say, in an r-dimensional space which is con-
tained in the n-dimensional space. It is always convenient
to define the r-dimensional space by the directions of r
mutually orthogonal directions through v\ which lie in
the space, and we will define them to be /,, i = 1, 2 , . . . , r.
Therefore, if t is a general point in the r-dimensional
space, there will exist r unique coefficients C, which are
such that

t = iq + S Q/,.

The direction of the steepest descent is defined to be s
so a general point on the steepest descent will be at T)+as.
Furthermore there will exist r coefficients 8, such that

1=1

If first derivatives of /(*) could be evaluated from
analytic formulae, ^(YJ) for / = 1, 2, . . ., n would be
calculated and then

i = 1, 2,. . ., r

would be worked out; N is a normalization factor. So
in this case finding the steepest descent is straightforward
but tedious. However, if derivatives have to be calculated
from function values there are numerical difficulties.

To determine the coefficients 6, it is necessary to cal-
culate the derivative at TJ of f(x) with respect to the
distance along each of the r mutually orthogonal
directions through TJ. This is equivalent to calculating

- ^ /(*) + A/,) for i = l ,2 , . . . , r .

As the task of finding the derivative of a single variable
numerically is discussed in all the textbooks on numerical
analysis we will make just one more comment on this
topic. If TJ is a poor approximation to \, as it usually
will be at the start of the iteration, it is often not worth-

while to attempt to evaluate the derivatives to high
accuracy. Probably an estimate for a derivative based
on just one more function value near YJ will suffice.
However, if the derivative is evaluated from such an
estimate the method of this paper will not have second-
order convergence. Therefore, when it is thought that
the iteration has nearly converged, the derivatives should
be calculated from a formula in which there are no errors
of the order of the second derivative. Indeed this is
essential very near the stationary value in all methods,
because all first derivatives are zero at \. Because of
the difficulty of recognizing rates of convergence it will
often be worthwhile to use the more accurate formula
for the derivatives on every third or fourth iteration,
even if it appears that the best estimate of F is some way
from the required stationary value.

The next problem which would be encountered is how
to find the point on a line where the derivative of f(x)
with respect to the distance along the line i? zero. Pro-
cedures for doing this have been given by both Booth
(1957) and Rosenbrock (I960).

Finally, as in all iterative procedures, it is necessary to
judge when the process has converged. This is difficult
when searching naively for stationary values because
near any stationary value f(x) will be insensitive to
changes in the variables xx, x2,. . ., xn. We will mention
two possible and obvious criteria for convergence.

The first is to consider changes in the variables due to
successive iterations and to be content when these changes
are less than specified amounts.

The second, which is the better if derivatives can be
determined from analytic formulae, is to find some
point e such that

/ ; . (e)<£, for ; = 1,2, . . . ,«

where the numbers E, are specified before the start of
the iteration.

6. Two Examples of the Method
In this section two numerical examples will be given

which compare the method of this paper with the
method of steepest descents and the modification of the
method of steepest descents mentioned by Booth (1957).
In each cycle of Booth's method the steepest descent at
the starting point A is calculated and then, as in the
steepest descents method, the stationary value on this
steepest descent is found; say it is B. The variation is
that B is only taken as the new approximation to the
required stationary value on every fifth cycle. On the
other cycles the new approximation is assumed to be at
distance 0-9AB from A on AB. In both these examples
the required minima and the required steepest descents
are calculated exactly. For this reason it is not possible
to make a direct comparison with Rosenbrock's method
(Rosenbrock, 1960) which does not depend upon a
knowledge of derivatives.

