
Montecode—an interpretive program for Monte Carlo
simulations
By D. H. Kelley* and J. N. Buxtonf

MONTECODE is an interpretive program that has been written for the Ferranti Pegasus 1
computer and is in many respects similar to the normal Pegasus Autocode. It was designed in
an attempt to speed up the time-consuming and complicated task of preparing Monte Carlo
simulation programs.

MONTECODE has been in regular use now for over two years and has enabled Monte Carlo
simulations to be written in one-tenth of the time previously taken. This advantage is partially
offset by an increase in computer running time but an attractive net gain has usually been experienced
in practice.

A worked example is given in the Appendix.

Introduction
During Operational Research studies it is frequently
necessary to represent real life situations in the form of
mathematical models or analogies. Such models, if
sufficiently realistic, can be used to predict the effects of
changes in the real life situation without making any.
possibly expensive, experiments, even if such experiments
are possible. Some such models can be satisfactorily
explored by ordinary analytical methods, but in many
cases the models need to be very complex in order to
be realistic, and they defy solution in their analytical
form. It is in cases like this that the technique of Monte
Carlo simulation is resorted to (Neate and Dacey, 1959).

The essence of a simulation is that the state of each
element of the model is examined at a given point in
time, and any interaction between the elements resolved.
Time is then advanced by a specified amount and the
model is re-examined at the new point in time. This
process is continued until the desired period of time has
been simulated.

Simulations can be manually operated on the Gantt
chart principle; a row on the chart would be allocated to
each element of the model, e.g. a crane or a stock area,
and using a horizontal time axis the state of each element
at various times would be recorded. The chart then
represents the complete operation of the model during
the simulated period. Fig. 1 shows a simple example of
this technique; the model represents a single-pump petrol
filling station at which cars arrive at no set time interval.
It has been assumed that it takes five minutes to service
each and every car. This model enables the queue
characteristics to be studied. In practice, this example
could be examined by Queueing Theory unless the car
arrival pattern had some peculiarities.

The method of determining car inter-arrival times and
the service time, which would not be a constant in a
realistic model, is a distinguishing feature of Monte
Carlo simulations. It is not realistic to take mean or
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Fig. 1.—Gantt chart simulation of a petrol service station
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Fig. 2.—Service time histogram

extreme values for these times, and a probability distribu-
tion of times must be determined for each independent
variable. Once these distributions have been obtained
a histogram approximation is usually constructed of,
for example, 100 elements, see Fig. 2. Note that times
with a higher probability, e.g. 3-5 minutes, are repre-
sented by a higher number of elements. Whenever a
time is required during the simulation, an element will
be selected from the histogram by random sampling,
and the time it represents will be used.

A Monte Carlo simulation performed using this
sampling technique may not represent any actually
observed period of time, but it would represent a period
that might arise at any instant and can therefore be
described as typical.

The advantages of Monte Carlo simulations are
(i) that complex situations, that otherwise defy

analysis, can be studied,
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Monte code

(ii) that changes to operating rules can be made quite
easily,

(iii) that, consequently, predictions can be made
without actually altering the real life situation,
and the predictions can cover many years in
advance of real time.

The effort required to complete a simulation study can
be prohibitive if graphical methods are employed, and
within recent years such analyses have been carried out
on digital computers. However, the advantages of using
a computer, i.e. its meticulous operation of complex
models and its great speed, can only be realized once a
program has been written and this task, although smaller
than the task of manually operating a simulation, is not
without its difficulties. It is not uncommon to find a
simulation taking many programmer-months to program.
Consequently, it has become worth while to consider
interpretive and compiler-type programs written
especially to assist in the preparation of Monte Carlo
simulation programs. MONTECODE is one such
program of the interpretive class.

Computer Simulation Programs
In its simplest form a computer simulation is identical

to the Gantt chart form except that each element or row
is represented by one or more computer storage locations,
and the model within the machine only represents a
single instant in time. The rules of operation are pro-
vided in the form of a computer program, and the results
of the simulation are either printed out after each time
interval has been completed or accumulated in locations
allocated for that purpose. In the simple example shown
in Fig. 1, a histogram of the number of cars queueing
could be formed.

Computer simulations can be written in two basic
styles, the unit time scan style or the event to event style.
In the first style, the simulation is scanned or examined
every unit of time, e.g. every minute of simulated time,
whether or not any action, such as the arrival of a car,
is due to occur. In the second style, time is advanced
by the amount necessary to cause the next possible event
to take place. This latter method saves computer
running time when the simulation is static for periods of
simulated time. Montecode has been designed primarily
for event to event simulations, although unit-scan
simulations can be accommodated.

The Design of MONTECODE
The aim of Montecode is to facilitate programming

of a simulation, and this has been achieved in two main
ways. In the first place, in addition to the normal input,
output, arithmetic, and logical facilities expected in an
autocode. Montecode provides several facilities frequently
required during simulations, for example, random
sampling from distributions, the maintenance of queues,
and the formation of results in histogram form. Secondly,
the organization of event to event scanning is auto-

Table 1

MONTECODE Storage Facilities

SINGLE LOCATIONS DISTRIBUTIONS
Each location can store —2-- to D l ~

+ 225 - l D2
IO ~~|

j;
r

v2

1
2
j

—

39_

Usually allocated
to action times

Dn_

Maximum number
depends on size

STORES OR QUEUES

S2

Normal single
number storage

Sn_

Maximum number
depends on size

HISTOGRAMS

INDICES OR COUNTERS H2
</0 —
'/I

Each index can store —

Maximum of
7 histograms

-8192 to -̂ -8191

1RAM STEPS
Maximum of 250 instructions.

N.B.—The maximum number of storage locations, program
steps, etc., can be increased at the expense of other facilities.

matically provided. The basic language used in Monte-
code is very similar to that used in the Pegasus Autocode,
to facilitate learning and to avoid confusion since most
Montecode programmers will be familiar with the
Autocode.

The controlling elements in a simulation can be called
"action times"; they indicate how long, in simulated
time, it will be before one of the important events
occurs—e.g. a car arriving at the petrol station. Time
in a simulation is measured relative to the present
instant: i.e. a time zero means "now." When an action
becomes zero, an "event" occurs. There is an event
associated with each action time.

In the concept of Montecode a number of locations
vl onwards are set aside for action times; there are a
maximum of 240 such locations, and those not required
for action times may be utilized as normal locations.
Action times must, however, be stored consecutively.
All locations will store only integers. Montecode also
provides storage facilities for distributions, stores or
queues, and histograms; these storage areas are referred
to simply as Dl , D2 SI, S2, . . ., HI. H2, . . .. H7
(see Table 1).
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Montecode

The model is set up in the computer by instructions
such as the following.

READ Dl, 500 which reads in from paper tape
and stores a distribution of 500
elements.

PREPARE HI, 1, 9 which prepares the storage for a
histogram of cell width 9 and
lower limit 1.

STORAGE SI, 20 which prepares for the storage of
20 locations capacity.

CLEAR v\, 10 which sets equal to zero ten loca-
tions starting at v\.

FILL v20, 5 which sets five locations starting at
v20 equal to the largest possible
number+33554431.

^300 = + 197 ^ which sets specified locations to
rj3 = — 10 / given valves.

The actual running of a Montecode program, once the
model has been defined, takes place in two phases. In
phase 1 the order

SCAN 10

causes ten action times starting at v\ to be scanned,
and the simulation time advanced so that the next
possible event will take place. In phase 2 the events
corresponding to action times that are now zero or
negative will be examined by programmed subroutines.
The subroutines are labelled 1), 2), etc., corresponding
to v\, v2, etc. When a subroutine has been completed
a return is automatically made from the subroutine to
the scanning mechanism. The process is then repeated
until the desired simulated time has elapsed.

Examples of the types of instruction employed in the
subroutines are as follows.

v\0 — SAMPLE Dl, 5 which causes a value to be
randomly selected from distribu-
tion 1, using random-number
sequence 5.

TEXT Tl which prints preset text num-
ber 1.