For the first example a function which Rosenbrock

149

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/2/147/340898 by guest on 19 April 2024



Table 1

A Comparison in Two Dimensions

Stationary values of a function

Table 2

A Comparison in Four Dimensions

n
0
3
6
9

12
15
18
21
24
27
30
33

STEEPEST
DESCENTS

f(x,,x2)
24-200
3-704
3-339
3-077
2-869
2-689
2-529
2-383
2-247
2-118
1-994
1-873

n
0
3
6
9

12
15
18
21
24
27
30
33

BOOTH'S
VARIATION

f(X\,X2)
24-200
4-123
4-105
4-086
4-067
4-049
4-029
4-008
3-988
3-960
3-864
3-746

n
0
1
2
3
4
5
6
7
8
9

10
11

NEW
METHOD

/Ol>*2)
24-200
3-643
2-898
2195
1-412
0-831
0-432
0-182
0052
0 004

5 x 10"5

8 x 10"9

chose has been taken. It is

/ (*„ x2) = 100(x2 - x2)2 + (1 - x,)2

and the starting value for the iteration is at (—1 -2, 1 -0).
The results are given in Table 1. (In Tables 1 and 2, n
is the number of iterations necessary to arrive at the given
value of/.) Because in two dimensions the method of
this paper requires a minimum to be calculated in three
distinct directions in order to complete a cycle, the values
°f f(x\, x2) tabulated in the second and fourth columns
of Table 1 are those calculated after every third cycle.
The values of x, and x2 for the final row of the table are

x, = - 0-3634 x2 = 0-1441
Xl = -0-9336 x2 = 0-8632

and x, = 10001 x 2 = 10001
for the steepest descents method, Booth's method, and
the new method respectively.

Three comments should be made on these results.
The first is that in this example the method of this paper
is definitely superior to the other two methods. The
second is that the fact that Booth's method appears to
be slower to converge than the steepest-descents method
is fortuitous, and in fifty iterations it has reduced
f(xu x2) to 0-71. In the same number of iterations the
steepest-descents method has found values of x, and x2
such that/(x,, x2) = 1-20. Thirdly, in two dimensions
the steepest descents method is equivalent to varying xx
and then x2 for some orientation of the axes, so it is not
particularly effective or interesting.

For the second example the function

, x2, x3, x4) = (x, + 10x2)
2 +

+ 5(x3 - xA)2 + (x2 - 2x3)
4 10(x, -

was chosen. In all three methods the iteration to seek
the minimum at (0, 0, 0, 0) was started at (3, —1, 0, 1)
and this example was supposed to illustrate that, away

n
0
7

14
21
28
35
42
49

STEEPEST
DESCENTS

/(X,,X2,X3,X4)

215 000
6-355
3-743
2-269
1-420
0-919
0-614
0-423

n
0
7

14
21
28
35
42
49

BOOTH'S
VARIATION

/(x,,x2)x3,x4)
215000

5-352
0-620
0135
0051
0 009
0 008
0 008

n
0
1
2
3
4
5
6
7

NEW
METHOD

f(.xi,x2,xi,x4)
215-000

0 009
9 x 10-5

2 x 10-6

2 x 10-6

1 x 10-6

5 x 10-8

4 x 10-9

Table 3

The Second Iteration of the New Method

POINT

A
B
C
D
E
F
G
H

X\

0-1266
0-1263
0-1260
0-1259
0-1229
0-1229
01166
0 0396

X2

-0-0123
-00104
-00124
-00111
-00107
-0-0107
-0-0114
-0-0044

, 3

0-1455
0-1337
01333
01331
0-1332
0-1332
0-1323
0 0300

* 4

0-1428
0-1441
0-1435
01391
01392
01392
0-1303
0-0332

0-00852
0-00699
0-00659
0-00632
0-00632
0-00632
0-00583
0-00009

from the minimum where fourth order terms are signi-
ficant, and where there are more than two variables, the
steepest-descents method can be as good as the method
of this paper. It completely failed to do this as Table 2
shows. The reason that the method of this paper does
not have second-order convergence in this case is that
near the minimum g(xu x2, x3, x4) = (x! + 10x2)

2 +
5(x3 — x4)

2, so it does not determine the minimum
uniquely.

The steps of the second iteration are given in Table 3.
This particular iteration has been chosen because it does
demonstrate very clearly how powerful the choice of
directions can be. The first and second steps from A
to B and B to C correspond to the ordinary steepest-
descents method; the steps from C to D and from D to
E correspond to steepest descents in two and one dimen-
sions, respectively. Because, and this is a common
occurrence, E nearly coincides with D, the minimum on
CE, F, nearly coincides with E. The finding of G, the
minimum on BF, gives a slight improvement in
f{x\, x2, x3, x4), and the final step, finding H on AG,
reduces the value of/(x,, x2, x3, x4) handsomely.