COMPILE vZl, H3 which adds 1 to a cell in histo-
gram 3 according to the contents
of location 27.

REMOVE i'24, S2, e which removes an item from
store 2 and places it in location
24. The value of e determines
whether the maximum value,
minimum value, last in value or
first in value is withdrawn from
the store.

In addition instructions are available such as

v\0 =-- i>2O/.'3O
PRINT 1/100
n\ = n\ - 2
-> 10. «3 ¥-- 0
r30 - TAPE
HSTEST 10. 3

Division.
Print value of location 100.
Subtraction.
Test contents of index 3.
Read an integer from tape.
Test Handswitch 3.

Experience in the use of MONTECODE
The main measure of success for the Montecode

program is its frequency of use; since it became available
over two years ago all the Monte Carlo simulations that
have arisen at BISRA have been programmed using
Montecode. Furthermore, although facilities exist that
enable machine-language interludes to be included they
have rarely been used; this suggests that the facilities
embodied in Montecode adequately cover simulation
programming requirements.

It has proved to be extremely easy to teach people to
program in Montecode, and non-programmers have
managed to prepare short simulation programs on the
first day of a Montecode course. The fact that non-
specialist programmers can directly use Montecode is
particularly useful since Monte Carlo simulations can
be extremely complex and cannot be defined as precisely,
in mathematical terms, as most other forms of numerical
analysis. A major source of errors, i.e. communication
of the requirements between analyst and programmer,
is elminated when the analyst can prepare his own
programs. Interpretation of results has been found to
be much simpler with the Montecode facilities, which
enable the result to be produced in the form really
required by the analyst.

There have been minor complaints by Montecode
users, about the specific nature of some of the instruc-
tions; for example, an output histogram must have
14 cells and on occasions more or less would have been
useful.

The designer of a program of this nature must com-
promise between complete generality and undue com-
plexity. However, there is often a way out and in this
case, for example, two histograms can be used to give
effectively a 28-cell histogram.

A Montecode simulation can be prepared in less than
10°,; of the time formerly taken to prepare a machine-
language simulation. The speed of operation, however,
is only about a third of that for a machine-language
program, mainly due to the repeated necessity of transfers
between the two levels of storage. However, as program
development time is now virtually eliminated, the overall
machine running time is only increased by a factor of
two or so. This increase is more than adequately
compensated for by the fact that results can be obtained
much more quickly and with much less effort in prepara-
tion time.

Montecode is often used as an alternative to the
Pegasus Autocode, owing to the greater speed, when the
trigonometric functions are not required and when the
calculations only involve integers. One frequent use of
Montecode is in the analysis of data when simple arith-
metic and histogram facilities are all that are required.

Conclusions
The Montecode interpretive program has been suc-

cessfully used to reduce the time between the specification
of a Monte Carlo simulation and the production of
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Monteeode

results. The initial effort required to produce the
Monteeode program has been repaid manyfold during
the past two years. Other Pegasus owners and users
have also used the program profitably.

In view of the loss of computer running speed some
of the larger simulations tend to take up a lot of com-
puter time to simulate a satisfactory length of simulated
time. The Operational Research Department of the
United Steel Companies Ltd. have tackled the problems
that initiated the design of Monteeode in a different
manner, and a compiler-type program, the General
Simulation Program (GSP) has been developed (Tocher
and Owen, 1960). Although the GSP system is not so
easy to learn, and the simulation preparation time takes
a little longer than for Monteeode, the program running
speed is far superior. Consequently, the GSP is to be
preferred for large simulations.

Appendix

Worked Example—A Doctor's Waiting-room
The situation simulated in this example is the opera-

tion of an appointment system in a doctor's waiting-
room. Patients who wish to see the doctor are assigned
appointments at 5-minute intervals throughout the
surgery hours, with the exception that after every nth
patient there is a ten-minute interval. The time the
doctor spends with each patient varies from 1 to 20
minutes, and the mean consulting time is about 6 minutes.

The aim of the simulation is to establish the value of
n which gives an acceptably small average idle time
during the surgery for the doctor, while avoiding unneces-
sarily long queues in the waiting-room.

The flow diagram, program instructions and explana-
tory notes are given in Fig. 3 and Table 2. A specimen
set of results is given in Table 3.

The program took about two hours to write and a
further half hour to test. Simulation of one surgery
takes about 40 seconds, not including optional printing.

It will be seen that there are three action times in this
simulation; arrival of patient, end of consultation, and
end of surgery. Some interplay takes place between the
orders in each subroutine; for example, when a con-
sultation ends, the store used as a queue is searched to
find if a patient is available and, if this condition is
satisfied, a consulting time is sampled. If nothing is in
the store, then the remove order extracts a zero. This
section of the subroutine may also be entered directly
from the patients' arrival subroutine if the doctor is
idle; i.e. the patient does not queue but is seen
immediately.

Different values of/; were inserted into the simulation,
and n = 4 was found to give the best compromise between
doctor's idle time and patients' queueing time, for the
consulting time distribution obtained from the doctor
studied in this example.

In this example, after runs of 20 surgeries the average

Patient arrives 1) Reset arrival time

Is doctor idle?

NO

Put patient in queue

-YES-

Calculate doctor's
idle time

Add a 0 to patient's
waiting time
histogram

Sample consulting
time

Set doctor busy

End of con- 2) Remove patient
sultation from queue

RESCAN

Is a waiting patient
available?

NO

I

—YES—,

Add patient's
waiting time to

histogram

1
Has surgery time ended? -YES—,

NO

Set doctor idle
RESCAN

End of surgery 3) Set arrival time large
Set end of surgery time large

Is doctor busy ?

NO

|—YES—i

RESCAN

Print "end of surgery" results

Is handswitch 5 down? —YES—,
4-

NO

Start new surgery with
same conditions

Print cumulative result
Return to read new

starting conditions

Fig. 3.—Doctor's waiting-room flow diagram of action
subroutines

queueing time per patient was about 10 minutes, and
the doctor's idle time average was about 7 minutes per
complete surgery.

This is, in fact, an example which is based on a prac-
tical case; the appointment method suggested by the
simulation is now being used in general practice and
shows results which confirm those obtained from the
simulation.
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Table 2

' Doctor's Waiting-room Program

i\ •-• arrival time
rl — end consultation
r3 = end surgery
r4 ••-= clock time
r5 = doctor busy marker
i-6 = doctor's waiting time
i-7 - 0

vS —• working space
v9 = cumulative waiting time

liO = number of surgeries
rl 1 = cumulative overtime

Til = No. of 5 min. appointments
nl — 5 min. appointment counter

N
DOCTOR'S WAITING-ROOM

J1.0
READ DO, 996, I.
TEXT IN TO
TEXT IN Tl
TEXT IN T2
TEXT IN T3
TEXT IN T4
TEXT IN T5
STORAGE SO, 10
PREPARE HO, 1,3
PREPARE HI, 1,3
PREPARE H2, 1, 3

12) CLEAR r9, 3
nl = HSREAD.
11) nl = n\
CLEAR rl, 8.
(.10 " (-10 + 1
i>3 = 121
vl = 1
e5 - - 1
SCAN 3, I
UPDATE SO
R ESC AN

l ) r l — 5
nl ^ n l - I
- • 1 4 , nl ••£ 0
nl = n\
r l ••=.-. 1 0
14) ^ 4 , r5 ^ 0
ASTORE r7, SO
—6
4) v8 - r5 - v4
v6 = i-6 + f8
COMPILE vl, HO

5)i' 2 = SAMPLE DO
OPR1NTX vl, 2
v5 = 0
6) RESCAN

Initial Input instructions

•Initialpreparation instructions

Main Program

Re-entry point; clear cumulative results
Read new value for n\
Set til
Clear surgery results
Increase number of surgeries
Set initial conditions