7. Conclusion
Both these examples, and other applications which

the author has made, show that this new method is more
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Stationary values of a function

powerful than the usual methods of finding a stationary
value of a function of several variables. It takes a little
while to program, but so will any iterative method which

has second-order convergence near a stationary value
and which will converge from a poor approximation to
the stationary value.
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Book reviews

A Fortran Program for Elastic Scattering Analyses with the
Nuclear Optical Model, by MICHAEL A. MELKANOFF,
DAVID S. SAXON, JOHN S. NODVIK and DAVID G. CANTOR,
1961; 116 pp. (Berkeley, and Los Angeles: University
of California Press, S4.50; London: Cambridge Univer-
sity Press, 34s. Od.)

To quote from the introduction, "the purpose of the present
report is to describe in complete detail a FORTRAN code
named Program SCAT 4 written by the UCLA group in
order to analyze elastic scattering of various particles against
complex nuclei by means of the diffuse surface optical model
of the nucleus." The publication is similar to, but more
elaborate than, the many technical reports which come from
the large scientific institutions such as the Atomic Energy
laboratories,.aircraft companies and defence research establish-
ments, especially in America where people seem to be par-
ticularly good at writing up work. There is a full account
of the mathematical basis of the calculation; a description of
the program, first in general terms, then in detail, routine by
routine; a listing of the program which occupies 40 pages
and runs to 21 routines totalling nearly 2,000 FORTRAN
statements; the input data and output listing of a simple
calculation, the scattering of 9-75 MeV protons by copper;
and a bibliography of related calculations. There is also an
offer to send the program card deck to anyone who is willing
to pay the mailing charges.

The essence of the calculation is the numerical integration
of the Schrodinger equation for the system, reduced to a set
of ordinary differential equations in a single radial variable
by a process of expansion in eigen-functions, followed by a
matching of the numerical solution to an asymptotic solution
expressed in terms of Coulomb wave functions. The matching
process leads to the determination of some important para-
meters called phase shifts which, together with the computed
solution, enable one to calculate the cross-section for the
reaction in question. A very practical consequence is that
one can compute from basic nuclear data the values of certain
physical quantities which are needed, for example, in the
design of nuclear reactors; in fact, this kind of computational

procedure is already beginning to supplement programmes
of experimental work, and is quite likely later on to replace
a good deal of this.

The attention to detail in the report is very impressive.
It is written for the man who wants to use the program and
who may wish to extend or modify it, and the impression one
gets is that every point has been considered. The mathe-
matical section (33 pages) is concentrated and is certainly
not for the uninitiated, but it does give a complete account of
the analyses so that one can find out just what has been put
into the program; in addition to the mathematical physical
arguments, it goes into detail about the numerical processes,
including a full account of the special Runge-Kutta process
used for the numerical integration of the differential equa-
tions. The description" of the program itself is equally com-
plete, giving full details of the structure and operation of
every routine and of its relations with whatever others it calls
or is called by. The writing is terse but very clear, and the
publication fulfils admirably its purpose of providing a
technical reference manual to a specialized and complicated
piece of work.

The corresponding reports issued by industrial and govern-
ment laboratories are mostly circulated privately, although
some, especially those coming from the UKAEA in England
and the AEC in America, can be bought by anyone who
knows of their existence. Open publication, as in this case,
seems to me to be a move to be welcomed; a very large amount
of thought, effort and experience has gone into the con-
struction of a computer program of the size and complexity
of one such as SCAT 4, and it is all to the good that as many
people as possible should be able to take advantage of it.
There is quite literally a universal interest in the calculation
described here, and because the program language FORTRAN
is now used on many of the larger machines, the program
itself can be used quite widely just as it stands with enormous
saving in scientific effort. Clearly, the value of a publication
of this kind is very greatly increased if a more widely accepted
language is used; the actual value for money represented by
this manual at a price of around £2 is quite remarkable.

J. HOWLETT.
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