Patient arrives

VSet new arrival time to 5 or 10 minutes

J
Jump to 4 if doctor idle
Store patient if doctor busy and exit

Calculate and accumulate doctor's
waiting time

Add a patient who has waited time zero
to HO

Sample consulting time

Set doctor busy

2) AREMOVE v8, SO,
OPRINTX i-8, 6
-*1, t-8 = 0
COMPILE t-8, HO

7)-*8, f3 > 10000
r5 = v4
RESCAN

3)?.-l = 10000
i'3 =- 100000
-»6, r5 = 0

End of consultation

1 Remove patient from queue

Jump to 7 if queue empty
Otherwise, add patient's waiting time to HO
and jump to 5
Jump to 8 if surgery time exceeded
Set doctor waiting

End of surgery

Prevent further arrivals
Set u3 large to use as marker
Rescan if doctor busy, or run on to print

results

8) c9 =• r9 + i-6
TEXT TO
PRINT i-6, 2
t-8 = - 121 - c4
TEXT T5
PRINT r8, 2
i l 1 = el I + i-8
HSTEST 13, 3
^ 9
13) TEXT Tl
HPRINT HO, 4
9) TOTAL HO, HI
HSTEST 10, 5
^11
10) TEXT T2
PRINT n\
TEXT T3
TEXT TO
TEXT T4
PRINT c9, tlO, 1
TEXT T5
TEXT T4
PRINT rl 1,1-10, 1
TEXT Tl
HPRINT HI
TOTAL H 1 . H 2
STOP
->12
• - • 0

Print Results

Print doctor's waiting time
Calculate and print overtime

Print queueing time histogram
for this surgery if H.S.3 down

Restart next surgery if H.S.5 up
Print cumulative results if
H.S.5 down

Stop, and return to read new value for nl

Order to start operation of program at 0

DOCTOR'S WAITING TIME
PATIENTS' QUEUEING TIMES Texts

CUMULATIVE RESULTS, EVERYTH APPT. SET TO 10 MINS
(AVERAGE) DOCTOR'S OVERTIME

n = 996
93
97
113
115
108
96
81
68
49
47
33
25
20
14
10
8
5
4
4
2

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Consulting Time Distribution

(tape in reader 1)

4 x 22
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Monte code

DOCTOR'S WAITING TIME + 0
DOCTOR'S OVERTIME - 19
1
0-826

1- 2
2

+ 0
I
0 - 714

+ 3
2

+ 0
1
0 + 233

+ 8
1
2

+ 3
+ 9

Table 3

Doctor's Waiting-room Results

Results of first surgery
Optional printing for second sureery
H.S.O up, H.S.I and H.S.2 down

Label print
Random number (stream 0.)

Sample consulting time

Patients queueing time

H.S.2 up

H.S.I up

+ 3

+ 9

+ 6

+ 0
+ 4

+ 9

+ 23

+ 1 5

H.S.O down; all optional printing suppressed
Second surgery results

Third surgery results

DOCTOR'S WAITING TIME
DOCTOR'S OVERTIME + 6
DOCTOR'S WAITING TIME
DOCTOR'S OVERTIME + 9
DOCTOR'S WAITING TIME t , ; , Fourth sureerv results
DOCTOR'S OVERTIME + 3 / F o u r t h s u r8e ry r e s u l t s

CUMULATIVE RESULTS, EVERY + 5TH APPT. SET TO 10 MINS.
DOCTOR'S WAITING TIME (AVERAGE) +11-7
DOCTORS OVERTIME (AVERAGE) + 9 - 2
PATIENTS' QUEUEING TIMES

80 TERMS
ACTUAL MEAN
HISTO. MEAN
CORR. - 0 75

RANGE

1 —
4—
7—

1 0 -
1 3 -
1 6 -
1 9 -
2 2 -
2 5 -
2 8 -
3 1 -
34—
3 7 -
4 0 -

0
3
6
9

12
15
18
21
24
27
30
33
36
39
42
43

+ 6-400
+ 9-556

FREQ.
26
9

16
4
9
4
6
3
3
0
0
0
0
0
0
0

VARIANCE
VARIANCE

+ 45-51
+ 39-91

10
- 1
- 1
- 1 •

20
- 1

30
- 1

40 0/0
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